The classification of Zamolodchikov periodic quivers

Pavel Galashin

MIT

galashin@mit.edu

March 30, 2016

Joint work with Pavlo Pylyavskyy

Part 1: Statement

Theorem

- 1
- 2
- (3)
- _
- •

Theorem

- 1
- 2
- **3**
- 4

Theorem

- **1**
- 2
- (3)
- •
- 6

Recurrent quivers

Theorem

- 1
- 2
- (3)
- **4**
- 6

Theorem

- 1
- 2
- (3)
- 4
- **5** The T-system associated with Q is periodic.

T-system

T-system

T-system

ADE Dynkin diagrams: bad definitions

Name Picture h A_n n+1 D_n 2n - 2 E_6 12 E_7 18 E_8 30

Tensor product

Example

Theorem 1

- 1
- 2
- 3
- 4
- The T-system associated with Q is periodic.

Theorem

- 1
- 2
- 3
- **1** The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Tropical *T*-system

Tropical *T*-system

Example

Theorem

- 1
- 2
- 3
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Theorem

- 1
- **2**
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Fixed point

Fixed point

$$a^2 = b + b$$
; $b^2 = a^2 + c$; $c^2 = b^2 + b^2$.

Fixed point

$$a^2 = b + b$$
; $b^2 = a^2 + c$; $c^2 = b^2 + b^2$.

$$a = \sqrt{4 + 2\sqrt{2}}; \quad b = 2 + \sqrt{2}; \quad c = 2 + 2\sqrt{2}.$$

Theorem

- 1
- **2**
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Theorem

- 1
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Strictly subadditive labeling

Strictly subadditive labeling

 $2a > \max(b, b);$ $2b > \max(a + a, c);$ $2c > \max(b + b, b + b).$

Strictly subadditive labeling

$$2a > \max(b, b);$$
 $2b > \max(a + a, c);$ $2c > \max(b + b, b + b).$

$$a = 2;$$
 $b = 3;$ $c = 4.$

ADE Dynkin diagrams: good definitions

2a > b; 2b > a + c; 2c > b + b.

ADE Dynkin diagrams: good definitions

2a > b; 2b > a + c; 2c > b + b.

ADE Dynkin diagrams: good definitions

$$2a > b$$
; $2b > a + c$; $2c > b + b$.

$$2a = \frac{b}{\cos(\pi/h)}; \quad 2b = \frac{a+c}{\cos(\pi/h)}; \quad 2c = \frac{b+b}{\cos(\pi/h)}.$$

Theorem

- 0
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

Theorem

- **1** Q is an admissible ADE bigraph.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

Admissible ADE bigraphs

Admissible ADE bigraphs

Admissible ADE bigraphs

19 / 37

Admissible ADE bigraphs

Admissible ADE bigraphs

The result

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- Q is an admissible ADE bigraph.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

The result

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- Q is an admissible ADE bigraph.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

In all cases, both the \mathcal{T} -system and its tropicalization have period dividing

$$h + h'$$
.

Part 2: Stembridge's Classification

Tensor products

 $A_5 \times A_5$.

The case $(A^{m-1}D)_n$

The case $(A^{m-1}D)_n$

The case $(AD^{m-1})_n$

The case EE^n

11 exceptional bigraphs

11 exceptional bigraphs

11 exceptional bigraphs

Part 3: Proof

$$(\mu_i \mu_{i+1})^3 = id!$$

Plan of the proof

Subadditive function

Plan of the proof

$A_{2n-1} \leftrightarrow D_{n+1}$ duality

$A_{2n-1} \leftrightarrow D_{n+1}$ duality

$(A^{m-1}D)_n \leftrightarrow A_{2n-1} \otimes D_{m+1}$ duality

Bibliography

Sergey Fomin and Andrei Zelevinsky.

Y-systems and generalized associahedra.

Ann. of Math. (2), 158(3):977–1018, 2003.

Bernhard Keller.

The periodicity conjecture for pairs of Dynkin diagrams.

Ann. of Math. (2), 177(1):111–170, 2013.

John R. Stembridge.

Admissible W-graphs and commuting Cartan matrices.

Adv. in Appl. Math., 44(3):203-224, 2010.

Pavel Galashin and Pavlo Pylyavskyy

The classification of Zamolodchikov periodic quivers.

arXiv:1603.03942 (2016).

Thank you!