Ising model and total positivity

Pavel Galashin

MIT galashin@mit.edu

University of Michigan, October 19, 2018 Joint work with Pavlo Pylyavskyy arXiv:1807.03282

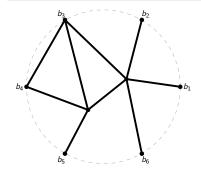
Part 1: Ising model

Definition

Definition

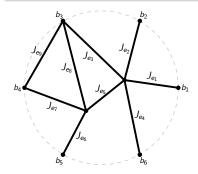
A planar lsing network is a pair (G, J) where:

• G = (V, E) is a planar graph embedded in a disk



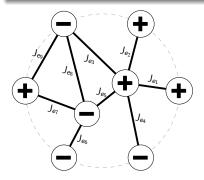
Definition

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function



Definition

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

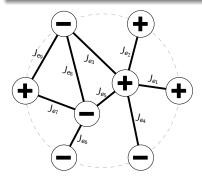


Spin configuration: a map
$$\sigma: V \rightarrow \{\pm 1\}$$

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

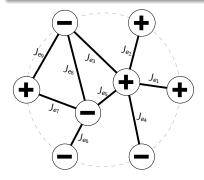


Spin configuration: a map $\sigma: V \to \{\pm 1\}$ Ising model: probability measure on $\{\pm 1\}^V$

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

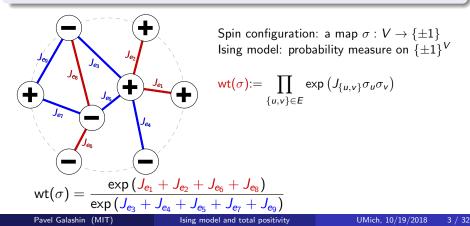


Spin configuration: a map $\sigma: V \to \{\pm 1\}$ Ising model: probability measure on $\{\pm 1\}^V$

$$\mathsf{wt}(\sigma) := \prod_{\{u,v\}\in E} \exp\left(J_{\{u,v\}}\sigma_u\sigma_v\right)$$

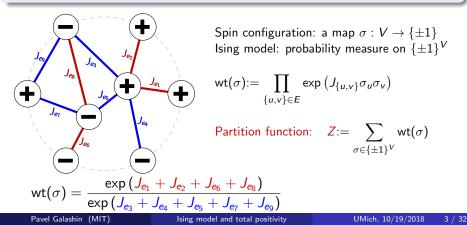
Definition

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function



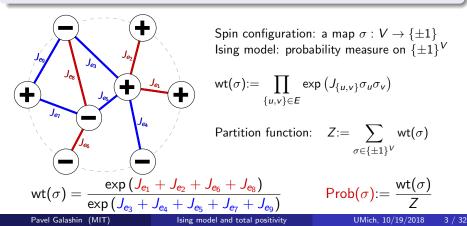
Definition

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function



Definition

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function



Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For $u, v, w \in V$, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For $u, v, w \in V$, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For
$$u, v, w \in V$$
, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For
$$u, v, w \in V$$
, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity

Theorem (G.–Pylyavskyy (2018))

Describe boundary correlations of the planar Ising model by inequalities.

• Suggested by by W. Lenz to his student E. Ising in 1920

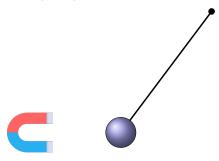
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

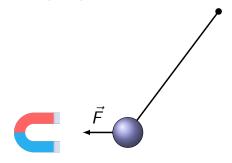


- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

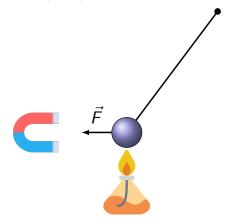
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



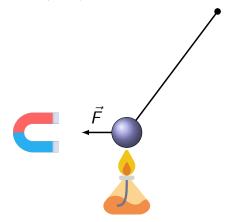
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

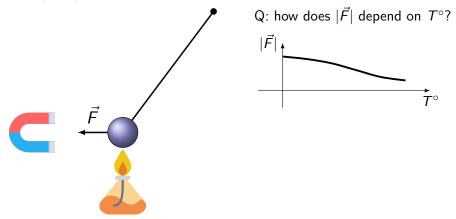


- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

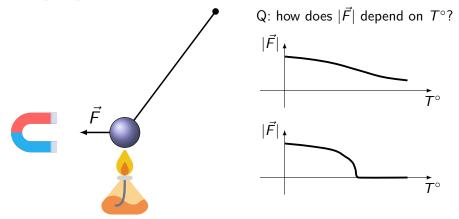


Q: how does $|\vec{F}|$ depend on T° ?

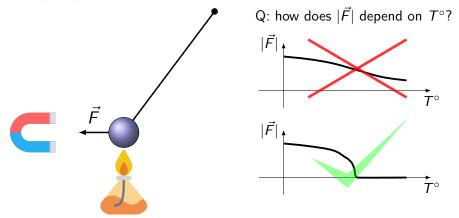
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



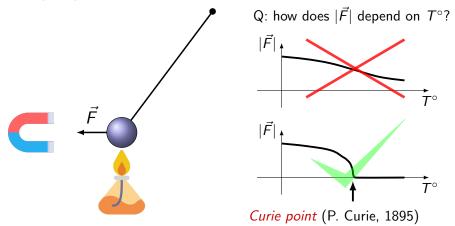
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism



- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \implies not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

• Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$

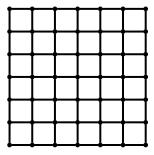
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log \left(\sqrt{2} + 1\right)$ for \mathbb{Z}^2

Ising model: phase transition

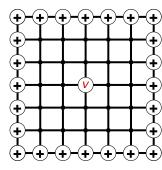
Let $G \subset \mathbb{Z}^d$ be a $(2N+1) \times (2N+1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$.



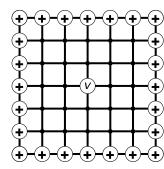
Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$.



Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square.



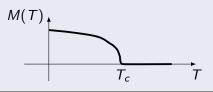
Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$



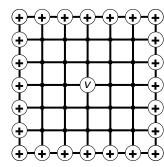
Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$



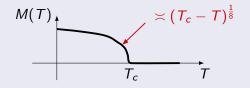
Theorem (Onsager (1944), Onsager–Kaufman (1949), Yang (1952))



Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$



Theorem (Onsager (1944), Onsager–Kaufman (1949), Yang (1952))



- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log \left(\sqrt{2} + 1\right)$ for \mathbb{Z}^2

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization

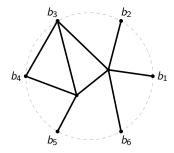
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at T = T_c for Z²

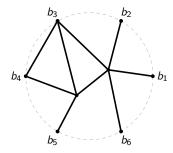
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at T = T_c for Z²
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices.



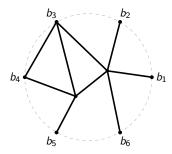
Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.



Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

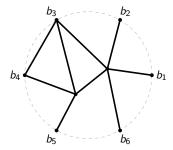
Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.



Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

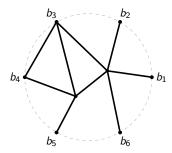


M(G, J) is a symmetric matrix

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

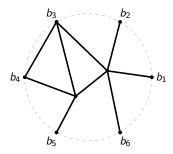


M(G, J) is a symmetric matrix with 1's on the diagonal

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

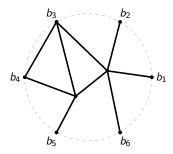


M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.



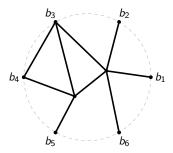
M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.



M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

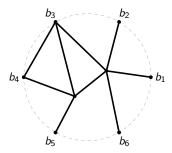
Lives inside $\mathbb{R}^{\binom{n}{2}}$

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

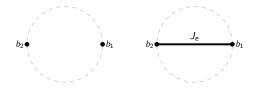


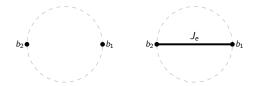
M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n := \text{closure of } \mathcal{X}_n \text{ inside the space of } n \times n \text{ matrices.}$

Pavel Galashin (MIT)





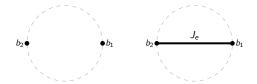
$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}$$



$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$



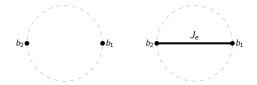
$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$



$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

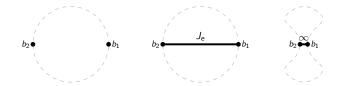
$$\begin{array}{c|c} J_e = 0 & J_e \in (0,\infty) & J_e = \infty \\ \hline m_{12} = 0 & m_{12} \in (0,1) & m_{12} = 1 \end{array}$$

• We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.



$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

- We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.
- \mathcal{X}_n is neither open nor closed inside $\mathbb{R}^{\binom{n}{2}}$.



$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

- We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.
- \mathcal{X}_n is neither open nor closed inside $\mathbb{R}^{\binom{n}{2}}$.
- $\overline{\mathcal{X}}_n$ is obtained from \mathcal{X}_n by allowing $J_e = \infty$ (i.e., contracting edges).

Pavel Galashin (MIT)

Part 2: Total positivity

 $\operatorname{Gr}(k, n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}.$

 $Gr(k, n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}.$ $Gr(k, n) := \{ k \times n \text{ matrices of rank } k \}/(\text{row operations}).$

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

Plücker coordinates: for $I \subset [n] := \{1, 2, ..., n\}$ of size k,

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

Plücker coordinates: for $I \subset [n] := \{1, 2, ..., n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, ..., n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \operatorname{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}. \\ & \operatorname{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\operatorname{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

 $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_I(W) \geq 0 \text{ for all } I \}.$

Pavel Galashin (MIT)

$$\begin{aligned} & \operatorname{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \} \\ & \operatorname{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\operatorname{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}_{\geq 0}(2, 4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

 $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_I(W) \geq 0 \text{ for all } I \}.$

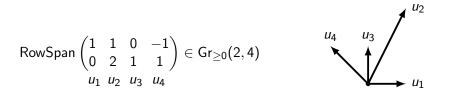
Pavel Galashin (MIT)

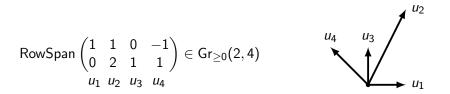
$$\mathsf{RowSpan}\begin{pmatrix}1&1&0&-1\\0&2&1&1\end{pmatrix}\in\mathsf{Gr}_{\geq 0}(2,4)$$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

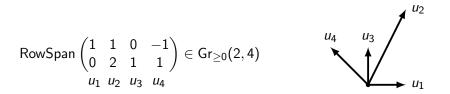
$$\mathsf{RowSpan}\begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \\ u_1 & u_2 & u_3 & u_4 \end{pmatrix} \in \mathsf{Gr}_{\geq 0}(2,4)$$

$$\Delta_{13}=1, \quad \Delta_{24}=3, \quad \Delta_{12}=2, \quad \Delta_{34}=1, \quad \Delta_{14}=1, \quad \Delta_{23}=1.$$

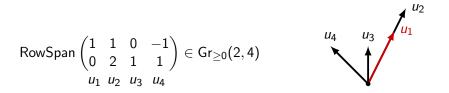




In Gr(2,4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$.

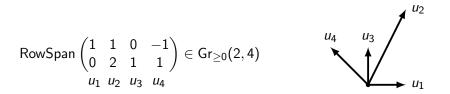


In Gr(2,4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$

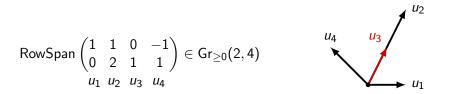


$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

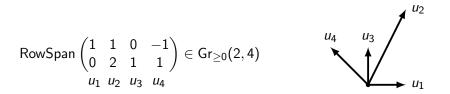
In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$



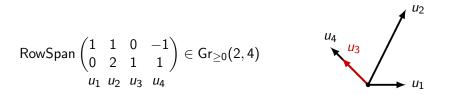
In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}.$ Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$



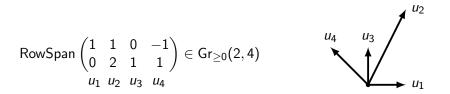
In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \Delta_{23} = 0$



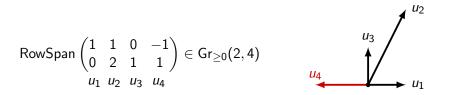
In Gr(2,4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$, $\Delta_{23} = 0$



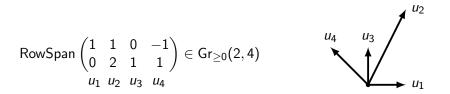
In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$, $\Delta_{23} = 0$, $\Delta_{34} = 0$



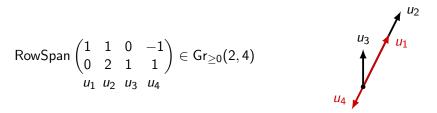
In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$, $\Delta_{23} = 0$, $\Delta_{34} = 0$



In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$, $\Delta_{23} = 0$, $\Delta_{34} = 0$, $\Delta_{14} = 0$.



In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$, $\Delta_{23} = 0$, $\Delta_{34} = 0$, $\Delta_{14} = 0$.



In Gr(2, 4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$. Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \ \Delta_{23} = 0, \ \Delta_{34} = 0, \ \Delta_{14} = 0$. Codimension 2 cell: $\Delta_{12} = \Delta_{14} = \Delta_{24} = 0$.

The topology of $\operatorname{Gr}_{\geq 0}(k, n)$

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

The topology of $\operatorname{Gr}_{\geq 0}(k, n)$

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results:

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results: Williams (2007),

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results: Williams (2007), Postnikov-Speyer-Williams (2009),

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results: Williams (2007), Postnikov–Speyer–Williams (2009), Rietsch–Williams (2010).

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results: Williams (2007), Postnikov–Speyer–Williams (2009), Rietsch–Williams (2010).

Analogous story:

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results:	Williams (2007), Postnikov–Speyer–Williams (2009),
	Rietsch–Williams (2010).
Analogous story:	Fomin–Shapiro (2000),

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results:	Williams (2007), Postnikov–Speyer–Williams (2009),							
	Rietsch–Williams (2010).							
Analogous story:	Fomin–Shapiro (2000), Hersh (2014)							

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results:	Williams (2007), Postnikov–Speyer–Williams (2009),
	Rietsch–Williams (2010).
Analogous stary	F_{amin} Shaning (2000) Haush (2014)

Analogous story: Fomin–Shapiro (2000), Hersh (2014)

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball. $Gr_{\geq 0}(k, n)$ is a regular CW complex homeomorphic to a closed ball.

Partial results:	Williams (2007), Postnikov–Speyer–Williams (2009),
	Rietsch–Williams (2010).
A I .	

Analogous story: Fomin–Shapiro (2000), Hersh (2014)

Theorem (G.–Karp–Lam (2017))

 $\operatorname{Gr}_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Theorem (G.–Karp–Lam (2018+))

 $\operatorname{Gr}_{\geq 0}(k, n)$ is a regular CW complex.

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

• dim(Gr_{≥ 0}(n, 2n)) = n²

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

• dim(Gr
$$_{\geq 0}(n,2n)$$
) = n^2

• dim(OG_{$$\geq 0$$}(*n*, 2*n*)) = $\binom{n}{2} = \frac{n(n-1)}{2}$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

• dim(Gr_{$$\geq 0$$}(n, 2n)) = n²

• dim(OG_{$$\geq 0$$}(*n*, 2*n*)) = $\binom{n}{2} = \frac{n(n-1)}{2}$

boundary cells of Gr_{≥0}(n, 2n) are indexed by permutations^{*}

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

• dim(Gr_{$$\geq 0$$}(n, 2n)) = n²

- dim(OG_{≥ 0}(*n*, 2*n*)) = $\binom{n}{2} = \frac{n(n-1)}{2}$
- boundary cells of $\operatorname{Gr}_{\geq 0}(n, 2n)$ are indexed by permutations*
- boundary cells of $OG_{\geq 0}(n, 2n)$ are indexed by fixed-point free involutions

Main result

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n := \text{closure of } \mathcal{X}_n \text{ inside the space of } n \times n \text{ matrices.}$

Main result

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Main result

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Definition

The doubling map ϕ :													
(m_{13}	m_{14}		$\begin{pmatrix} 1 \end{pmatrix}$	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$
	m_{12}	1	m_{23}	<i>m</i> ₂₄		14		1	1				m ₂₄
	m_{13}	m_{23}	1	<i>m</i> ₃₄	' ′	m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> 23	1	1	<i>m</i> ₃₄	- m ₃₄
	m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{ symmetric } n \times n \text{ matrices } \\ \text{ with 1's on the diagonal } \end{cases}$.

The d	The doubling map ϕ :														
(1	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$			
<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄			m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄			
<i>m</i> ₁₃	m_{23}		<i>m</i> ₃₄		<i>m</i> ₁₃	$-m_{13}$				1	<i>m</i> ₃₄	- m ₃₄			
m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	<i>m</i> ₁₄	<i>m</i> ₂₄	$-m_{24}$	- <i>m</i> ₃₄	<i>m</i> ₃₄	1	1 /			

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{ symmetric } n \times n \text{ matrices } \\ \text{ with 1's on the diagonal } \end{cases}$.

The o	The doubling map ϕ :														
	m_{12}		m_{14}		$\begin{pmatrix} 1 \end{pmatrix}$	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$			
<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$		1	1	<i>m</i> ₂₃		$-m_{24}$	m ₂₄			
m ₁₃	<i>m</i> 23	1	<i>m</i> ₃₄		m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> 23	1	1	<i>m</i> ₃₄	- m ₃₄			
m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	- <i>m</i> ₂₄	$-m_{34}$	<i>m</i> ₃₄	1	1 /			

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{ symmetric } n \times n \text{ matrices } \\ \text{ with 1's on the diagonal } \end{cases}$.

The c	The doubling map ϕ :														
$\begin{pmatrix} 1 \end{pmatrix}$	m_{12}	<i>m</i> ₁₃	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$			
<i>m</i> ₁₂	1	<i>m</i> ₂₃	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> 23		$-m_{24}$	m ₂₄			
m ₁₃	<i>m</i> ₂₃			' ′			$-m_{23}$				<i>m</i> ₃₄	- m ₃₄			
m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /			

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

The d	The doubling map ϕ :													
	m_{12}		m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$		
<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$		1	1			$-m_{24}$	<i>m</i> ₂₄		
m ₁₃	m_{23}	1	<i>m</i> ₃₄	' ′	m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	- <i>m</i> ₃₄		
$\backslash m_{14}$	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /		

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \left\{ \begin{array}{c} \operatorname{symmetric} n \times n \text{ matrices} \\ \operatorname{with} 1 \text{'s on the diagonal} \end{array} \right\}.$

Definition

Т	The doubling map ϕ : $\begin{pmatrix} 1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \end{pmatrix}$														
	(1	m_{12}	m_{13}	m_{14}		$\begin{pmatrix} 1 \end{pmatrix}$	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$		
	m_{12}	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄		
	m_{13}	m_{23}	1	<i>m</i> ₃₄	' ′	m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	- m ₃₄		
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /		

Theorem (G.–Pylyavskyy (2018))

$$\begin{array}{c} \mathsf{Mat}^{\mathsf{sym}}_n(\mathbb{R},1) & \longleftrightarrow & \mathsf{OG}(n,2n) \\ & & & \uparrow \\ & & & & \uparrow \\ & & \overline{\mathcal{X}}_n & & \mathsf{OG}_{\geq 0}(n,2n) \end{array}$$

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Definition

Т	The doubling map ϕ :														
	$\begin{pmatrix} 1 \end{pmatrix}$					(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$		
	<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄	\rightarrow	$-m_{12}$	m_{12}	1	1	m_{23}	$-m_{23}$	$-m_{24}$	m ₂₄		
	m_{13}	m_{23}	1	<i>m</i> ₃₄									- m ₃₄		
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /		

Theorem (G.–Pylyavskyy (2018))

• The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.

$$\operatorname{Mat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\frown}{\longrightarrow} \qquad \stackrel{\frown}{\longrightarrow} \qquad \stackrel{\frown}{\longrightarrow} \operatorname{OG}_{\geq 0}(n,2n)$$

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Definition

Т	The doubling map ϕ :														
	$\begin{pmatrix} 1 \end{pmatrix}$					(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$		
	m_{12}	1	m_{23}	<i>m</i> ₂₄	\rightarrow	$-m_{12}$	m_{12}	1	1	m_{23}	$-m_{23}$	$-m_{24}$	m ₂₄		
	m_{13}	m_{23}	1	<i>m</i> ₃₄									- m ₃₄		
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /		

Theorem (G.–Pylyavskyy (2018))

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{>0}(n, 2n)$.
- Each of the spaces is homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.

 $\operatorname{Mat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$ $\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\sim}{\longrightarrow} \operatorname{OG}_{\geq 0}(n,2n)$

Theorem (G.-Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

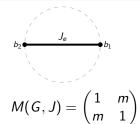
$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overrightarrow{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

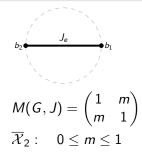


Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$



Theorem (G.-Pylyavskyy (2018))

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$b_2 \underbrace{J_e}_{J_e} b_1$$

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & m \end{pmatrix}$$

$$M(G,J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix}$$
$$\overline{\mathcal{X}}_2: \quad 0 \le m \le 1$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix}$$
$$\overline{\mathcal{X}}_{2}: \quad 0 \le m \le 1 \qquad \qquad \Delta_{13} = 1 + m^{2}, \quad \Delta_{12} = 2m, \quad \Delta_{14} = 1 - m^{2}$$
$$\Delta_{24} = 1 + m^{2}, \quad \Delta_{34} = 2m, \quad \Delta_{23} = 1 - m^{2}$$

Theorem (G.-Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix} \in OG_{\geq 0}(2, 4)$$

$$\overline{\mathcal{X}}_{2}: \quad 0 \leq m \leq 1 \qquad \qquad \Delta_{13} = 1 + m^{2}, \quad \Delta_{12} = 2m, \quad \Delta_{14} = 1 - m^{2}$$

$$\Delta_{24} = 1 + m^{2}, \quad \Delta_{34} = 2m, \quad \Delta_{23} = 1 - m^{2}$$

Ising model: history

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

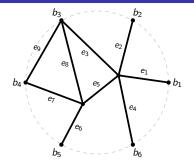
- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at $T = T_c$ for \mathbb{Z}^2
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2

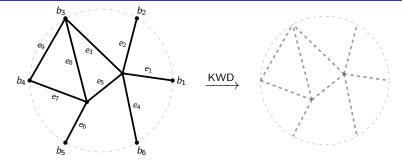
Ising model: history

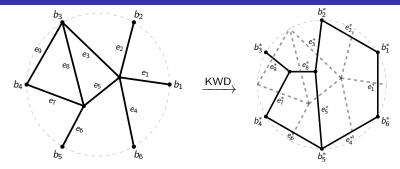
- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

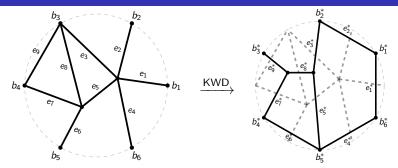
Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

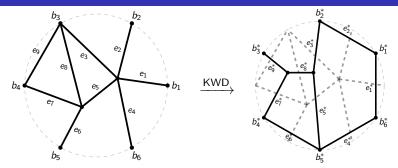
- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at $T = T_c$ for \mathbb{Z}^2
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2





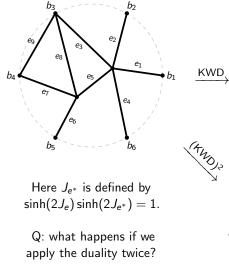


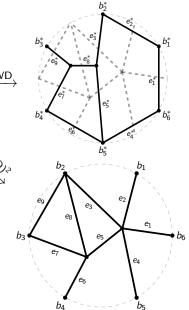


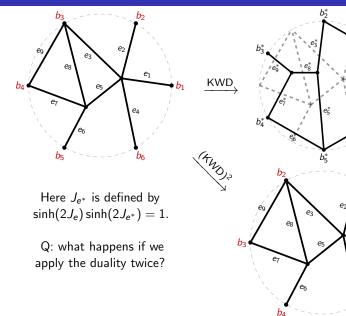


Here J_{e^*} is defined by $\sinh(2J_e)\sinh(2J_{e^*}) = 1$.

Q: what happens if we apply the duality twice?







 b_1^*

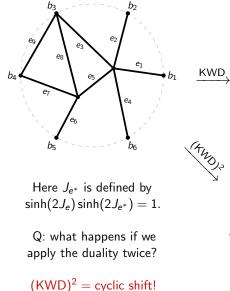
 b_6^*

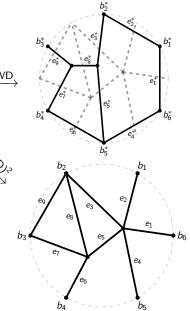
e

b

еı

e₄





- Recall: J_{e^*} is defined by $\sinh(2J_e)\sinh(2J_{e^*}) = 1$.
 - Preserves partition function Z

- Preserves partition function Z
- Switches between high and low temperature expansions for Z

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

• Takes
$$G = \mathbb{Z}^2 \cap \Omega$$
 to $G^* \approx (\mathbb{Z} + rac{1}{2})^2 \cap \Omega$

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

- Takes $G = \mathbb{Z}^2 \cap \Omega$ to $G^* pprox (\mathbb{Z} + rac{1}{2})^2 \cap \Omega$
- Fixed point of KWD ↔ Ising model at critical temperature

Cyclic shift on $Gr_{\geq 0}(k, n)$

Theorem (G.-Karp-Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$.

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$.

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

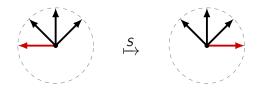
Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n), \quad [w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$.

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \stackrel{S}{\mapsto} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix}$$

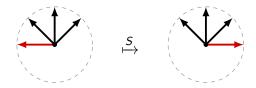
 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix}$$



 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

$$X_{0} = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_{0} \in Gr_{\geq 0}(2, 4)$$



 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_0 \in Gr_{\geq 0}(2, 4)$$

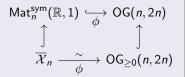
$$\begin{array}{lll} \Delta_{13} = 2 & \Delta_{12} = \sqrt{2} & \Delta_{14} = \sqrt{2} \\ \Delta_{24} = 2 & \Delta_{34} = \sqrt{2} & \Delta_{23} = \sqrt{2}. \end{array}$$

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

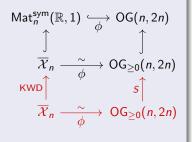
$$X_{0} = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{s} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_{0} \in OG_{\geq 0}(2, 4)$$

$$\begin{array}{lll} \Delta_{13} = 2 & \Delta_{12} = \sqrt{2} & \Delta_{14} = \sqrt{2} \\ \Delta_{24} = 2 & \Delta_{34} = \sqrt{2} & \Delta_{23} = \sqrt{2}. \end{array}$$

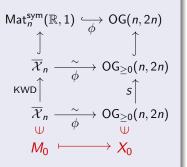
- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.



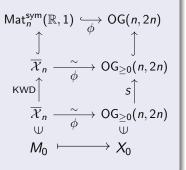
- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on $OG_{\geq 0}(n, 2n)$

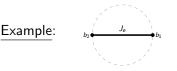


- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix M₀ ∈ X_n that is fixed by KWD.



- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix M₀ ∈ X
 _n that is fixed by KWD.

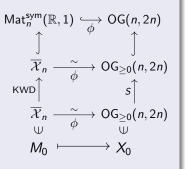




$$M_0 \leftrightarrow J_e = rac{1}{2}\log(\sqrt{2}+1)$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix $M_0 \in \overline{\mathcal{X}}_n$ that is fixed by KWD.

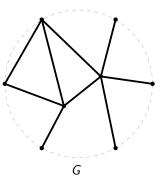


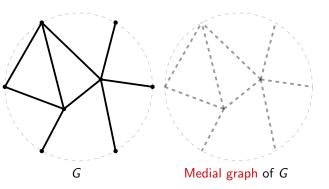
 $M_0 \leftrightarrow J_e = \frac{1}{2} \log(\sqrt{2} + 1)$

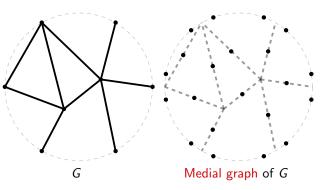
Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$?

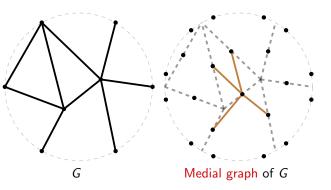
Example:

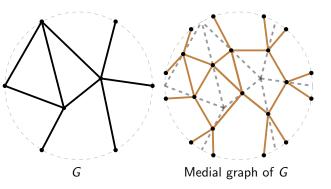
Boundary cells

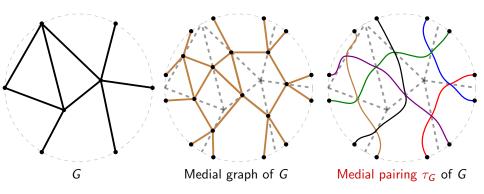


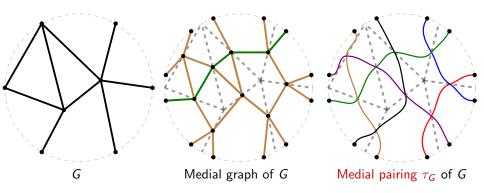


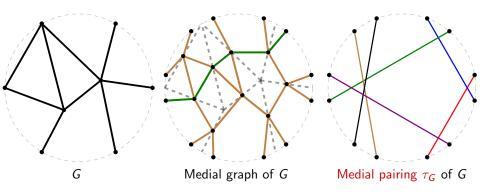


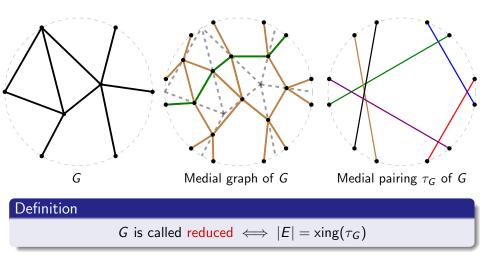












Let $\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n.$

Let $\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n$.

• Every point in $\overline{\mathcal{X}}_n$ belongs to \mathcal{X}_G for some reduced G

Let
$$\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n.$$

• Every point in $\overline{\mathcal{X}}_n$ belongs to \mathcal{X}_G for some reduced G

• If G and G' are reduced then we have
$$\begin{cases} \mathcal{X}_{G} = \mathcal{X}_{G'}, & \text{if } \tau_{G} = \tau_{G'} \\ \mathcal{X}_{G} \cap \mathcal{X}_{G'} = \emptyset, & \text{if } \tau_{G} \neq \tau_{G'} \end{cases}$$

Let
$$\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n.$$

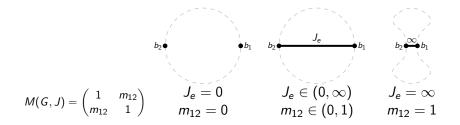
- Every point in $\overline{\mathcal{X}}_n$ belongs to \mathcal{X}_G for some reduced G
- If G and G' are reduced then we have $\begin{cases} \mathcal{X}_{G} = \mathcal{X}_{G'}, & \text{if } \tau_{G} = \tau_{G'} \\ \mathcal{X}_{G} \cap \mathcal{X}_{G'} = \emptyset, & \text{if } \tau_{G} \neq \tau_{G'} \end{cases}$
- We have a stratification $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in Match(2n)} \mathcal{X}_{\tau}.$

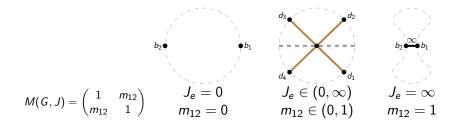
Let $\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n.$

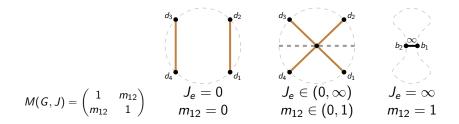
- Every point in $\overline{\mathcal{X}}_n$ belongs to \mathcal{X}_G for some reduced G
- If G and G' are reduced then we have $\begin{cases} \mathcal{X}_{G} = \mathcal{X}_{G'}, & \text{if } \tau_{G} = \tau_{G'} \\ \mathcal{X}_{G} \cap \mathcal{X}_{G'} = \emptyset, & \text{if } \tau_{G} \neq \tau_{G'} \end{cases}$
- We have a stratification $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}.$
- G is reduced \iff the map $\mathbb{R}^{E}_{\geq 0} \to \mathcal{X}_{G}$ is injective

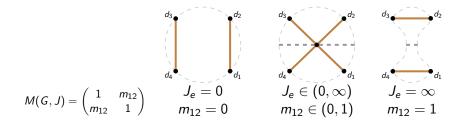
Let
$$\mathcal{X}_G := \{ M(G, J) \mid J : E \to \mathbb{R}_{>0} \} \subset \overline{\mathcal{X}}_n.$$

- Every point in $\overline{\mathcal{X}}_n$ belongs to \mathcal{X}_G for some reduced G
- If G and G' are reduced then we have $\begin{cases} \mathcal{X}_{G} = \mathcal{X}_{G'}, & \text{if } \tau_{G} = \tau_{G'} \\ \mathcal{X}_{G} \cap \mathcal{X}_{G'} = \emptyset, & \text{if } \tau_{G} \neq \tau_{G'} \end{cases}$
- We have a stratification $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}.$
- G is reduced \iff the map $\mathbb{R}^{\textit{E}}_{>0} \to \mathcal{X}_{G}$ is injective
- For reduced G, G', we have M(G, J) = M(G', J') ⇔ (G', J') is obtained from (G, J) by a sequence of Y − Δ moves

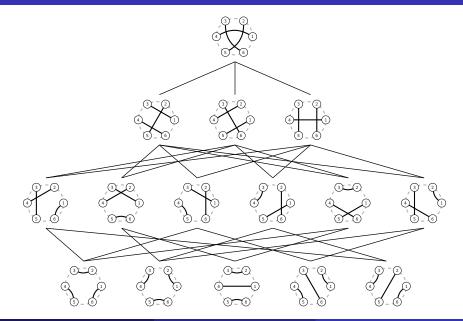






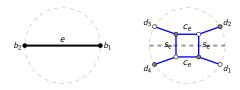


Matchings for n = 3

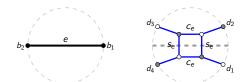


Pavel Galashin (MIT)

Plabic graphs

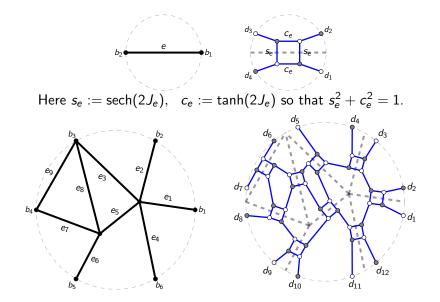


Plabic graphs



Here $s_e := \operatorname{sech}(2J_e)$, $c_e := \tanh(2J_e)$ so that $s_e^2 + c_e^2 = 1$.

Plabic graphs



• Show that $\overline{\mathcal{X}}_n$ is a regular CW complex.

• Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .

- Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .
- Give a stratification-preserving homeomorphism between the space $\overline{\mathcal{X}}_n$ and Lam's compactification E_n of the space of electrical networks.

- Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .
- Give a stratification-preserving homeomorphism between the space $\overline{\mathcal{X}}_n$ and Lam's compactification E_n of the space of electrical networks.
- What is the "scaling limit" of $X_0 \in OG_{\geq 0}(n, 2n)$ as $n \to \infty$?

- Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .
- Give a stratification-preserving homeomorphism between the space $\overline{\mathcal{X}}_n$ and Lam's compactification E_n of the space of electrical networks.
- What is the "scaling limit" of X₀ ∈ OG_{≥0}(n, 2n) as n → ∞? In what sense is it "conformally invariant" or "universal"?

- Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .
- Give a stratification-preserving homeomorphism between the space $\overline{\mathcal{X}}_n$ and Lam's compactification E_n of the space of electrical networks.
- What is the "scaling limit" of $X_0 \in OG_{\geq 0}(n, 2n)$ as $n \to \infty$? In what sense is it "conformally invariant" or "universal"?
- Cluster algebra-like structure on OG_{≥0}(n, 2n)?

- Show that $\overline{\mathcal{X}}_n$ is a regular CW complex. That is, show that the closure of \mathcal{X}_{τ} is a closed ball for any matching τ .
- Give a stratification-preserving homeomorphism between the space $\overline{\mathcal{X}}_n$ and Lam's compactification E_n of the space of electrical networks.
- What is the "scaling limit" of X₀ ∈ OG_{≥0}(n, 2n) as n → ∞? In what sense is it "conformally invariant" or "universal"?
- Cluster algebra-like structure on $OG_{\geq 0}(n, 2n)$? Positivity tests?

Thank you!

Slides: http://math.mit.edu/~galashin/slides/umich_ising.pdf

Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian arXiv:1807.03282.

Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010.

Marcin Lis.

The planar Ising model and total positivity. *J. Stat. Phys.*, 166(1):72–89, 2017.

Alexander Postnikov.

Total positivity, Grassmannians, and networks.

arXiv:math/0609764.

Thomas Lam.

Electroid varieties and a compactification of the space of electrical networks *Advances in Mathematics*, 338 (2018): 549-600.