MATH 7410 (TOTAL POSITIVITY): HOMEWORK #1

- The homework is due in class on *Tuesday, September 30th, 2025* on Gradescope: https://www.gradescope.com/courses/1133762. No late homework is accepted.
- Feel free to collaborate and use any sources. For each problem, all sources and collaborators must be clearly listed.
- Please use LATEX. Pictures can be drawn by hand and scanned.
- Solve each of the below problems.

Problem 1. Recall that \leq denotes the Bruhat order on \mathfrak{S}_n .¹ For $a, b \in [n]$ and $w \in \mathfrak{S}_n$, let $\hat{r}_{a,b}(w) := |\{i \geq a \mid w(i) \leq b\}|$. Show that for $v, w \in \mathfrak{S}_n$, we have $v \leq w$ if and only if $\hat{r}_{a,b}(v) \leq \hat{r}_{a,b}(w)$ for all $a, b \in [n]$.

Problem 2. Let $w = s_{i_1} \cdots s_{i_l}$ be a reduced word, and let $M := x_{i_1}(t_1) \cdots x_{i_l}(t_l)$ for some $t_1, \ldots, t_l \in \mathbb{R}_{>0}$.

- (a) Express t_l in terms of minors of M.
- (b) Deduce that the map $(\mathbb{R}_{>0})^l \to U^w_{>0}$ sending $(t_1, \dots t_l) \mapsto x_{i_1}(t_1) \cdots x_{i_l}(t_l)$ is injective.

Problem 3. Let $G := \operatorname{GL}_n$ be the set of invertible matrices and let $B_- \subset \operatorname{GL}_n$ be the set of lower-triangular matrices (with nonzero entries on the diagonal). In this problem, you will prove the *Bruhat decomposition* of G. Recall that $\hat{r}_{ij}(M)$ denotes the rank of the NE-aligned submatrix $M_{[i,n],[j]}$ of M, and that $\hat{r}_{ij}(w) := \hat{r}_{ij}(P_w)$ counts the number of 1's in the corresponding NE-aligned rectangle of the permutation matrix P_w of w.

- (a) Show that any matrix $M \in G$ belongs to $B_-P_wB_- := \{b_1P_wb_2 \mid b_1, b_2 \in B_-\}$ for some $w \in \mathfrak{S}_n$.
- (b) Show that for each $w \in \mathfrak{S}_n$, we have

$$B_{-}P_{w}B_{-} = \{ M \in G \mid \hat{r}_{ij}(M) = \hat{r}_{ij}(w) \}$$

(c) Conclude that

$$G = \bigsqcup_{w \in \mathfrak{S}_n} B_- P_w B_-.$$

Problem 4. Let $M \in U_{\geq 0}$. Let $w \in \mathfrak{S}_n$ be a permutation such that $M \in B_-P_wB_-$ (so w exists and is unique by Problem 3).

- (a) Let $i \in [n-1]$ be such that $\ell(s_i w) < \ell(w)$. Using Problem 2(a), show that there exists t > 0 such that $x_i(-t)M \in U_{\geq 0} \cap B_-P_{s_i w}B_-$.
- (b) Conclude that any $M \in U_{\geq 0}$ can be written as a product of the generators $x_i(t)$ for t > 0.2
- (c) In class, we showed that $U_{>0}^w \subset B_- P_w B_-$. Conclude that $U_{>0}^w = U_{\geq 0} \cap B_- P_w B_-$.

¹You are allowed to use any of the three characterizations of the Bruhat order whose equivalence we proved in class.

²This is the Loewner–Whitney theorem that I mentioned in class.