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Part 1: Ising model



Ising model: definition

Definition

A planar Ising network is a pair (G , J) where:

G= (V ,E ) is a planar graph embedded in a disk

J: E → R>0 is a function
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Spin configuration: a map σ : V → {±1}
Ising model: probability measure on {±1}V

wt(σ):=
∏

{u,v}∈E

exp
(
J{u,v}σuσv

)
Partition function: Z :=

∑
σ∈{±1}V

wt(σ)

wt(σ) =
exp (Je1 + Je2 + Je6 + Je8)

exp (Je3 + Je4 + Je5 + Je7 + Je9)

Prob(σ):=
wt(σ)

Z
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Ising model: correlation functions

Definition

For u, v ∈ V , their correlation is 〈σuσv 〉 := Prob(σu = σv )− Prob(σu 6= σv ).

Theorem (Griffiths (1967))

For u, v ∈ V , we have 〈σuσv 〉 ≥ 0.

Theorem (Kelly–Sherman (1968))

For u, v ,w ∈ V , we have 〈σuσw 〉 ≥ 〈σuσv 〉 · 〈σvσw 〉.

Question (Kelly–Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity

Theorem (G.–Pylyavskyy (2018))

Describe boundary correlations of the planar Ising model by inequalities.
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Ising model: history



Ising model: history

Suggested by by W. Lenz to his student E. Ising in 1920

Ising (1925): not a good model for ferromagnetism

Q: how does |~F | depend on T ◦?

T ◦

|~F |

T ◦

|~F |

Curie point (P. Curie, 1895)
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Ising model: history

Suggested by by W. Lenz to his student E. Ising in 1920

Ising (1925): not a good model for ferromagnetism

Historically, we let G := Zd ∩ Ω for some Ω ⊂ Rd

and set all Je := 1
T for some temperature T ∈ R>0.

Peierls (1937): phase transition in Zd for d ≥ 2

Kramers–Wannier (1941): critical temperature 1
Tc

= 1
2 log

(√
2 + 1

)
for Z2
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Ising model: phase transition

Let G ⊂ Zd be a (2N + 1)× (2N + 1) square
and Je = 1

T for some fixed T ∈ R>0.

Suppose that σu = +1 for all u ∈ ∂G .
Let v be the vertex in the middle of the square.
Define the spontaneous magnetization
M(T ) := lim

N→∞
(Prob(σv = +1)− Prob(σv = −1))

v

Theorem (Onsager (1944),Onsager–Kaufman (1949), Yang (1952))

T

M(T )

Tc

� (Tc − T )
1
8
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Ising model: history
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ferromagnetism

Historically, we let G := Zd ∩ Ω for some Ω ⊂ Rd

and set all Je := 1
T for some temperature T ∈ R>0.

Peierls (1937): phase transition in Zd for d ≥ 2

Kramers–Wannier (1941): critical temperature 1
Tc

= 1
2 log

(√
2 + 1

)
for Z2

Onsager, Kaufman, Yang (1944–1952): exact expressions for the free
energy and spontaneous magnetization

Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal
invariance of the scaling limit at T = Tc for Z2

Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal
invariance and universality of the scaling limit at T = Tc for Z2
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Ising model: boundary correlations

Recall: G is embedded in a disk. Let b1, . . . , bn be the boundary vertices.

Correlation: 〈σuσv 〉 := Prob(σu = σv )− Prob(σu 6= σv ).

Definition

Boundary correlation matrix: M(G , J) = (mij)
n
i ,j=1, where mij := 〈σbiσbj 〉.

b1

b2b3

b4

b5 b6

M(G , J) is a symmetric matrix
with 1’s on the diagonal
and nonnegative entries

Lives inside R(n2)

Xn := {M(G , J) | (G , J) is a planar Ising network with n boundary vertices}
X n := closure of Xn inside the space of n × n matrices.
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Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)

, m12 = 〈σ1σ2〉 =
2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)

, m12 = 〈σ1σ2〉 =
2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1

b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Boundary correlations: an example for n = 2

b2 b1
Je

b2 b1 b2 b1
∞

M(G , J) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

Xn is neither open nor closed inside R(n2).

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 11 / 32



Part 2: Total positivity



The totally nonnegative (TNN) Grassmannian

Gr(k , n) := {W ⊂ Rn | dim(W ) = k}.

Gr(k , n) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 − 1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊂ [n] := {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr≥0(k, n) := {W ∈ Gr(k, n) | ∆I (W ) ≥ 0 for all I}.
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Plücker coordinates: for I ⊂ [n] := {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr≥0(k, n) := {W ∈ Gr(k, n) | ∆I (W ) ≥ 0 for all I}.

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 13 / 32



The totally nonnegative (TNN) Grassmannian

Gr(k , n) := {W ⊂ Rn | dim(W ) = k}.
Gr(k , n) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 − 1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.
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Example: Gr≥0(2, 4)

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr≥0(2, 4)

u1 u2 u3 u4 u1

u2

u3u4

u1u3
u3

u4

u4

u1

∆13 = 1, ∆24 = 3, ∆12 = 2, ∆34 = 1, ∆14 = 1, ∆23 = 1.

In Gr(2, 4), we have a Plücker relation: ∆13∆24 = ∆12∆34 + ∆14∆23.
Top cell: ∆13,∆24,∆12,∆34,∆14,∆23 > 0
Codimension 1 cells: ∆12 = 0, ∆23 = 0, ∆34 = 0, ∆14 = 0.
Codimension 2 cell: ∆12 = ∆14 = ∆24 = 0.
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In Gr(2, 4), we have a Plücker relation: ∆13∆24 = ∆12∆34 + ∆14∆23.
Top cell: ∆13,∆24,∆12,∆34,∆14,∆23 > 0
Codimension 1 cells: ∆12 = 0, ∆23 = 0, ∆34 = 0, ∆14 = 0.
Codimension 2 cell: ∆12 = ∆14 = ∆24 = 0.

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 14 / 32



Example: Gr≥0(2, 4)

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr≥0(2, 4)

u1 u2 u3 u4 u1

u2

u3u4

u1u3
u3

u4

u4

u1

∆13 = 1, ∆24 = 3, ∆12 = 2, ∆34 = 1, ∆14 = 1, ∆23 = 1.
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In Gr(2, 4), we have a Plücker relation: ∆13∆24 = ∆12∆34 + ∆14∆23.
Top cell: ∆13,∆24,∆12,∆34,∆14,∆23 > 0
Codimension 1 cells: ∆12 = 0, ∆23 = 0, ∆34 = 0, ∆14 = 0.

Codimension 2 cell: ∆12 = ∆14 = ∆24 = 0.

Pavel Galashin (MIT) Ising model and total positivity UMich, 10/19/2018 14 / 32



Example: Gr≥0(2, 4)

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr≥0(2, 4)

u1 u2 u3 u4

u1

u2

u3

u4
u1u3

u3

u4

u4

u1

∆13 = 1, ∆24 = 3, ∆12 = 2, ∆34 = 1, ∆14 = 1, ∆23 = 1.
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The topology of Gr≥0(k , n)

Theorem (Postnikov (2006))

Each boundary cell (some ∆I > 0 and the rest ∆J = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.
Gr≥0(k , n) is a regular CW complex homeomorphic to a closed ball.

Partial results:

Williams (2007), Postnikov–Speyer–Williams (2009),
Rietsch–Williams (2010).

Analogous story: Fomin–Shapiro (2000), Hersh (2014)

Theorem (G.–Karp–Lam (2017))

Gr≥0(k , n) is homeomorphic to a k(n − k)-dimensional closed ball.

Theorem (G.–Karp–Lam (2018+))

Gr≥0(k, n) is a regular CW complex.
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The totally nonnegative orthogonal Grassmannian

Recall: Gr≥0(k, n) := {W ∈ Gr(k , n) | ∆I (W ) ≥ 0 for all I}.

The orthogonal Grassmannian:
OG(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) for all I}.

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OG≥0(n, 2n) := OG(n, 2n) ∩ Gr≥0(n, 2n)

, i.e.,
OG≥0(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) ≥ 0 for all I}.

dim(Gr≥0(n, 2n)) = n2

dim(OG≥0(n, 2n)) =
(n
2

)
= n(n−1)

2

boundary cells of Gr≥0(n, 2n) are indexed by permutations∗

boundary cells of OG≥0(n, 2n) are indexed by fixed-point free involutions
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Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OG≥0(n, 2n) := OG(n, 2n) ∩ Gr≥0(n, 2n), i.e.,
OG≥0(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) ≥ 0 for all I}.

dim(Gr≥0(n, 2n)) = n2

dim(OG≥0(n, 2n)) =
(n
2

)
= n(n−1)

2

boundary cells of Gr≥0(n, 2n) are indexed by permutations∗

boundary cells of OG≥0(n, 2n) are indexed by fixed-point free involutions
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Main result

Xn := {M(G , J) | (G , J) is a planar Ising network with n boundary vertices}
X n := closure of Xn inside the space of n × n matrices.

We have Xn,X n ⊂ Matsymn (R, 1) :=

{
symmetric n × n matrices
with 1’s on the diagonal

}
.

Definition

The doubling map φ:
1 m12 m13 m14

m12 1 m23 m24

m13 m23 1 m34

m14 m24 m34 1

 7→


1 1 m12 −m12 −m13 m13 m14 −m14

−m12 m12 1 1 m23 −m23 −m24 m24

m13 −m13 −m23 m23 1 1 m34 −m34

−m14 m14 m24 −m24 −m34 m34 1 1


Theorem (G.–Pylyavskyy (2018))

• The map φ restricts to a homeomorphism
between X n and OG≥0(n, 2n).

• Each of the spaces is homeomorphic
to an

(n
2

)
-dimensional closed ball.

Matsymn (R, 1) OG(n, 2n)

X n OG≥0(n, 2n)

φ

∼
φ
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Example: n = 2

Theorem (G.–Pylyavskyy (2018))

• The map φ restricts to a homeomorphism
between X n and OG≥0(n, 2n).

• Each of the spaces is homeomorphic
to an

(n
2

)
-dimensional closed ball.

Matsymn (R, 1) OG(n, 2n)

X n OG≥0(n, 2n)

φ

∼
φ

Je
b2 b1

M(G , J) =

(
1 m
m 1

)
X 2 : 0 ≤ m ≤ 1

7→
(

1 1 m −m
−m m 1 1

)

∆13 = 1 + m2, ∆12 = 2m, ∆14 = 1−m2

∆24 = 1 + m2, ∆34 = 2m, ∆23 = 1−m2

∈ OG≥0(2, 4)
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Kramers–Wannier’s duality



Ising model: history

Suggested by by W. Lenz to his student E. Ising in 1920

Ising (1925): no phase transition in 1D =⇒ not a good model for
ferromagnetism

Historically, we let G := Zd ∩ Ω for some Ω ⊂ Rd

and set all Je := 1
T for some temperature T ∈ R>0.

Peierls (1937): phase transition in Zd for d ≥ 2

Kramers–Wannier (1941): critical temperature 1
Tc

= 1
2 log

(√
2 + 1

)
for Z2

Onsager, Kaufman, Yang (1944–1952): exact expressions for the free
energy and spontaneous magnetization

Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal
invariance of the scaling limit at T = Tc for Z2

Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal
invariance and universality of the scaling limit at T = Tc for Z2
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Kramers–Wannier’s duality

KWD−−−→

b1

b2b3

b4

b5 b6

e1

e2
e3

e4

e5

e6

e7

e8

e9

b∗1

b∗2

b∗3

b∗4

b∗5

b∗6

e∗2

e∗1

e∗3

e∗8e∗9

e∗7

e∗6

e∗5

e∗4

Here Je∗ is defined by
sinh(2Je) sinh(2Je∗) = 1.

Q: what happens if we
apply the duality twice?

(KWD)2 = cyclic shift!

(K
W
D
) 2

−−−−−→

b6

b1b2

b3

b4 b5

e1

e2
e3

e4

e5

e6

e7

e8

e9
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Kramers–Wannier’s duality vs. critical temperature

Recall: Je∗ is defined by sinh(2Je) sinh(2Je∗) = 1.

Preserves partition function Z

Switches between high and low temperature expansions for Z

Takes correlations to “disorder variables”

The unique solution to sinh(2J) sinh(2J) = 1 is given by

J =
1

2
log(
√

2 + 1)

Takes G = Z2 ∩ Ω to G ∗ ≈ (Z + 1
2)2 ∩ Ω

Fixed point of KWD↔ Ising model at critical temperature
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Cyclic shift on Gr≥0(k , n)

Theorem (G.–Karp–Lam (2017))

Gr≥0(k , n) is homeomorphic to a k(n − k)-dimensional closed ball.

Our proof involves a flow that contracts the whole Gr≥0(k , n) to the
unique cyclically symmetric point X0 ∈ Gr≥0(k , n).
Cyclic shift S : Gr(k, n)→ Gr(k, n), [w1|w2| . . . |wn] 7→ [(−1)k−1wn|w1| . . . |wn−1].

This map preserves Gr≥0(k , n).
Example: For Gr≥0(2, 4), we have

X0 =

(
1 0 −1 −

√
2

1
√

2 1 0

)
S7−→
(√

2 1 0 −1

0 1
√

2 1

)

= X0 ∈ Gr≥0(2, 4)

S7−→
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Kramers–Wannier’s duality vs. cyclic shift

Theorem (G.–Pylyavskyy (2018))

• The map φ restricts to a homeomorphism
between X n and OG≥0(n, 2n).

• Each of the spaces is homeomorphic
to an

(n
2

)
-dimensional closed ball.

• φ translates KWD : X n → X n into
the cyclic shift S on OG≥0(n, 2n)

• There exists a unique matrix M0 ∈ X n

that is fixed by KWD.

Matsymn (R, 1) OG(n, 2n)

X n OG≥0(n, 2n)

φ

∼
φ

Matsymn (R, 1) OG(n, 2n)

X n OG≥0(n, 2n)

X n OG≥0(n, 2n)

φ

∼
φ

∼
φ

KWD S

∈

M0

∈

X0

Example: Je
b2 b1 M0 ↔ Je = 1

2 log(
√

2 + 1)

Fixed point M0 of KWD↔ Ising model at critical temperature ↔ X0?
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Boundary cells



Medial graph

G

Medial graph of G Medial pairing τG of G

Definition

G is called reduced ⇐⇒ |E | = xing(τG )
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Boundary cells

Let XG := {M(G , J) | J : E → R>0} ⊂ X n.

Theorem (G.–Pylyavskyy (2018))

Every point in X n belongs to XG for some reduced G

If G and G ′ are reduced then we have

{
XG = XG ′ , if τG = τG ′

XG ∩ XG ′ = ∅, if τG 6= τG ′

We have a stratification X n =
⊔

τ∈Match(2n)

Xτ .

G is reduced ⇐⇒ the map RE
>0 → XG is injective

For reduced G ,G ′, we have M(G , J) = M(G ′, J ′) ⇐⇒ (G ′, J ′) is
obtained from (G , J) by a sequence of Y −∆ moves
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Boundary correlations: an example for n = 2
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Matchings for n = 3
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Plabic graphs
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Here se := sech(2Je), ce := tanh(2Je) so that s2e + c2e = 1.
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Open problems

Show that X n is a regular CW complex.

That is, show that the
closure of Xτ is a closed ball for any matching τ .

Give a stratification-preserving homeomorphism between the space
X n and Lam’s compactification En of the space of electrical networks.

What is the “scaling limit” of X0 ∈ OG≥0(n, 2n) as n→∞? In what
sense is it “conformally invariant” or “universal”?

Cluster algebra-like structure on OG≥0(n, 2n)? Positivity tests?
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Thank you!

Slides: http://math.mit.edu/~galashin/slides/umich_ising.pdf
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