
MATH 206A: GEOMETRIC COMBINATORICS
HOMEWORK #2

• The homework is due on Gradescope on Friday, December 3rd at 12pm. Late homework
is generally not accepted (unless you have a good reason).
• Each problem is worth the same number of points.
• Collaboration is encouraged, but you have to write up the solutions by yourself. For each
problem, all sources and collaborators must be clearly listed.
• LATEX is preferred (hand-drawn pictures may be scanned). Alternatively, please submit
good quality scans of your work! (e.g. google “phone scan app”)
• Justify your answers by rigorous proofs.

• Turn in at least one problem from each of the two sections below. Turn in at most five
problems total. Each problem is worth 10 points, thus the total is 50 points. If you do some
of the extra credit parts, you can earn up to 150 additional points.

1. Flips, triangulations, matroids

Problem 1.1. Show that Stanley’s triangulation of the hypersimplex (as discussed in
Lecture 13) is actually a triangulation.

Problem 1.2. Show that the triangulation in Fig. 1 is not regular.
Extra credit (+10pts): Let A be the point configuration in Fig. 1. Draw the graph whose

vertices are triangulations of A and whose edges correspond to flips of triangulations. Mark
the vertices corresponding to non-regular triangulations. Determine how close is your graph
to the 1-skeleton of a 3-dimensional polytope.

Figure 1. A triangulation of a configuration A of six points in R2.

Problem 1.3. Let V = (v0, . . . , vn) ∈ Rd·(n+1) be a vector configuration which spans Rd,
and let v0 6= 0 be such that the vectors in V − v0 := (v1, · · · , vn) still span Rd. Let C be a
fine zonotopal tiling of the zonotope ZV . Construct (cf. Lecture 21) fine zonotopal tilings
C − v0 and C/v0 of the zonotopes ZV−v0 and ZV/v0 , respectively, and show that the number
of top-dimensional tiles in C equals that of C − v0 plus that of C/v0. (Here V/v0 is obtained
by projecting the vectors v1, . . . , vn onto the orthogonal complement of v0.)

Problem 1.4. Let B ⊂
(

[n]
k

)
be a nonempty collection of k-element subsets of [n]. Consider

the following three statements:
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(1) For any I, J ∈ B and any i ∈ I, there exists j ∈ J such that (I \ {i}) ∪ {j} belongs
to B.

(2) For any I, J ∈ B and any i ∈ I, there exists j ∈ J such that both (I \ {i})∪ {j} and
(J \ {j}) ∪ {i} belong to B.

(3) For any I, J ∈ B, any r ≥ 1, and any i1, . . . , ir ∈ I, there exist j1, . . . , jr ∈ J such
that both (I \ {i1, . . . , ir})∪{j1, . . . , jr} and (J \ {j1, . . . , jr})∪{i1, . . . , ir} belong to
B.

Thus (1) states that B is the set of bases of a matroid. Decide whether (1) and (2) are
equivalent.

Extra credit (+10pts): decide whether (3) is equivalent to either (1) or (2).

Problem 1.5. Consider a configuration A ⊂ R2 of nine points shown on the left in Fig. 2.
Thus {4, 5, 6} /∈ B(MA) is not a basis of MA. Let the non-Pappus matroid M be defined
by B(M) := B(MA) t {{4, 5, 6}}. Check that M is a matroid and that it is not realizable
over R.

Extra credit (+10pts): check that it is in fact not realizable over any field.
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Point configuration A non-Pappus matroid M

Figure 2. The non-Pappus matroid

Problem 1.6. For a k-dimensional subspace U ∈ Gr(k, n;R) of Rn, let U⊥ ∈ Gr(n −
k, n;R) denote the orthogonal complement of U . Show that M∗

U =MU⊥ .
Extra credit (+10pts): show that the same holds over an arbitrary field F. More precisely,

consider a dot product on Fn given by 〈v, w〉 :=
∑n

i=1 viwi. We say that v, w ∈ Fn are
orthogonal if 〈v, w〉 = 0. Show that for U ∈ Gr(k, n;F) a k-dimensional linear subspace of
Fn, the orthogonal complement U⊥ ∈ Gr(n − k, n;F) is (n − k)-dimensional, and that we
still have M∗

U =MU⊥ .

2. Hyperplane arrangements

Problem 2.1. Recall that given a root system Φ, one can consider the hyperplane
arrangement

AΦ := {α⊥ | α ∈ Φ+} = {α⊥ | α ∈ Φ}.
Find the characteristic polynomial of AΦ for each of the following two root systems:

ΦBn := {±ei | i ∈ [n]} t {±ei ± ej | 1 ≤ i < j ≤ n};
ΦDn := {±ei ± ej | 1 ≤ i < j ≤ n}.
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All references below are to the web version of Stanley’s book [Sta07], which you can find
at https://www.cis.upenn.edu/~cis610/sp06stanley.pdf. I’m adding a short summary
for each problem so that it would be easier to match it to Stanley’s notes.

Problem 2.2. [Sta07, Chapter 1, p. 12, Ex. (3)]: characteristic polynomial of x1 =
x2, x2 = x3, . . . , xn = x1.

Problem 2.3. [Sta07, Chapter 1, p. 12 Ex. (7)(b,c)]: the union of bounded faces of A
need not be homeomorphic to a ball or even starshaped.

Problem 2.4. [Sta07, Chapter 2, p. 30, Ex. (5)]: adding coordinate hyperplanes to a
graphical arrangement.

Problem 2.5. [Sta07, Chapter 2, p. 30, Ex. (8)]: counting acyclic orientations of G with
a given source.

Problem 2.6. [Sta07, Chapter 5, p. 81, Ex. (3)(a,b)]: bijective proof for the number of
regions of the Shi arrangement.

Extra credit (+10pts): Do part (c) of this problem.

Problem 2.7. [Sta07, Chapter 5, p. 82, Ex. (11)]: poset of regions of the Catalan
arrangement.

Problem 2.8. [Sta07, Chapter 5, p. 83, Ex. (12)]: characteristic polynomial of the
Catalan arrangement.

Problem 2.9. [Sta07, Chapter 5, p. 84, Ex. (19)(a,b)]: characteristic polynomial of the
Linial arrangement.

Problem 2.10. [Sta07, Chapter 5, p. 85, Ex. (20)(a)]: a combinatorial interpretation
for the number of regions of the Linial arrangement in terms of alternating trees.

Extra credit (+100pts): solve part (b) of this problem and get an automatic A+ for this
class.
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