Higher secondary polytopes and regular plabic graphs

Pavel Galashin

UCL A

Tenth Discrete Geometry and Algebraic Combinatorics Conference September 23, 2019

Joint with Alex Postnikov and Lauren Williams (arXiv:1909.05435)

Simplex

Simplex

Simplex

Upside-down simplex

Simplex

Upside-down simplex

What goes in the middle?

What goes in the middle?

 $\Delta_{1,4}$ Simplex

 $\Delta_{2,4}$ Hypersimplex

 $\Delta_{3,4}$ Upside-down simplex

$$\Delta_{k,n} := \operatorname{conv} \{ \boldsymbol{e}_{i_1} + \cdots + \boldsymbol{e}_{i_k} \mid 1 \leq i_1 < \cdots < i_k \leq n \} \quad \subseteq \mathbb{R}^n.$$

$$\Delta_{k,n} := \operatorname{conv}\{\boldsymbol{e}_{i_1} + \dots + \boldsymbol{e}_{i_k} \mid 1 \leq i_1 < \dots < i_k \leq n\} \quad \subseteq \mathbb{R}^n.$$

$$\Delta_{1,n} + \Delta_{2,n} + \cdots + \Delta_{n-1,n} = ?$$

$$\Delta_{1,n}+\cdots+\Delta_{n-1,n}= \, \mathsf{Perm}_n := \mathrm{conv}\{ \big(w_1,w_2,\ldots,w_n\big) \mid w \in \mathcal{S}_n \}.$$

Associahedron

Associahedron

Associahedron

Upside-down associahedron

What goes in the middle?

associahedron

What goes in the middle?

Minkowski sum of higher associahedra

Minkowski sum of higher associahedra

Minkowski sum of higher associahedra

Fiber zonotope (Billera–Sturmfels (1992))

Let A be a configuration of n points in \mathbb{R}^{d-1} .

Let A be a configuration of n points in \mathbb{R}^{d-1} .

Let A be a configuration of n points in \mathbb{R}^{d-1} .

We introduce higher secondary polytopes $\widehat{\Sigma}_{\mathcal{A},1},\widehat{\Sigma}_{\mathcal{A},2},\ldots,\widehat{\Sigma}_{\mathcal{A},n-d}\subseteq\mathbb{R}^n$.

• $\dim(\widehat{\Sigma}_{A,k}) = n - d$ for all k = 1, 2, ..., n - d.

Let A be a configuration of n points in \mathbb{R}^{d-1} .

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope of Gelfand–Kapranov–Zelevinsky (1994).

Let A be a configuration of n points in \mathbb{R}^{d-1} .

- $\dim(\widehat{\Sigma}_{A,k}) = n d$ for all $k = 1, 2, \dots, n d$.
- ullet $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope of Gelfand–Kapranov–Zelevinsky (1994).
- $\widehat{\Sigma}_{A,1} + \cdots + \widehat{\Sigma}_{A,n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).

Let A be a configuration of n points in \mathbb{R}^{d-1} .

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n-d$ for all $k=1,2,\ldots,n-d$.
- ullet $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope of Gelfand–Kapranov–Zelevinsky (1994).
- $\widehat{\Sigma}_{\mathcal{A},1}+\cdots+\widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

- $\dim(\widehat{\Sigma}_{A,k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

- $\dim(\widehat{\Sigma}_{A,k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k=1,2,\ldots,n-d$.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope. (Simplex)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k=1,2,\ldots,n-d$.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope. (Simplex)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope. (Permutohedron)
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

- $\dim(\widehat{\Sigma}_{A,k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope. (Simplex)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope. (Permutohedron)
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

- $\dim(\widehat{\Sigma}_{A,k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all k = 1, 2, ..., n-d.

Assume that $A \subseteq \mathbb{R}^{d-1} = \mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{A,1} + \cdots + \widehat{\Sigma}_{A,n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Assume that $\mathcal{A}\subseteq\mathbb{R}^{d-1}=\mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Assume that $\mathcal{A}\subseteq\mathbb{R}^{d-1}=\mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{A,1}$ is the secondary polytope. (Associahedron)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Assume that $\mathcal{A}\subseteq\mathbb{R}^{d-1}=\mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{A,1}$ is the secondary polytope. (Associahedron)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Combinatorial objects \longrightarrow Polytope

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A} \subseteq \mathbb{R}^{d-1}$		Secondary polytope

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex n-gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plahic graphs		Higher associated ron $\widehat{\Sigma}_{A,k}$

Plabic graphs

Plabic graphs

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

Definition (Postnikov (2006))

A plabic graph is a (k, n)-plabic graph if

• the strand that starts at i ends at i + k modulo n for all i;

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

a (2,5)-plabic graph

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

• the vertices of $P_{k,n}$ correspond to (k,n)-plabic graphs;

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

- the vertices of $P_{k,n}$ correspond to (k, n)-plabic graphs;
- the edges of $P_{k,n}$ correspond to square moves between them.

Example: k = 2

(2, n)-plabic graphs

 \longleftrightarrow

triangulations of a convex n-gon

(2, n)-plabic graphs

 \longleftrightarrow triangulations of a convex *n*-gon

(2, n)-plabic graphs \longleftrightarrow triangulations of a convex n-gon

(2, n)-plabic graphs

 \longleftrightarrow

triangulations of a convex n-gon

(2, n)-plabic graphs

 \longleftrightarrow

triangulations of a convex n-gon

(2, n)-plabic graphs \longleftrightarrow triangulations of a convex n-gon

Thus $P_{2,n}$ is the usual associahedron.

the polytope $P_{3,6}$ doesn't exist!

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A} \subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
<i>Regular</i> triangulations of $\mathcal{A} \subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex n -gon		Associahedron
$ extit{Regular}$ triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Regular zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
<i>Regular</i> triangulations of $\mathcal{A} \subseteq \mathbb{R}^{d-1}$		Secondary polytope
Regular zonotopal tilings		Fiber zonotope
Regular(?) plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Plabic graphs and zonotopal tilings

Trivalent plabic graphs

A trivalent(k, n)-plabic graph is obtained from a bipartite one by "uncontracting" vertices until each interior vertex has degree 3.

Trivalent plabic graphs

A trivalent(k, n)-plabic graph is obtained from a bipartite one by "uncontracting" vertices until each interior vertex has degree 3.

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by moves:

Each (k, n)-plabic graph has k(n - k) + 1 faces.

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

• Point configuration: $A = (a_1, a_2, \dots, a_n) \subseteq \mathbb{R}^{d-1}$;

A

- Point configuration: $\mathcal{A} = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $V = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;

- Point configuration: $A = (a_1, a_2, ..., a_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V}=(\pmb{v}_1,\pmb{v}_2,\ldots,\pmb{v}_n)\subseteq\mathbb{R}^d$, where $\pmb{v}_i=(\pmb{a}_i,1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + [0, \mathbf{v}_2] + \cdots + [0, \mathbf{v}_n] \subseteq \mathbb{R}^d$;

- Point configuration: $A = (a_1, a_2, ..., a_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)\subseteq\mathbb{R}^d$, where $\mathbf{v}_i=(\mathbf{a}_i,1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + [0, \mathbf{v}_2] + \cdots + [0, \mathbf{v}_n] \subseteq \mathbb{R}^d$;
- Tile: $\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}$, where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d ;

Zonotopal tilings

- Point configuration: $A = (a_1, a_2, ..., a_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)\subseteq\mathbb{R}^d$, where $\mathbf{v}_i=(\mathbf{a}_i,1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + [0, \mathbf{v}_2] + \cdots + [0, \mathbf{v}_n] \subseteq \mathbb{R}^d$;
- Tile: $\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}},$ where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d ;
- Fine zonotopal tiling: a polyhedral subdivision of $\mathcal{Z}_{\mathcal{V}}$ into tiles $\Pi_{A,B}$.

Zonotopal tilings

- Point configuration: $\mathcal{A} = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)\subseteq\mathbb{R}^d$, where $\mathbf{v}_i=(\mathbf{a}_i,1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + [0, \mathbf{v}_2] + \cdots + [0, \mathbf{v}_n] \subseteq \mathbb{R}^d$;
- Tile: $\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}$, where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d ;
- Fine zonotopal tiling: a polyhedral subdivision of $\mathcal{Z}_{\mathcal{V}}$ into tiles $\Pi_{A,B}$.

1234

From now on, assume that $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon.

From now on, assume that $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon.

From now on, assume that $\mathcal{A}\subseteq\mathbb{R}^2$ consists of vertices of a convex *n*-gon.

Sections of tiles

Sections of tiles

Sections of tiles

Fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}} \ \longrightarrow \$

a subdivision of $\mathcal{Z}_{\mathcal{V}} \cap \{z = k\}$ into black and white triangles

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

$$\stackrel{planar}{\longleftrightarrow}$$
 dual

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

 $\mathcal{Z}_{\mathcal{V}}$ for d=3, n=5

Theorem (G. (2017))

trivalent (k, n)-plabic graphs

 $\mathcal{Z}_{\mathcal{V}}$ for d=3, n=5

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

 $\mathcal{Z}_{\mathcal{V}}$ for d=3, n=5

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

a trivalent (2,5)-plabic graph

 $\mathcal{Z}_{\mathcal{V}}$ for d=3, n=5

$$n = d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling

$$n = d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling $n = d + 1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

$$n=d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling $n=d+1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.

$$n=d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling $n=d+1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.

Example for d = 2:

Q: How many fine zonotopal tilings?

The case d=3, $\underline{n}=4$

Q: How many fine zonotopal tilings?

A: Two.

Q: How many fine zonotopal tilings?

A: Two. (because n = d + 1)

Sections of flips: d = 3, n = 4

Sections of flips: d = 3, n = 4

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Recall: $A \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon, and $\mathcal{V} \subseteq \mathbb{R}^3$ is the lift of A.

Theorem (Ziegler (1993))

Any two fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$ are connected by a sequence of flips.

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Recall: $A \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon, and $\mathcal{V} \subseteq \mathbb{R}^3$ is the lift of A.

Theorem (Ziegler (1993))

Any two fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$ are connected by a sequence of flips.

Theorem (G. (2017))

Moves (M1)–(M3) of (k, n)-plabic graphs

$$\stackrel{planar}{\longleftrightarrow}$$

horizontal sections of flips of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves = sections of flips

Let $\mathcal{A} = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\boldsymbol{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Let $\mathcal{A} = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\boldsymbol{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular A-triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i,h_i)\mid i=1,\ldots,n\}\subseteq\mathbb{R}^d$ onto $\operatorname{conv} A$.

Let $\mathcal{A} = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\boldsymbol{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular A-triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i,h_i)\mid i=1,\ldots,n\}\subseteq\mathbb{R}^d$ onto $\operatorname{conv} A$.

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular A-triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i,h_i)\mid i=1,\ldots,n\}\subseteq\mathbb{R}^d$ onto $\operatorname{conv} A$.

Definition

A regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$ is obtained by projecting the upper boundary of $\mathcal{Z}_{\widetilde{\mathcal{V}}} := [0, \tilde{\mathbf{v}}_1] + \cdots + [0, \tilde{\mathbf{v}}_n]$ (where $\tilde{\mathbf{v}}_i = (\mathbf{v}_i, h_i) \in \mathbb{R}^{d+1}$) onto $\mathcal{Z}_{\mathcal{V}}$.

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular A-triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i,h_i)\mid i=1,\ldots,n\}\subseteq\mathbb{R}^d$ onto $\operatorname{conv} A$.

Definition

A regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$ is obtained by projecting the upper boundary of $\mathcal{Z}_{\widetilde{\mathcal{V}}} := [0, \tilde{\boldsymbol{v}}_1] + \cdots + [0, \tilde{\boldsymbol{v}}_n]$ (where $\tilde{\boldsymbol{v}}_i = (\boldsymbol{v}_i, h_i) \in \mathbb{R}^{d+1}$) onto $\mathcal{Z}_{\mathcal{V}}$.

not a regular fine zonotopal tiling

Given an A-triangulation τ , define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} oldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Given an A-triangulation au, define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an A-triangulation τ , define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an A-triangulation au, define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an A-triangulation τ , define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) := \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Definition (Gelfand-Kapranov-Zelevinsky (1994))

The secondary polytope $\Sigma^{\mathsf{GKZ}}_{\mathcal{A}}$ of \mathcal{A} is defined as the convex hull

$$\Sigma^{\mathsf{GKZ}}_{\mathcal{A}} := \mathrm{conv}\{\mathrm{vert}^{\mathsf{GKZ}}(\tau) \mid \tau \text{ is an } \mathcal{A}\text{-triangulation}\}.$$

Given an A-triangulation τ , define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Definition (Gelfand-Kapranov-Zelevinsky (1994))

The secondary polytope $\Sigma^{\mathsf{GKZ}}_{\mathcal{A}}$ of \mathcal{A} is defined as the convex hull

$$\Sigma_{\mathcal{A}}^{\mathsf{GKZ}} := \operatorname{conv}\{\operatorname{vert}^{\mathsf{GKZ}}(\tau) \mid \tau \text{ is an } \mathcal{A}\text{-triangulation}\}.$$

Proposition (Gelfand-Kapranov-Zelevinsky (1994))

The vertices of $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ correspond precisely to regular \mathcal{A} -triangulations.

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n],$$

Consider a point configuration $A \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \boldsymbol{v}_1] + \cdots + [0, \boldsymbol{v}_n]$$

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Definition (G.-Postnikov-Williams (2019))

For $k=1,\ldots,n-d$, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A},k}$ of \mathcal{A} is defined by

$$\widehat{\Sigma}_{\mathcal{A},k} := \operatorname{conv} \left\{ \widehat{\operatorname{vert}}_k(\mathcal{T}) \;\middle|\; \mathcal{T} \text{ is a regular fine zonotopal tiling of } \mathcal{Z}_{\mathcal{V}} \right\}.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Definition (G.-Postnikov-Williams (2019))

For $k=1,\ldots,n-d$, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A},k}$ of \mathcal{A} is defined by

$$\widehat{\Sigma}_{\mathcal{A},k} := \operatorname{conv} \left\{ \widehat{\operatorname{vert}}_k(\mathcal{T}) \;\middle|\; \mathcal{T} \text{ is a regular fine zonotopal tiling of } \mathcal{Z}_{\mathcal{V}} \right\}.$$

Consider a point configuration $\mathcal{A}\subseteq\mathbb{R}^{d-1}$ and its lift $\mathcal{V}\subseteq\mathbb{R}^d$. Recall:

$$\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$$

Given a fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$ and $k\in\{1,\dots,n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Definition (G.-Postnikov-Williams (2019))

For $k=1,\ldots,n-d$, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A},k}$ of \mathcal{A} is defined by

$$\widehat{\Sigma}_{\mathcal{A},k} := \operatorname{conv} \left\{ \widehat{\operatorname{vert}}_k(\mathcal{T}) \;\middle|\; \mathcal{T} \text{ is a regular fine zonotopal tiling of } \mathcal{Z}_{\mathcal{V}} \right\}.$$

Conjecture

The word regular can be omitted from the above definition.

Theorem (G.-Postnikov-Williams (2019))

•
$$\dim(\widehat{\Sigma}_{A,k}) = n - d$$
 for all $k = 1, 2, ..., n - d$.

Theorem (G.-Postnikov-Williams (2019))

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

Theorem (G.-Postnikov-Williams (2019))

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{A,1} + \cdots + \widehat{\Sigma}_{A,n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).

Theorem (G.–Postnikov–Williams (2019))

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{A,1} + \cdots + \widehat{\Sigma}_{A,n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{A,k} = -\widehat{\Sigma}_{A,n-d-k+1}$ for all k = 1, 2, ..., n-d.

Properties of higher secondary polytopes

Theorem (G.–Postnikov–Williams (2019))

- $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all k = 1, 2, ..., n d.
- $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{A,1} + \cdots + \widehat{\Sigma}_{A,n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

• $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.

• $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling ${\mathcal T}$ of ${\mathcal Z}_{{\mathcal V}}$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma^{\mathsf{GKZ}}_{\mathcal{A}}$ is the secondary polytope.

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a$$

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a$$

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \mathbf{e}_{\mathbf{a}}$$
 these formulas are different!
$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \mathbf{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ A,B \in \mathcal{T}}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \mathbf{e}_b$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling
$$\mathcal{T}$$
 of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \mathbf{e}_a \longrightarrow \text{ these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \mathbf{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ A,B \in \mathcal{T}}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \mathbf{e}_b$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{\mathbf{a} \in A} \mathbf{e}_{\mathbf{a}} - \text{these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \mathbf{e}_b = \sum_{\prod_{A,B} \in \mathcal{T}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \mathbf{e}_b$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma^{\mathsf{GKZ}}_{\mathcal{A}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a \longrightarrow \text{ these formulas are different!}$$

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

$$\widehat{\text{vert}}_1(\mathcal{T}) = (u_1, u_2, u_3, u_4, u_5)$$

 $\text{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$

• $\widehat{\Sigma}_{A,1} = \Sigma_A^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a - \text{these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

$$\widehat{\text{vert}}_1(\mathcal{T}) = (u_1, u_2, u_3, u_4, u_5)$$

 $\text{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a \longrightarrow \text{ these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

$$\widehat{\text{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{3}, u_4, u_5)$$

 $\widehat{\text{vert}}^{GKZ}(\tau) = (v_1, v_2, v_3, v_4, v_5)$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\text{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \text{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a - \text{these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

$$\widehat{\text{vert}}_{1}(\mathcal{T}) = (u_{1}, u_{2}, \frac{3}{3}, u_{4}, u_{5})$$

$$\text{vert}^{GKZ}(\tau) = (v_{1}, v_{2}, v_{3}, v_{4}, v_{5})$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a - \text{these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \mathbf{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \mathbf{e}_b$$

$$\widehat{\text{vert}}_{1}(\mathcal{T}) = (u_{1}, u_{2}, \frac{3}{3}, u_{4}, u_{5})$$

$$\text{vert}^{GKZ}(\tau) = (v_{1}, v_{2}, \frac{3}{3}, v_{4}, v_{5})$$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\text{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \text{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} e_{a}$$
 these formulas are different!

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

Example

$$\widehat{\text{vert}}_{1}(\mathcal{T}) = (u_{1}, u_{2}, \frac{3}{3}, u_{4}, u_{5})$$

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_{1}, v_{2}, 3, v_{4}, v_{5})$$

Claim: up to shift and dilation, 3 = 3

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \longrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\mathrm{vert}}_1(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 1}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} e_a - \text{these formulas are different!}$$

$$\mathrm{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_B \in \tau} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = 0}} \mathrm{Vol}^d(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_b$$

Example

$$\widehat{\text{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{3}, u_4, u_5)$$
$$\text{vert}^{GKZ}(\tau) = (v_1, v_2, \frac{3}{3}, v_4, v_5)$$

Claim: up to shift and dilation, $\widehat{\text{vert}}_1(\tau) = \text{vert}^{\mathsf{GKZ}}(\mathcal{T}).$

Theorem (G. (2017))

trivalent (k, n)-plabic graphs $\stackrel{planar}{\longleftarrow}_{dual}$ horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Theorem (G. (2017))

trivalent
$$(k, n)$$
-plabic graphs $\stackrel{planar}{\longleftarrow}$ horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves $(M1)$ - $(M3)$ $\stackrel{planar}{\longleftarrow}$ horizontal sections of flips

Theorem (G. (2017))

trivalent
$$(k, n)$$
-plabic graphs $\stackrel{planar}{\longleftarrow}$ horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves $(M1)$ - $(M3)$ $\stackrel{planar}{\longleftarrow}$ horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is \mathcal{A} -regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G. (2017))

trivalent
$$(k, n)$$
-plabic graphs $\stackrel{planar}{\longleftarrow}$ horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves $(M1)$ - $(M3)$ $\stackrel{planar}{\longleftarrow}$ horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is A-regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G.–Postnikov–Williams (2019))

vertices and edges of $\widehat{\Sigma}_{\Lambda \nu}$

 \longleftrightarrow A-regular bipartite (k+1, n)-plabic graphs and square moves between them

Theorem (G. (2017))

trivalent
$$(k, n)$$
-plabic graphs $\stackrel{planar}{\longleftarrow}$ horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves $(M1)$ - $(M3)$ $\stackrel{planar}{\longleftarrow}$ horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is A-regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G.–Postnikov–Williams (2019))

vertices and edges of

A-regular bipartite (k + 1, n)-plabic graphs and square moves between them

- vertices and edges of $\widehat{\Sigma}_{A k} + \widehat{\Sigma}_{A k-1} + \widehat{\Sigma}_{A k-2}$
- A-regular trivalent (k, n)-plabic graphs and moves (M1)-(M3) between them

Does there exist a plabic graph that's not A-regular for all A?

Does there exist a plabic graph that's not \mathcal{A} -regular for all \mathcal{A} ?

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph is not A-regular for all A.

Does there exist a plabic graph that's not \mathcal{A} -regular for all \mathcal{A} ?

Claim: This plabic graph is not A-regular for all A.

Proof:

$$\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$$

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph is not A-regular for all A.

Proof:

$$\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$$

Thus every vertex of $\widehat{\Sigma}_{\mathcal{A},k}$ has degree at least $n - d$.

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph is not A-regular for all A.

Proof:

$$\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$$
 Thus every vertex of $\widehat{\Sigma}_{\mathcal{A},k}$ has degree at least $n - d$. This plabic graph admits only 4 square moves. \square

Photo Credit: Mark Ablowitz, Colorado.

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n-10 for all n>12.

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{\mathcal{A},1}$ equals 2n-10 for all n>12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{A,k}$?

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n-10 for all n>12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{A,k}$?

Conjecture (M. Farber (2014))

• For n=2k, the diameter of the "middle" higher associahedron $\widehat{\Sigma}_{\mathcal{A},k-1}=-\widehat{\Sigma}_{\mathcal{A},k-1}$ equals $\frac{1}{2}k(k-1)^2$.

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{\mathcal{A},1}$ equals 2n-10 for all n>12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$?

Conjecture (M. Farber (2014))

- For n=2k, the diameter of the "middle" higher associahedron $\widehat{\Sigma}_{\mathcal{A},k-1} = -\widehat{\Sigma}_{\mathcal{A},k-1}$ equals $\frac{1}{2}k(k-1)^2$.
- More generally, the square move distance between any bipartite (k,2k)-plabic graph and its "opposite" plabic graph equals $\frac{1}{2}k(k-1)^2$.

Diameter of the higher associahedron for k = 3, n = 6

Diameter of the higher associahedron for k = 3, n = 6

The distance between any two antipodal points equals $\frac{1}{2}k(k-1)^2=6$.

Case d = 2?

Case d = 2?

Case d = 2?

Question

What happens for d = 2?

Thank you!

