Ising model and total positivity

Pavel Galashin

MIT galashin@mit.edu

UCLA, October 25, 2018

Joint work with Pavlo Pylyavskyy

arXiv:1807.03282

Part 1: Ising model

Definition

A planar lsing network is a pair (G, J) where:

Definition

A planar lsing network is a pair (G, J) where:

• G = (V, E) is a planar graph embedded in a disk

Definition

A planar lsing network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Spin configuration: a map $\sigma: V \to \{\pm 1\}$

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Spin configuration: a map $\sigma: V \to \{\pm 1\}$ Ising model: probability measure on $\{\pm 1\}^V$

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Spin configuration: a map $\sigma: V \to \{\pm 1\}$ Ising model: probability measure on $\{\pm 1\}^V$

$$\mathsf{wt}(\sigma) := \prod_{\{u,v\}\in E} \exp\left(J_{\{u,v\}}\sigma_u\sigma_v\right)$$

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Definition

A planar Ising network is a pair (G, J) where:

- G = (V, E) is a planar graph embedded in a disk
- $J: E \to \mathbb{R}_{>0}$ is a function

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For $u, v, w \in V$, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For $u, v, w \in V$, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For
$$u, v, w \in V$$
, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity

Definition

For $u, v \in V$, their correlation is $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Theorem (Griffiths (1967))

For $u, v \in V$, we have $\langle \sigma_u \sigma_v \rangle \geq 0$.

Theorem (Kelly–Sherman (1968))

For
$$u, v, w \in V$$
, we have $\langle \sigma_u \sigma_w \rangle \geq \langle \sigma_u \sigma_v \rangle \cdot \langle \sigma_v \sigma_w \rangle$.

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity

Theorem (G.–Pylyavskyy (2018))

Describe boundary correlations of the planar Ising model by inequalities.

• Suggested by by W. Lenz to his student E. Ising in 1920

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

Pavel Galashin (MIT)

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

Q: how does $|\vec{F}|$ depend on T° ?

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \implies not a good model for ferromagnetism

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

• Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log \left(\sqrt{2} + 1\right)$ for \mathbb{Z}^2

Ising model: phase transition

Let $G \subset \mathbb{Z}^d$ be a $(2N+1) \times (2N+1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$.

Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$.

Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square.

Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$

Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$

Theorem (Onsager (1944), Onsager–Kaufman (1949), Yang (1952))

Let $G \subset \mathbb{Z}^d$ be a $(2N + 1) \times (2N + 1)$ square and $J_e = \frac{1}{T}$ for some fixed $T \in \mathbb{R}_{>0}$. Suppose that $\sigma_u = +1$ for all $u \in \partial G$. Let v be the vertex in the middle of the square. Define the spontaneous magnetization $M(T) := \lim_{N \to \infty} (\operatorname{Prob}(\sigma_v = +1) - \operatorname{Prob}(\sigma_v = -1))$

Theorem (Onsager (1944), Onsager–Kaufman (1949), Yang (1952))

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log \left(\sqrt{2} + 1\right)$ for \mathbb{Z}^2

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at T = T_c for Z²

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin-Polyakov-Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at T = T_c for Z²
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices.

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix with 1's on the diagonal

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$

Recall: G is embedded in a disk. Let b_1, \ldots, b_n be the boundary vertices. Correlation: $\langle \sigma_u \sigma_v \rangle := \operatorname{Prob}(\sigma_u = \sigma_v) - \operatorname{Prob}(\sigma_u \neq \sigma_v)$.

Definition

Boundary correlation matrix: $M(G, J) = (m_{ij})_{i,j=1}^n$, where $m_{ij} := \langle \sigma_{b_i} \sigma_{b_j} \rangle$.

M(G, J) is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n := \text{closure of } \mathcal{X}_n \text{ inside the space of } n \times n \text{ matrices.}$

Pavel Galashin (MIT)

Ising model and total positivity

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}$$

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

$$\begin{array}{c|c} J_e = 0 & J_e \in (0,\infty) & J_e = \infty \\ \hline m_{12} = 0 & m_{12} \in (0,1) & m_{12} = 1 \end{array}$$

• We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

- We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.
- \mathcal{X}_n is neither open nor closed inside $\mathbb{R}^{\binom{n}{2}}$.

$$M(G,J) = \begin{pmatrix} 1 & m_{12} \\ m_{12} & 1 \end{pmatrix}, \qquad m_{12} = \langle \sigma_1 \sigma_2 \rangle = \frac{2 \exp(J_e) - 2 \exp(-J_e)}{2 \exp(J_e) + 2 \exp(-J_e)}$$

- We have $\mathcal{X}_2 \cong [0,1)$ and $\overline{\mathcal{X}}_2 \cong [0,1]$.
- \mathcal{X}_n is neither open nor closed inside $\mathbb{R}^{\binom{n}{2}}$.
- $\overline{\mathcal{X}}_n$ is obtained from \mathcal{X}_n by allowing $J_e = \infty$ (i.e., contracting edges).

Pavel Galashin (MIT)

Part 2: Total positivity

 $\operatorname{Gr}(k, n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}.$

 $Gr(k, n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}.$ $Gr(k, n) := \{ k \times n \text{ matrices of rank } k \}/(\text{row operations}).$

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

Plücker coordinates: for $I \subset [n] := \{1, 2, ..., n\}$ of size k,

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4)$$

Plücker coordinates: for $I \subset [n] := \{1, 2, ..., n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \mathsf{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \mathsf{dim}(W) = k \} \\ & \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\mathsf{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

$$\begin{aligned} & \operatorname{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \}. \\ & \operatorname{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\operatorname{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}(2,4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

 $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_I(W) \geq 0 \text{ for all } I \}.$

Pavel Galashin (MIT)

$$\begin{aligned} & \operatorname{Gr}(k,n) := \{ W \subset \mathbb{R}^n \mid \dim(W) = k \} \\ & \operatorname{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\operatorname{row operations}). \end{aligned}$$

Example:

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}_{\geq 0}(2, 4) \qquad \begin{array}{c} \Delta_{13} = 1 & \Delta_{12} = 2 & \Delta_{14} = 1 \\ \Delta_{24} = 3 & \Delta_{34} = 1 & \Delta_{23} = 1. \end{array}$$

Plücker coordinates: for $I \subset [n] := \{1, 2, \dots, n\}$ of size k,

 $\Delta_I := k \times k$ minor with column set *I*.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

 $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_I(W) \geq 0 \text{ for all } I \}.$

Pavel Galashin (MIT)

$$\mathsf{RowSpan} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \in \mathsf{Gr}_{\geq 0}(2,4)$$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$
RowSpan
$$\begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 1 \\ u_1 & u_2 & u_3 & u_4 \end{pmatrix} \in Gr_{\geq 0}(2, 4)$$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

$$\Delta_{13}=1, \quad \Delta_{24}=3, \quad \Delta_{12}=2, \quad \Delta_{34}=1, \quad \Delta_{14}=1, \quad \Delta_{23}=1.$$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

 $\begin{array}{ll} \mbox{Top cell: } \Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0 \\ \mbox{Codimension 1 cells: } \Delta_{12} = 0 \end{array}$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \Delta_{23} = 0$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

 $\begin{array}{l} \text{Top cell: } \Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0 \\ \text{Codimension 1 cells: } \Delta_{12} = 0, \ \Delta_{23} = 0 \end{array}$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \Delta_{23} = 0, \Delta_{34} = 0$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \ \Delta_{23} = 0, \ \Delta_{34} = 0$

$$\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$$

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \ \Delta_{23} = 0, \ \Delta_{34} = 0, \ \Delta_{14} = 0$.

 $\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$

In Gr(2,4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$.

 $\begin{array}{l} \text{Top cell: } \Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0 \\ \text{Codimension 1 cells: } \Delta_{12} = 0, \ \Delta_{23} = 0, \ \Delta_{34} = 0, \ \Delta_{14} = 0. \end{array}$

 $\Delta_{13} = 1, \quad \Delta_{24} = 3, \quad \Delta_{12} = 2, \quad \Delta_{34} = 1, \quad \Delta_{14} = 1, \quad \Delta_{23} = 1.$

In Gr(2,4), we have a Plücker relation: $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$.

Top cell: $\Delta_{13}, \Delta_{24}, \Delta_{12}, \Delta_{34}, \Delta_{14}, \Delta_{23} > 0$ Codimension 1 cells: $\Delta_{12} = 0, \Delta_{23} = 0, \Delta_{34} = 0, \Delta_{14} = 0$. Codimension 2 cell: $\Delta_{12} = \Delta_{14} = \Delta_{24} = 0$.

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007),

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov-Speyer-Williams (2009),

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov-Speyer-Williams (2009), Rietsch-Williams (2010).

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov-Speyer-Williams (2009), Rietsch-Williams (2010).

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov-Speyer-Williams (2009), Rietsch-Williams (2010).

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Theorem (G.–Karp–Lam (2018+))

The closure of each boundary cell is homeomorphic to a closed ball.

Theorem (Postnikov (2006))

Each boundary cell (some $\Delta_I > 0$ and the rest $\Delta_J = 0$) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov-Speyer-Williams (2009), Rietsch-Williams (2010).

Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Theorem (G.–Karp–Lam (2018+))

The closure of each boundary cell is homeomorphic to a closed ball.

Theorem (Smale (1960), Freedman (1982), Perelman (2003))

Let C be a compact contractible topological manifold whose boundary is homeomorphic to a sphere. Then C is homeomorphic to a closed ball.

Pavel Galashin (MIT)

 $\operatorname{Gr}_{\geq 0}(k,n) \quad \longleftrightarrow \quad \operatorname{amplituhedron} \quad \longleftrightarrow \quad \begin{array}{c} \mathcal{N} = 4 \text{ supersymmetric} \\ \operatorname{Yang-Mills theory} \end{array}$

$$\begin{array}{rcl} \operatorname{Gr}_{\geq 0}(k,n) & \longleftrightarrow & \operatorname{amplituhedron} & \longleftrightarrow & \begin{array}{c} \mathcal{N}=4 \text{ supersymmetric} \\ \operatorname{Yang-Mills theory} \end{array} \\ \operatorname{OG}_{\geq 0}(n,2n) & \longleftrightarrow & \begin{array}{c} \mathbf{?} & \longleftrightarrow & \begin{array}{c} \mathcal{N}=6 \text{ supersymmetric} \\ \operatorname{Chern-Simons matter theory} \end{array} \end{array}$$

. .

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_I(W) \geq 0 \text{ for all } I \}.$

$$\begin{array}{cccc} \operatorname{Gr}_{\geq 0}(k,n) & \longleftrightarrow & \operatorname{amplituhedron} & \longleftrightarrow & \begin{array}{c} \mathcal{N} = 4 \text{ supersymmetric} \\ \operatorname{Yang-Mills theory} \\ \\ \operatorname{OG}_{\geq 0}(n,2n) & \longleftrightarrow & \begin{array}{c} \mathbf{?} & \longleftrightarrow & \begin{array}{c} \mathcal{N} = 6 \text{ supersymmetric} \\ \operatorname{Chern-Simons matter theory} \end{array} \end{array}$$

. .

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$.

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$

 $\begin{array}{cccc} \mathsf{Gr}_{\geq 0}(k,n) & \longleftrightarrow & \text{amplituhedron} & \longleftrightarrow & \begin{array}{c} \mathcal{N}=4 \text{ supersymmetric} \\ \mathsf{Yang-Mills theory} \end{array}$ $\mathsf{OG}_{\geq 0}(n,2n) & \longleftrightarrow & \begin{array}{c} \mathbf{?} & \longleftrightarrow & \begin{array}{c} \mathcal{N}=6 \text{ supersymmetric} \\ \mathsf{Chern-Simons matter theory} \end{array}$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang-Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

 $\begin{array}{cccc} \mathsf{Gr}_{\geq 0}(k,n) & \longleftrightarrow & \text{amplituhedron} & \longleftrightarrow & \begin{array}{c} \mathcal{N} = 4 \text{ supersymmetric} \\ \mathsf{Yang-Mills theory} \end{array}$ $\mathsf{OG}_{\geq 0}(n,2n) & \longleftrightarrow & \begin{array}{c} \mathbf{?} & \longleftrightarrow & \begin{array}{c} \mathcal{N} = 6 \text{ supersymmetric} \\ \mathsf{Chern-Simons matter theory} \end{array}$

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

• dim(Gr
$$_{\geq 0}(n, 2n)$$
) = n^2

Recall: $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_{I}(W) \geq 0 \text{ for all } I \}.$ The orthogonal Grassmannian: $\operatorname{OG}(n, 2n) := \{ W \in \operatorname{Gr}(n, 2n) \mid \Delta_{I}(W) = \Delta_{[2n] \setminus I}(W) \text{ for all } I \}.$

Definition (Huang-Wen (2013))

The totally nonnegative orthogonal Grassmannian: $OG_{\geq 0}(n, 2n) := OG(n, 2n) \cap Gr_{\geq 0}(n, 2n)$, i.e., $OG_{\geq 0}(n, 2n) := \{W \in Gr(n, 2n) \mid \Delta_I(W) = \Delta_{[2n] \setminus I}(W) \ge 0 \text{ for all } I\}.$

- dim(Gr_{≥ 0}(n, 2n)) = n²
- dim(OG_{≥ 0}(*n*, 2*n*)) = $\binom{n}{2} = \frac{n(n-1)}{2}$

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n := \text{closure of } \mathcal{X}_n \text{ inside the space of } n \times n \text{ matrices.}$

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

TI	ne <mark>d</mark>	oubli	ng m	ар ϕ	:								
(1	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$
	m_{12}	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄
	m_{13}	m_{23}	1	<i>m</i> ₃₄		m_{13}	$-m_{13}$	$-m_{23}$	<i>m</i> 23	1	1	<i>m</i> ₃₄	$-m_{34}$
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Т	he d	oubli	ng m	ap ϕ	:								
	(1	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$
	m_{12}	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄
	m_{13}	m_{23}	1	<i>m</i> ₃₄	' ´	<i>m</i> ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	- m ₃₄
	\ <i>m</i> ₁₄	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

The d	The doubling map ϕ :													
$\begin{pmatrix} 1 \end{pmatrix}$	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$		
<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄		
m ₁₃	<i>m</i> ₂₃	1	<i>m</i> ₃₄	' ′	m_{13}	$-m_{13}$	$-m_{23}$	<i>m</i> 23	1	1	<i>m</i> ₃₄	- m ₃₄		
m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /		

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

The doubling map ϕ :													
$\begin{pmatrix} 1 \end{pmatrix}$	m_{12}	<i>m</i> ₁₃	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	<i>m</i> ₁₃	m_{14}	$-m_{14}$	
<i>m</i> ₁₂	1	<i>m</i> ₂₃	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> 23	$-m_{23}$	$-m_{24}$	m ₂₄	
<i>m</i> ₁₃	m_{23}	1	<i>m</i> ₃₄	' ´	m_{13}	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	- m ₃₄	
m_{14}	<i>m</i> ₂₄	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	- <i>m</i> ₃₄	<i>m</i> ₃₄	1	1 /	

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

The doubling map ϕ :												
$\begin{pmatrix} 1 \end{pmatrix}$	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$
<i>m</i> ₁₂	1	m_{23}	<i>m</i> ₂₄		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	<i>m</i> ₂₄
m ₁₃	m_{23}	1	<i>m</i> ₃₄	' ´	m_{13}	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	- <i>m</i> ₃₄
m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /
Main result

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \left\{ \begin{array}{c} \operatorname{symmetric} n \times n \text{ matrices} \\ \operatorname{with} 1 \text{'s on the diagonal} \end{array} \right\}.$

Definition

Τ	The doubling map ϕ :													
	(1	m_{12}	m_{13}	m_{14}		(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$	
	m_{12}	1	m_{23}	<i>m</i> ₂₄	\mapsto	$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	<i>m</i> ₂₄	
	m_{13}	m_{23}	1	<i>m</i> ₃₄		m_{13}	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	$-m_{34}$	
1	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /	ł

Theorem (G.–Pylyavskyy (2018))

$$\begin{array}{c} \mathsf{Mat}^{\mathsf{sym}}_n(\mathbb{R},1) & \longleftrightarrow & \mathsf{OG}(n,2n) \\ & & & \uparrow \\ & & & & \uparrow \\ & & & \overline{\mathcal{X}}_n & & \mathsf{OG}_{\geq 0}(n,2n) \end{array}$$

Main result

 $\mathcal{X}_n := \{M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices}\}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

М

Definition

I	The doubling map ϕ :													
	(1	m_{12}	m_{13}	m_{14}	\mapsto	(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$	
	m_{12}	1	m_{23}	m_{24}		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄	l
	m_{13}	m_{23}	1	<i>m</i> ₃₄		m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	$-m_{34}$	
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /	l

Theorem (G.–Pylyavskyy (2018))

• The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.

$$\begin{array}{c} \operatorname{at}_{n}^{\operatorname{sym}}(\mathbb{R},1) & \longleftrightarrow & \operatorname{OG}(n,2n) \\ & & \uparrow & & \uparrow \\ & & \overline{\mathcal{X}}_{n} & \xrightarrow{\sim} & \operatorname{OG}_{\geq 0}(n,2n) \end{array}$$

Main result

 $\mathcal{X}_n := \{ M(G, J) \mid (G, J) \text{ is a planar Ising network with } n \text{ boundary vertices} \}$ $\overline{\mathcal{X}}_n :=$ closure of \mathcal{X}_n inside the space of $n \times n$ matrices.

We have $\mathcal{X}_n, \overline{\mathcal{X}}_n \subset \operatorname{Mat}_n^{\operatorname{sym}}(\mathbb{R}, 1) := \begin{cases} \text{symmetric } n \times n \text{ matrices} \\ \text{with 1's on the diagonal} \end{cases}$.

Definition

I	The doubling map ϕ :													
	(1	m_{12}	m_{13}	m_{14}	\mapsto	(1	1	m_{12}	$-m_{12}$	$-m_{13}$	m_{13}	m_{14}	$-m_{14}$	
	m_{12}	1	m_{23}	m_{24}		$-m_{12}$	m_{12}	1	1	<i>m</i> ₂₃	$-m_{23}$	$-m_{24}$	m ₂₄	l
	m_{13}	m_{23}	1	<i>m</i> ₃₄		m ₁₃	$-m_{13}$	$-m_{23}$	<i>m</i> ₂₃	1	1	<i>m</i> ₃₄	$-m_{34}$	
	m_{14}	m_{24}	<i>m</i> ₃₄	1 /		$(-m_{14})$	m_{14}	<i>m</i> ₂₄	$-m_{24}$	$-m_{34}$	<i>m</i> ₃₄	1	1 /	l

Theorem (G.–Pylyavskyy (2018))

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{>0}(n, 2n)$.
- Each of the spaces is homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.

 $\begin{aligned} \mathsf{Mat}^{\mathsf{sym}}_n(\mathbb{R},1) & \longleftrightarrow & \mathsf{OG}(n,2n) \\ & & \uparrow & & \uparrow \\ & & & & \uparrow \\ & & \overline{\mathcal{X}}_n & \xrightarrow{\sim} & \mathsf{OG}_{\geq 0}(n,2n) \end{aligned}$

Theorem (G.-Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\begin{array}{c}
\operatorname{\mathsf{Mat}}_n^{\operatorname{sym}}(\mathbb{R},1) & \longleftrightarrow & \operatorname{\mathsf{OG}}(n,2n) \\
& \uparrow & & \uparrow \\
& \overline{\mathcal{X}}_n & \xrightarrow{\sim} & \operatorname{\mathsf{OG}}_{\geq 0}(n,2n)
\end{array}$$

Ν

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

Ν

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Aat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\overline{\mathcal{X}}_{n} \xrightarrow{\sim} \phi} \operatorname{OG}_{\geq 0}(n,2n)$$

Theorem (G.–Pylyavskyy (2018))

The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{>0}(n, 2n)$.

`

• Each of the spaces is homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.

Ν

$$b_2 \underbrace{J_e}_{J_e} b_1$$

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & m \end{pmatrix}$$

$$\mathcal{M}(G,J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix}$$

 $\overline{\mathcal{G}}_2: \quad 0 \le m \le 1$

 $\overline{\lambda}$

Theorem (G.–Pylyavskyy (2018))

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix}$$

$$\overline{\mathcal{X}}_{2}: \quad 0 \le m \le 1 \qquad \qquad \Delta_{13} = 1 + m^{2}, \quad \Delta_{12} = 2m, \quad \Delta_{14} = 1 - m^{2}$$

$$\Delta_{24} = 1 + m^{2}, \quad \Delta_{34} = 2m, \quad \Delta_{23} = 1 - m^{2}$$

Ν

Theorem (G.-Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$M(G, J) = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & m & -m \\ -m & m & 1 & 1 \end{pmatrix} \in OG_{\geq 0}(2, 4)$$

$$\overline{\mathcal{X}}_{2}: \quad 0 \leq m \leq 1 \qquad \qquad \Delta_{13} = 1 + m^{2}, \quad \Delta_{12} = 2m, \quad \Delta_{14} = 1 - m^{2}$$

$$\Delta_{24} = 1 + m^{2}, \quad \Delta_{34} = 2m, \quad \Delta_{23} = 1 - m^{2}$$

Ν

Ising model: history

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at $T = T_c$ for \mathbb{Z}^2
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2

Ising model: history

- Suggested by by W. Lenz to his student E. Ising in 1920
- Ising (1925): no phase transition in 1D \Longrightarrow not a good model for ferromagnetism

Historically, we let $G := \mathbb{Z}^d \cap \Omega$ for some $\Omega \subset \mathbb{R}^d$ and set all $J_e := \frac{1}{T}$ for some temperature $T \in \mathbb{R}_{>0}$.

- Peierls (1937): phase transition in \mathbb{Z}^d for $d \geq 2$
- Kramers–Wannier (1941): critical temperature $\frac{1}{T_c} = \frac{1}{2} \log (\sqrt{2} + 1)$ for \mathbb{Z}^2
- Onsager, Kaufman, Yang (1944–1952): exact expressions for the free energy and spontaneous magnetization
- Belavin–Polyakov–Zamolodchikov (1984): conjectured conformal invariance of the scaling limit at $T = T_c$ for \mathbb{Z}^2
- Smirnov, Chelkak, Hongler, Izyurov, ... (2010–2015): proved conformal invariance and universality of the scaling limit at $T = T_c$ for \mathbb{Z}^2

Here J_{e^*} is defined by $\sinh(2J_{e^*}) = 1$.

Q: what happens if we apply the duality twice?

 b_1^*

 b_6^*

e

b

еı

e₄

- Recall: J_{e^*} is defined by $\sinh(2J_e)\sinh(2J_{e^*}) = 1$.
 - Preserves partition function Z

- Preserves partition function Z
- Switches between high and low temperature expansions for Z

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

• Takes
$$G = \mathbb{Z}^2 \cap \Omega$$
 to $G^* pprox (\mathbb{Z} + rac{1}{2})^2 \cap \Omega$

- Preserves partition function Z
- Switches between high and low temperature expansions for Z
- Takes correlations to "disorder variables"
- The unique solution to $\sinh(2J)\sinh(2J) = 1$ is given by

$$J = \frac{1}{2}\log(\sqrt{2}+1)$$

- Takes $G = \mathbb{Z}^2 \cap \Omega$ to $G^* \approx (\mathbb{Z} + \frac{1}{2})^2 \cap \Omega$
- Fixed point of KWD ↔ Ising model at critical temperature

Cyclic shift on $Gr_{\geq 0}(k, n)$

Theorem (G.-Karp-Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$.

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$.

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$.

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$. Example: For $\operatorname{Gr}_{\geq 0}(2, 4)$, we have

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \stackrel{S}{\mapsto} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix}$$

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$. Example: For $\operatorname{Gr}_{\geq 0}(2, 4)$, we have

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix}$$

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n - k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$. Example: For $\operatorname{Gr}_{\geq 0}(2, 4)$, we have

$$X_{0} = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_{0} \in Gr_{\geq 0}(2, 4)$$

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$. Example: For $\operatorname{Gr}_{>0}(2, 4)$, we have

$$X_0 = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_0 \in Gr_{\geq 0}(2, 4)$$

$$\begin{array}{lll} \Delta_{13} = 2 & \Delta_{12} = \sqrt{2} & \Delta_{14} = \sqrt{2} \\ \Delta_{24} = 2 & \Delta_{34} = \sqrt{2} & \Delta_{23} = \sqrt{2}. \end{array}$$
Theorem (G.–Karp–Lam (2017))

 $Gr_{\geq 0}(k, n)$ is homeomorphic to a k(n-k)-dimensional closed ball.

Our proof involves a flow that contracts the whole $\operatorname{Gr}_{\geq 0}(k, n)$ to the unique cyclically symmetric point $X_0 \in \operatorname{Gr}_{\geq 0}(k, n)$. Cyclic shift $S : \operatorname{Gr}(k, n) \to \operatorname{Gr}(k, n)$, $[w_1|w_2| \dots |w_n] \mapsto [(-1)^{k-1}w_n|w_1| \dots |w_{n-1}]$. This map preserves $\operatorname{Gr}_{\geq 0}(k, n)$. Example: For $\operatorname{Gr}_{>0}(2, 4)$, we have

$$X_{0} = \begin{pmatrix} 1 & 0 & -1 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 & 0 \end{pmatrix} \xrightarrow{s} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \end{pmatrix} = X_{0} \in OG_{\geq 0}(2, 4)$$

$$\begin{array}{lll} \Delta_{13} = 2 & \Delta_{12} = \sqrt{2} & \Delta_{14} = \sqrt{2} \\ \Delta_{24} = 2 & \Delta_{34} = \sqrt{2} & \Delta_{23} = \sqrt{2}. \end{array}$$

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.

$$\operatorname{Mat}_{n}^{\operatorname{sym}}(\mathbb{R},1) \xrightarrow{\phi} \operatorname{OG}(n,2n)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\sim}{\longrightarrow} \operatorname{OG}_{\geq 0}(n,2n)$$

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on $OG_{\geq 0}(n, 2n)$

- The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_n$ and $OG_{\geq 0}(n, 2n)$.
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix M₀ ∈ X_n that is fixed by KWD.

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix M₀ ∈ X
 _n that is fixed by KWD.

$$M_0 \leftrightarrow J_e = rac{1}{2}\log(\sqrt{2}+1)$$

Theorem (G.–Pylyavskyy (2018))

- The map φ restricts to a homeomorphism between *X*_n and OG_{≥0}(n, 2n).
- Each of the spaces is homeomorphic to an ⁿ₂-dimensional closed ball.
- ϕ translates KWD : $\overline{\mathcal{X}}_n \to \overline{\mathcal{X}}_n$ into the cyclic shift S on OG_{>0}(n, 2n)
- There exists a unique matrix $M_0 \in \overline{\mathcal{X}}_n$ that is fixed by KWD.

 $M_0 \leftrightarrow J_e = \frac{1}{2} \log(\sqrt{2} + 1)$

Fixed point M_0 of KWD \leftrightarrow lsing model at critical temperature $\leftrightarrow X_0$?

Example:

Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$?

Let M_0 be the unique boundary $n \times n$ correlation matrix fixed by KWD.

Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$? Let $G = \bigoplus$ with n boundary vertices and $J_e := \frac{1}{2} \log (\sqrt{2} + 1)$.

Let M_0 be the unique boundary $n \times n$ correlation matrix fixed by KWD.

Proposition (G.–Pylyavskyy (2018)) The entries of $M_0 = (m_{ij})_{i,j=1}^n$ are given by $m_{ij} = \frac{\sum_I \Delta_I(X_0)}{\sum_{I'} \Delta_{I'}(X_0)}$.

Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$? Let $G = \bigoplus$ with n boundary vertices and $J_e := \frac{1}{2} \log (\sqrt{2} + 1)$.

Let M_0 be the unique boundary $n \times n$ correlation matrix fixed by KWD.

Proposition (G.-Pylyavskyy (2018))

The entries of
$$M_0 = (m_{ij})_{i,j=1}^n$$
 are given by $m_{ij} = rac{\sum_I \Delta_I(X_0)}{\sum_{I'} \Delta_{I'}(X_0)}$

For
$$I = \{i_1 < i_2 < \cdots < i_n\}$$
, we have $\Delta_I(X_0) = \prod_{i < j \in I} \sin\left(\frac{j-i}{2n}\pi\right)$.

Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$? Let $G = \bigoplus$ with n boundary vertices and $J_e := \frac{1}{2} \log (\sqrt{2} + 1)$.

Let M_0 be the unique boundary $n \times n$ correlation matrix fixed by KWD.

Proposition (G.-Pylyavskyy (2018))

The entries of
$$M_0=(m_{ij})_{i,j=1}^n$$
 are given by $m_{ij}=rac{\sum_I\Delta_I(X_0)}{\sum_{I'}\Delta_{I'}(X_0)}$

For
$$I = \{i_1 < i_2 < \cdots < i_n\}$$
, we have $\Delta_I(X_0) = \prod_{i < j \in I} \sin\left(\frac{j-i}{2n}\pi\right)$

Question

How close is M_0 to M(G, J)?

Fixed point M_0 of KWD \leftrightarrow Ising model at critical temperature $\leftrightarrow X_0$? Let $G = \bigoplus$ with n boundary vertices and $J_e := \frac{1}{2} \log (\sqrt{2} + 1)$.

Let M_0 be the unique boundary $n \times n$ correlation matrix fixed by KWD.

Proposition (G.-Pylyavskyy (2018))

The entries of
$$M_0 = (m_{ij})_{i,j=1}^n$$
 are given by $m_{ij} = \frac{\sum_I \Delta_I(X_0)}{\sum_{I'} \Delta_{I'}(X_0)}$

For
$$I = \{i_1 < i_2 < \cdots < i_n\}$$
, we have $\Delta_I(X_0) = \prod_{i < j \in I} \sin\left(\frac{j-i}{2n}\pi\right)$

Question

How close is M_0 to M(G, J)? Do they have the same scaling limit?

Let $R : E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents.

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents. $\Lambda_{ij} :=$ $\Lambda_{ij} :=$ when the voltage is 1 at b_i and zero at other vertices

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents. $\Lambda_{ii} :=$ $\begin{array}{c} \text{current flowing through } b_j \\ \text{current flowing through } b_j \end{array}$

when the voltage is 1 at b_i and zero at other vertices

 $\Lambda(G, R)$ is a symmetric matrix

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents. $\Lambda_{ii} :=$ $current flowing through <math>b_j$

when the voltage is 1 at b_i and zero at other vertices

 $\Lambda(G, R)$ is a symmetric matrix with zero row sums

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents. $\Lambda_{ii} :=$ $current flowing through <math>b_j$

when the voltage is 1 at b_i and zero at other vertices

 $\Lambda(G, R)$ is a symmetric matrix with zero row sums Lives inside $\mathbb{R}^{\binom{n}{2}}$

Let $R: E \to \mathbb{R}_{>0}$ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix $\Lambda(G, R) : \mathbb{R}^n \to \mathbb{R}^n$, sending voltages to currents. $\Lambda_{ij} := \begin{array}{c} \text{current flowing through } b_j \\ \text{when the voltage is 1 at } b_i \text{ and zero at other vertices} \end{array}$

 $\Lambda(G, R)$ is a symmetric matrix with zero row sums Lives inside $\mathbb{R}^{\binom{n}{2}}$

 \overline{E}_n : compactification of the space of $n \times n$ electrical response matrices [Lam (2014)]

 $\overline{\mathcal{X}}_n$: space of $n \times n$ boundary correlation matrices of planar Ising networks \overline{E}_n : compactification of the space of $n \times n$ electrical response matrices

• Stratification:

 $\overline{\mathcal{X}}_n$: space of $n \times n$ boundary correlation matrices of planar Ising networks \overline{E}_n : compactification of the space of $n \times n$ electrical response matrices

• Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in Match(2n)} \mathcal{X}_{\tau}$

• Stratification:
$$\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}$$
 $\overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$

Pavel Galashin (MIT)

• Stratification:
$$\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau} \qquad \overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$$

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}$ $\overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}$ $\overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of X_{τ} and of E_{τ} is homeomorphic to a ball

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau} \qquad \overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings:

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau} \qquad \overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings: $\overline{\mathcal{X}}_n \subset \operatorname{Gr}_{\geq 0}(n, 2n)$

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}$ $\overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings: $\overline{\mathcal{X}}_n \subset \operatorname{Gr}_{\geq 0}(n, 2n)$ $\overline{E}_n \subset \operatorname{Gr}_{\geq 0}(n-1, 2n)$

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau}$ $\overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings: $\overline{\mathcal{X}}_n \subset \operatorname{Gr}_{\geq 0}(n, 2n)$ $\overline{E}_n \subset \operatorname{Gr}_{\geq 0}(n-1, 2n)$ Curtis–Ingerman–Morrow (1998), Colin de Verdiére–Gitler–Vertigan (1996):
- Two planar electrical networks give the same matrix $\Lambda(G,R)$

$$\iff$$
 they are related by Y - Δ moves.
Ising networks vs. Electrical networks

 $\overline{\mathcal{X}}_n$: space of $n \times n$ boundary correlation matrices of planar Ising networks \overline{E}_n : compactification of the space of $n \times n$ electrical response matrices

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau} \qquad \overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings: $\overline{\mathcal{X}}_n \subset \operatorname{Gr}_{\geq 0}(n, 2n)$ $\overline{E}_n \subset \operatorname{Gr}_{\geq 0}(n-1, 2n)$ Curtis–Ingerman–Morrow (1998), Colin de Verdiére–Gitler–Vertigan (1996):
- Two planar electrical networks give the same matrix Λ(G, R)
 ⇔ they are related by Y-Δ moves.
- G.-P. (2018): Same result applies to planar Ising networks.

Ising networks vs. Electrical networks

 $\overline{\mathcal{X}}_n$: space of $n \times n$ boundary correlation matrices of planar Ising networks \overline{E}_n : compactification of the space of $n \times n$ electrical response matrices

- Stratification: $\overline{\mathcal{X}}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} \mathcal{X}_{\tau} \qquad \overline{E}_n = \bigsqcup_{\tau \in \mathsf{Match}(2n)} E_{\tau}$
- Both spaces are homeomorphic to an $\binom{n}{2}$ -dimensional closed ball.
- Conjecture: the closure of \mathcal{X}_{τ} and of E_{τ} is homeomorphic to a ball
- TNN embeddings: $\overline{\mathcal{X}}_n \subset \operatorname{Gr}_{\geq 0}(n, 2n)$ $\overline{E}_n \subset \operatorname{Gr}_{\geq 0}(n-1, 2n)$ Curtis–Ingerman–Morrow (1998), Colin de Verdiére–Gitler–Vertigan (1996):
- Two planar electrical networks give the same matrix Λ(G, R)
 ⇔ they are related by Y-Δ moves.
- G.-P. (2018): Same result applies to planar Ising networks.

Problem

Construct a stratification-preserving homeomorphism between $\overline{\mathcal{X}}_n$ and \overline{E}_n .

Thank you!

Slides: http://math.mit.edu/~galashin/slides/ucla_ising.pdf

Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian arXiv:1807.03282.

Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010.

Marcin Lis.

The planar Ising model and total positivity. *J. Stat. Phys.*, 166(1):72–89, 2017.

Alexander Postnikov.

Total positivity, Grassmannians, and networks.

arXiv:math/0609764.

Thomas Lam.

Electroid varieties and a compactification of the space of electrical networks *Advances in Mathematics*, 338 (2018): 549-600.