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Minkowski sum of hypersimplices
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Minkowski sum of hypersimplices

49V

A+ + Ap1y = Perm, := conv{(wy, wa,...,wy) | w € S}
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Minkowski sum of higher associahedra

Fiber zonotope (Billera—Sturmfels (1992))
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Higher secondary polytopes

Let A be a configuration of n points in R971.
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Higher secondary polytopes

Let A be a configuration of n points in R971.

We introduce higher secondary polytopes EAJ’ 2A727 e ,EA,,,,d CR".

° dim(fA,k): n—dforall k=1,2,...,n—d.

° iA,l is the secondary polytope of Gelfand—Kapranov—Zelevinsky (1994).

° EAJ 4o fA,,,,d is the fiber zonotope of Billera—Sturmfels (1992).
o Duality: EA’k = —)EA,,,_d_kH forall k=1,2,...,n—d.
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o dim(Zax)=n—dforall k=1,2,....,n—d.

° EA,l is the secondary polytope.

° EA 1+ + ZA n—d is the fiber zonotope.

@ Duality: ZAk——ZA,,dkaorallk—lZ ..,n—d.
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If A C RY"1 =RO consists of n points then 2,47,( =NAgpfork=1,...,n—1

o dim(Zax)=n—dforall k=1,2,....,n—d.
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Cased =1

If A C RY"1 =RO consists of n points then fA,k =NAgpfork=1,...,n—1
L

Ta1=A14 Ta2="D004 Ta3=D034 Perm,

o dim(Zax)=n—dforall k=1,2,....,n—d.

@ X 41 is the secondary polytope.

@ T 1+ + ZA n—d is the fiber zonotope.

o Duality: ZAk——ZA,, d—k+1 forall k=1,2,... ) n—d.
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Case d = 3: higher associahedra

° dim(fA,k):n—dfor all k=1,2,...,n—d.

° zA,l is the secondary polytope.

° fA,l + e fAj,,_d is the fiber zonotope.

@ Duality: EA’k = —fA,n—d—k+1 forall k=1,2,...,n—d.
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Case d = 3: higher associahedra

Assume that A C R9™1 = R? consists of the vertices of a convex n-gon.
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Case d = 3: higher associahedra

Assume that A C R9~1 = R? consists of the vertices of a convex n-gon.

e

~

ZAl Z43

° dim(fA,k):n—dfor all k=1,2,...,n—d.

° fAl is the secondary polytope.

° ZA 14+ + ZA,, d is the fiber zonotope.

@ Duality: ZA’k = —ZA,,, d—k+1 forall k=1,2,...,n—d.
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Case d = 3: higher associahedra

Assume that A C R9~1 = R? consists of the vertices of a convex n-gon.

D

ZAl ZA3

° dim(fA,k): n—dforall k=1,2... n—d.

° fAl is the secondary polytope. (Associahedron)

° ZA 14+ + ZA,, d is the fiber zonotope.
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Case d = 3: higher associahedra

Assume that A C R9~1 = R? consists of the vertices of a convex n-gon.
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° dim(fA,k): n—dforall k=1,2... n—d.

° fAl is the secondary polytope. (Associahedron)

° ZA 14+ + ZA,, d is the fiber zonotope.

@ Duality: ZA’k = *ZA,n d-ki1 forall k=1,2,....,n—d.
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Motivation

Combinatorial objects — Polytope
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Plabic graphs



Plabic graphs

Soliton solutions
of KP equation

A
Scattering amplitudes

in N =4 SYM

Cluster algebras

Plabic graphs

Ising model Electrical networks
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Plabic graphs and strands

Definition (Postnikov (2006))

A plabic graph is a planar bipartite graph embedded in a disk, with n
boundary vertices of degree 1.
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(k, n)-plabic graphs

Definition (Postnikov (2006))
A plabic graph is a (k, n)-plabic graph if
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(k, n)-plabic graphs

Definition (Postnikov (2006))
A plabic graph is a (k, n)-plabic graph if

@ the strand that starts at / ends at / + kK modulo n for all /;
e it has k(n— k) + 1 faces.
5

3

a (2,5)-plabic graph
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Square moves

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:
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Square moves

Theorem (Postnikov (2006))

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

\

Problem
Find a polytope Py , such that:

o the vertices of Py , correspond to (k, n)-plabic graphs;

o the edges of Py , correspond to square moves between them.

A\
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Example: kK =2
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Example: kK =2

(2, n)-plabic graphs <— triangulations of a convex n-gon
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Example: kK =2

(2, n)-plabic graphs <— triangulations of a convex n-gon
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Example: kK =2

(2, n)-plabic graphs <— triangulations of a convex n-gon
square moves — flips of triangulations
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Example: kK =2

(2, n)-plabic graphs <— triangulations of a convex n-gon
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Example: kK =2

(2, n)-plabic graphs <— triangulations of a convex n-gon
square moves — flips of triangulations

Thus P>, is the usual associahedron.
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Example: k=3, n=26
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Example: k=3, n=26

There are 34 (k, n)-plabic graphs for k =3 and n = 6.
Connecting them by square moves, we get the following picture:
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Example: k=3, n=26

There are 34 (k, n)-plabic graphs for k =3 and n = 6.
Connecting them by square moves, we get the following picture:

the polytope P3¢ doesn't exist!
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Combinatorial objects

k-element sets

Permutations in S,
Triangulations of a convex n-gon
Triangulations of A C R4-1
Zonotopal tilings

Plabic graphs

Pavel Galashin (UCLA)
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Permutohedron Perm,
Associahedron

Secondary polytope

Fiber zonotope

Higher associahedron fA,k
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Combinatorial objects
k-element sets
Permutations in S,

—

Triangulations of a convex n-gon
Regular triangulations of A C R9~1

Regular zonotopal tilings
Regular(?) plabic graphs

Polytope

Hypersimplex Ay ,
Permutohedron Perm,
Associahedron

Secondary polytope

Fiber zonotope
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Plabic graphs and zonotopal tilings




Trivalent plabic graphs

A trivalent (k, n)-plabic graph is obtained from a bipartite one by
“uncontracting” vertices until each interior vertex has degree 3.

bipartite trivalent
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Trivalent plablc graphs

A trivalent (k, n)-plabic graph is obtained from a bipartite one by
uncontractlng vertices until each interior vertex has degree 3.

b=

bipartite trivalent
Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by moves:

[ L[

(M1) (M2) (M3)
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Planar duals of plabic graphs

Each (k, n)-plabic graph has k(n — k) 4 1 faces.
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Planar duals of plabic graphs

Each (k, n)-plabic graph has k(n — k) 4 1 faces.
Label each face of a (k, n)-plabic graph by a k-element set:
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Planar duals of plabic graphs

Each (k, n)-plabic graph has k(n — k) 4 1 faces.
Label each face of a (k, n)-plabic graph by a k-element set:

’includej in the face label iff the face is to the left of the strand / —>j.‘
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Planar duals of plabic graphs

Each (k, n)-plabic graph has k(n — k) 4 1 faces.
Label each face of a (k, n)-plabic graph by a k-element set:

‘includej in the face label iff the face is to the left of the strand i —>j.‘
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Zonotopal tilings
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Zonotopal tilings

e Point configuration: A = (a1, ao,...,a,) C RI1L;

a, as a» ai

Pavel Galashin (UCLA) Higher secondary polytopes DGAC, 09/23/2019 22 / 47



Zonotopal tilings

e Point configuration: A = (a1, ao,...,a,) C R
@ Vector configuration: V = (v, va,...,v,) C RY, where v; = (aj,1);
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Zonotopal tilings

e Point configuration: A = (a1, ao,...,a,) C R
o Vector configuration: V = (v1,va,...,v,) C RY where v; = (a;,1);
e Zonotope: Zy := [0, v1] + [0, va] + -+ [0,v,] C RY;
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Zonotopal tilings

e Point configuration: A = (a1, ao,...,a,) C R
o Vector configuration: V = (v1,va,...,v,) C RY where v; = (a;,1);
e Zonotope: Zy := [0, v1] + [0, va] + -+ [0,v,] C RY;

o Tile: Map:=>,caVa+ > pepl0,vs] € 2y,
where AN B = () and {vp}pep is a basis of RY;
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Zonotopal tilings

e Point configuration: A = (a1, ao,...,a,) C R

o Vector configuration: V = (v1,va,...,v,) C RY where v; = (a;,1);
e Zonotope: 2y = [0,v1]+ [0, v2] +---+ [0, v,] C RY;

o Tile: I"IAB = ZaeA vy + ZbEB[()? Vb] - Zv,

where AN B = () and {vp}pep is a basis of RY;
Fine zonotopal tiling: a polyhedral subdivision of Zy, into tiles 14 g.
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Zonotopal tilings

Point configuration: A = (a1, a,...,a,) C RI71;
Vector configuration: V = (v, va,...,v,) C RY, where v; = (aj,1);
Zonotope: Zy = [0,v1] + [0, v2] + - - + [0, v,] C R¥;
Tile: I"IAB = ZaeA vy + ZbEB[()? Vb] - Zv,
where AN B = () and {vp}pep is a basis of RY;
Fine zonotopal tiling: a polyhedral subdivision of Zy, into tiles 14 g.

=9

GJ
as aiz ax ai V4 V3 V2 Vi
W h Y
0
A 1% 2y
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3D cyclic zonotopes
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3 lic zonotopes

From now on, assume that A C R? consists of vertices of a convex n-gon.

as ai
pm====0
4 Y
L4 .
as q o a6
A ’
A v
(1
as as
A
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yclic zonotopes

From now on, assume that A C R? consists of vertices of a convex n-gon.
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yclic zonotopes

From now on, assume that A C R? consists of vertices of a convex n-gon.
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Sections of tiles

Aby by by
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Sections of tiles

z=|Al+3
<.
@
G z=|Al+2
D ————
D) z=|Al+1
®
z=A|
I_IA,B I'IA,Bﬂ{z: k} for k = ‘A‘,...,’A’-ﬁ-g\.
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Sections of tiles

z=|Al+3
<.
@
G z=|Al+2
D ————
D) z=|Al+1
®
z=A|
I_IA,B HA’Bﬂ{Z: k} for k = ‘A|,...,|A|+3.

a subdivision of Zy N {z = k}

Fine zonotopal tiling of 2y, — . . .
P & v into black and white triangles
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

trivalent (k, n)-plabic graphs dual fine zonotopal tilings of Zy
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

vzttt (I wl)-plitoe gl dual fine zonotopal tilings of Zy

Zyford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

vzttt (I wl)-plitoe gl dual fine zonotopal tilings of Zy

level =5

level = 4 @'@®

@ D)
level =3 @“@
G
& ©)
© ©)

© @
level =1 eo‘e

level =0 ©

Zyford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

vzttt (I wl)-plitoe gl dual fine zonotopal tilings of Zy

level =3 @‘v}@

level =2 W

Zyford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

vzttt (I wl)-plitoe gl dual fine zonotopal tilings of Zy

level =3 @‘v}@

level =2 W

Zyford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

trivalent (k, n)-plabic graphs dual fine zonotopal tilings of Zy

Zyford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

vzttt (I wl)-plitoe gl 2l fine zonotopal tilings of Zy

Zy ford=3,n=5
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Plabic graphs and zonotopal tilings

Theorem (G. (2017))

planar horizontal sections at level k of

AR (G el (i dual fine zonotopal tilings of Zy

a trivalent (2, 5)-plabic graph

Zy ford=3,n=5
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Flips of fine zonotopal tilings

n=d =—> 2y admits one fine zonotopal tiling
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Flips of fine zonotopal tilings

n=d =—> 2y admits one fine zonotopal tiling
n=d+1 = Zy admits two fine zonotopal tilings
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Flips of fine zonotopal tilings

n=d =—> 2y admits one fine zonotopal tiling
n=d+1 = Zy admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.
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Flips of fine zonotopal tilings

n=d =—> 2y admits one fine zonotopal tiling
n=d+1 = Zy admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.

Example for d = 2:
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Thecased =3, n=4
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Thecased =3, n=4

Q: How many fine zonotopal tilings?
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Thecased =3, n=4

Q: How many fine zonotopal tilings?
A: Two.
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Thecased =3, n=4

Q: How many fine zonotopal tilings?
A: Two. (because n=d +1)
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Thecased =3, n=4
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Thecased =3, n=4
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Thecased =3, n=4
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Thecased =3, n=4
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Thecased =3, n=4
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The case d =
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Thecased =3, n=4
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Thecased =3, n=4
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Thecased =3, n=4
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Sections of flips: d =3, n=4
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Sections of flips: d =3, n=4

@‘»@

a&‘°

®
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Sections of flips: d =3, n=4
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Sections of flips: d =3, n=4
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Sections of flips: d =3, n=4
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Sections of flips: d =3, n=4
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Sections of flips: d =3, n=4
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Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

T T Yot

(M1) (M2) (M3)
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Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

[ T e

(M1) (M2) (M3)

Recall: A C R? consists of vertices of a convex n-gon, and V C R3 is the lift of A.
Theorem (Ziegler (1993))

Any two fine zonotopal tilings of 2y, are connected by a sequence of flips.
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Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

[ T e

(M1) (M2)

Recall: A C R? consists of vertices of a convex n-gon, and V C R3 is the lift of A.
Theorem (Ziegler (1993))

Any two fine zonotopal tilings of 2y, are connected by a sequence of flips.

Theorem (G. (2017))

Moves (M1)-(M3) planar, horizontal sections of flips of
of (k, n)-plabic graphs )] fine zonotopal tilings of Zy,
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Moves = sections of flips
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Regular triangulations and zonotopal tilings

Let A= (ay,...,a,) be a point configuration in R9~1.
Choose a height vector h = (hy,..., h,) € R".
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Regular triangulations and zonotopal tilings

Let A= (ay,...,a,) be a point configuration in R9~1.
Choose a height vector h = (hy,..., h,) € R".

Definition

A regular A-triangulation is obtained
by projecting the upper boundary of
conv{(aj,h;)|i=1,...,n} CRY
onto conv.A.

Pavel Galashin (UCLA) Higher secondary polytopes DGAC, 09/23/2019



Regular triangulations and zonotopal tilings

Let A= (ay,...,a,) be a point configuration in R9~1.
Choose a height vector h = (hy,..., h,) € R".

Definition

A regular A-triangulation is obtained
by projecting the upper boundary of
conv{(aj,h;)|i=1,...,n} CRY

onto conv.A. : :
not an A-regular triangulation
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Regular triangulations and zonotopal tilings

Let A= (ay,...,a,) be a point configuration in R9~1.
Choose a height vector h = (hy,..., h,) € R".

Definition

A regular A-triangulation is obtained
by projecting the upper boundary of
conv{(a;, hj) | i=1,...,n} CR?
onto conv.A.

not an A-regular triangulation
v

Definition

A regular fine zonotopal tiling of Zy,
is obtained by projecting

the upper boundary of

Zg = [0,¥1] +--- 40, ]

(where #; = (v;, h;) € R9*1)

onto Zy.

v
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Regular triangulations and zonotopal tilings

Let A= (ay,...,a,) be a point configuration in R9~1.

Choose a height vector h = (hy,..., h,) € R".
Definition

A regular A-triangulation is obtained
by projecting the upper boundary of
conv{(a;, hj) | i=1,...,n} CR?
onto conv.A.

not an A-regular triangulation
v

Definition

A regular fine zonotopal tiling of 2y,
is obtained by projecting

the upper boundary of

Zg = [0,¥1] +--- 40, ]

(where #; = (v;, h;) € R9*1)

onto Zy.

not a regular finé zonotopal tiling
v
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Secondary polytopes

Given an A-triangulation 7, define a vector

vert (7)== > Vol" M(Ap)- Y e, €R"
ApeT beB
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Secondary polytopes

Given an A-triangulation 7, define a vector

vert (7)== > Vol" '(Ap)- Y e, €R"
ApeT beB

Example

vert®KZ(7) = (u1, u2, u3, ua, us, Up)
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Secondary polytopes

Given an A-triangulation 7, define a vector

vert (7)== > Vol" '(Ap)- Y e, €R"
ApeT beB

Example

vert®KZ(7) = (u1, u2, u3, ua, us, Up)
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Secondary polytopes

Given an A-triangulation 7, define a vector

vert (7)== > Vol" '(Ap)- Y e, €R"
ApeT beB

Example

vert®KZ(7) = (u1, u2, U3, ua, us, Up)
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Secondary polytopes

Given an A—triangulation 7, define a vector

VertGKZ Z Vol?~ 1 (AB) - Zeb R".

ApeT beB

Definition (Gelfand—Kapranov—Zelevinsky (1994))

The secondary polytope Zsz of A is defined as the convex hull

26K .= conv{vert®®4(r) | 7 is an A-triangulation}.
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Secondary polytopes

Given an A—triangulation 7, define a vector

VertGKZ Z Vol?~ 1 (AB) - Zeb R".

ApeT beB

Definition (Gelfand—Kapranov—Zelevinsky (1994))

GKZ
ZA

The secondary polytope of A is defined as the convex hull

26K .= conv{vert®®4(r) | 7 is an A-triangulation}.

Proposition (Gelfand—Kapranov—Zelevinsky (1994))

The vertices of ZiKZ correspond precisely to regular A-triangulations.
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy =[0,vi]+ -+ [0, vy,
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [0’ Vl] 4+ .4 [0’ Vn], I_IA,B = Z vy + Z[O’ Vb] C 2y.
acA beB
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [O’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[O) Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert, (7)== > Vol/(Mag) > e, €R"

nA,BET acA
|Al=k
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [0’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Example (d =2, n =4)

verty(T) = (v, va, va, vg) === === ===~

verty(T) = (ur, uz, U3, ug) == === ========~
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [0’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Example (d =2, n =4)

verty(T) = (v, va, va, vg) === === ===~

verty(T) = (u1, Uz, U3, tg) == -==-=-=-=---
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [O’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Example (d =2, n =4)

verty(T) = (v, va, va, vg) === === ===~

verty(T) = (u1, uz, U3, ug) == ===========~
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [O’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Example (d =2, n =4)

vert(T) = (v, va, va, vg) === === ===~

verty(T) = (ur, uz, U3, ug) == === ========~
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [O’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Definition (G.—Postnikov—Williams (2019))

For k =1,...,n— d, the higher secondary polytope iA,k of A is defined by

iA,k = conv {XI/eRk(T) ’ T is a regular fine zonotopal tiling of Zy} .
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [O’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Definition (G.—Postnikov—Williams (2019))

For k =1,...,n— d, the higher secondary polytope EAJ( of A is defined by

EA,;( = conv {XI/eRk(T) ’ T is a regular fine zonotopal tiling of Zy} .
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Higher secondary polytopes

Consider a point configuration A C RY~1 and its lift V C RY. Recall:

Zy = [0’ Vl] 4+ 4 [0’ Vn]a nA75 = Z vy + Z[Oa Vb] C 2y.
acA beB

Given a fine zonotopal tiling 7 of 2y and k € {1,...,n— d}, define
vert,(T) = >  Vol/(Mag) > e, €R"

nA,BET acA
|Al=k

Definition (G.—Postnikov—Williams (2019))

For k =1,...,n— d, the higher secondary polytope EAJ( of A is defined by

EA,;( = conv {XI/eRk(T) ’ T is a regular fine zonotopal tiling of Zy} .

The word regular can be omitted from the above definition. \
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Properties of higher secondary polytopes

Theorem (G.—Postnikov-Williams (2019))

° dim(fAk):n—dforallk:1,2,...,n—d.
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Properties of higher secondary polytopes

Theorem (G.—Postnikov-Williams (2019))

° dim(fA,k) =n—dforallk=1,2,....,n—d.
o T41 =257 is the secondary polytope.
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Properties of higher secondary polytopes

Theorem (G.—Postnikov-Williams (2019))

° dim(fA,k) =n—dforallk=1,2,....,n—d.

o T41= 2GKZ is the secondary polytope.

° fAl 4ot fAj,,_d is the fiber zonotope of Billera—Sturmfels (1992).
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Properties of higher secondary polytopes

Theorem (G.—Postnikov-Williams (2019))
dim(Zax)=n—d forall k=1,2,...,n—d.

o
GKZ
o % A1 = L3"* Is the secondary polytope.
o T A1+ + T A,n—d Is the fiber zonotope of Billera—~Sturmfels (1992).

Duality: E.A,k = _E.A,n—d—k-i-l forall k=1,2,...,n—d.
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Properties of higher secondary polytopes

Theorem (G.—Postnikov-Williams (2019))
dim(Zax)=n—d forall k=1,2,...,n—d.

o
GKZ
o % A1 = L"“ Is the secondary polytope.
o T A1+ + T A,n—d Is the fiber zonotope of Billera—~Sturmfels (1992).

Duality: T ok = —Lan-d_ki1 forall k=1,2,...,n—d.
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Higher secondary polytopes vs secondary polytopes

° iA,l = £ is the secondary polytope.
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZE\KZ is the secondary polytope.

fine zonotopal tiling 7 of Zy,
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.

fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}
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Higher secondary polytopes vs secondary polytopes

GKZ
ZA

° fA,l = is the secondary polytope.

fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}
vertl(T Z Vold(I'IAB Zea

|_|A BET acA
[Al=1
vert®KZ (7 Z Vol?}(Ag) - Zeb
AgeT beB
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Higher secondary polytopes vs secondary polytopes

GKZ
ZA

° fA,l = is the secondary polytope.

fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}
vertl(T Z Vold(I'IAB Zea

I-IA BET acA
|A|=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
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Higher secondary polytopes vs secondary polytopes

ZjKZ is the secondary polytope.

° fA,1 =
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

I-IA BET acA
|Al=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|A|=0
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Higher secondary polytopes vs secondary polytopes

ZjKZ is the secondary polytope.

° fA,1 =
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

I-IA BET acA
|Al=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|A|=0
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Higher secondary polytopes vs secondary polytopes

ZjKZ is the secondary polytope.

° fA,1 =
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

NaBeT acA
|A|=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|Aj=0
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Higher secondary polytopes vs secondary polytopes

ZGKZ is the secondary polytope.

o ZAl
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

I-IA BET acA
|Al=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|A|=0

—

verty (7)) = (u1, u2, U3, g, Us)
vert®KZ (1) = (v1, vo, v3, v, v5)

Pavel Galashin (UCLA) Higher secondary polytopes DGAC, 09/23/2019 37 / 47



Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA

|A|=1 l
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es

AgeT beB NaBeT beB

|Al=0

v/er\tl(T) = (u1, u2, U3, g, Us)
VertGKZ(T = (v1, v2, v3, v4, V)

Pavel Galashin (UCLA) Higher secondary polytopes DGAC, 09/23/2019 37 / 47



Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA

|A|=1 l
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es

AgeT beB NaBeT beB

|Al=0

—

verty(7) = (u1, uo, 3, us, us)
VertGKZ(T) = (v1, v2, v3, v4, v5)
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA

|A|=1 l
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es

AgeT beB NaBeT beB

|Al=0

—

verty(7) = (u1, uo, 3, us, us)
VertGKZ(T) = (v1, v2, v3, v4, v5)
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA

|A|=1 l
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es

AgeT beB NaBeT beB

|Al=0

—

verty(7) = (u1, uo, 3, us, us)
vert®K%(7) = (v1, v2, 3, va, vs5)
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA
|A|=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|A|=0

—

verty(7) = (u1, uo, 3, us, us)
vert®K%(7) = (v1, v2, 3, va, vs5)

Claim: up to shift and dilation,
3=3.
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Higher secondary polytopes vs secondary polytopes

° fA,l = ZjKZ is the secondary polytope.
fine zonotopal tiling 7 of 2y, — A-triangulation 7:= T N {yy = 1}

verty(T) = Y Vol¥(Map)- Y  es—— these formulas are different!

nA,BGT acA
|A|=1
vert K4 (r) = Y Vol" N(Ag)- > ep= > Vol!(Map)- > es
AgeT beB NaBeT beB
|A|=0

verty (T) = (
vert®®Z(7) = (v1, v, 3, va, vs)

Claim: up to shift and dilation,
verty () = vert®KZ(T).
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Back to plabic graphs

Theorem (G. (2017))

planar horizontal sections of

trivalent (k, n)-plabic graphs dual fine zonotopal tilings of Zy,
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Back to plabic graphs

Theorem (G. (2017))

planar horizontal sections of
=

trivalent (k, n)-plabic graphs dual fine zonotopal tilings of Zy,

planar
=

Moves (M1)-(M3) "
ua

horizontal sections of flips
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Back to plabic graphs

Theorem (G. (2017))

planar horizontal sections of

trivalent (k, n)-plabic graphs dual fine zonotopal tilings of Zy,

planar
=

Moves (M1)-(M3) "
ua

horizontal sections of flips

Definition

| N\

We say that a bipartite/trivalent (k, n)-plabic graph is A-regular if it arises
from a regular fine zonotopal tiling of 2.

v
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Back to plabic graphs

Theorem (G. (2017))

planar horizontal sections of
dual fine zonotopal tilings of Zy

trivalent (k, n)-plabic graphs

planar
—

dual

We say that a bipartite/trivalent (k, n)-plabic graph is A-regular if it arises
from a regular fine zonotopal tiling of 2.

Moves (M1)-(M3) horizontal sections of flips

V.

Theorem (G.—Postnikov-Williams (2019))

o vertices and edges of A-regular bipartite (k + 1, n)-plabic graphs
LAk and square moves between them

v
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Back to plabic graphs

Theorem (G. (2017))

planar horizontal sections of
dual fine zonotopal tilings of Zy

trivalent (k, n)-plabic graphs

planar
—

dual

We say that a bipartite/trivalent (k, n)-plabic graph is A-regular if it arises
from a regular fine zonotopal tiling of 2.

Moves (M1)-(M3) horizontal sections of flips

V.

Theorem (G.—Postnikov-Williams (2019))

o vertices and edges of A-regular bipartite (k + 1, n)-plabic graphs
LAk and square moves between them
vertices and edges of A-regular trivalent (k, n)-plabic graphs

° EA’k + EA,k,l + EA,,(,2 7 and moves (M1)—(M3) between them

v
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Non-regular plabic graphs

Pavel Galashin

LA) Higher secondary polytopes /23 /2019 39 / 47
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Non-regular plabic graphs

Does there exist a plabic graph that's not A-regular for all A?
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Non-regular plabic graphs
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Non-regular plabic graphs

Does there exist a plabic graph that's not A-regular for all A?

Pavel Galashin (UCLA)

Higher secondary polytopes

Claim: This plabic graph
is not A-regular for all A.
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Non-regular plabic graphs

Does there exist a plabic graph that's not A-regular for all A?

Pavel Galashin (UCLA)

Higher secondary polytopes

Claim: This plabic graph
is not A-regular for all A.

Proof:
dim(Zgx)=n—d=

DGAC, 09/23/2019 41 / 47



Non-regular plabic graphs

Does there exist a plabic graph that's not A-regular for all A?

Pavel Galashin (UCLA)

Higher secondary polytopes

Claim: This plabic graph
is not A-regular for all A.

Proof:

dim(Zax) =n—d=5.
Thus every vertex of /Z\A,k
has degree at least n — d.
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Non-regular plabic graphs

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph
is not A-regular for all A.

Proof:

dim(Zax) =n—d=5.
Thus every vertex of /Z\A,k
has degree at least n — d.
This plabic graph admits
only 4 square moves. []
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

Soliton solutions
of KP equation

A

Scattering amplitudes
in N =4 SYM

Cluster algebras

Plabic graphs

Ising model Electrical networks
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

Soliton solutions
of KP equation

A

Scattering amplitudes
in N =4 SYM

Cluster algebras

Plabic graphs

Ising model Electrical networks
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

-t T
p = -

M.p;ﬁ--’-—oﬁﬁf:’-t- S o d A e .-r-.u»-.,;,q,_—

Credit: Mark Ablowitz, Colorado.
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

Soliton solutions
of KP equation

A

Scattering amplitudes
in N =4 SYM

Cluster algebras

Plabic graphs

Ising model Electrical networks
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

Also leads to the notion
of an A-regular plabic graph
(Karpman—Kodama (2018))

Soliton solutions -
of KP equation

A

Scattering amplitudes
in N =4 SYM

Cluster algebras

Plabic graphs

Ising model Electrical networks
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Soliton solutions of Kadomtsev-Petviashvili (KP) equation

The theory of higher associahedra Also leads to the notion
can be applied to resolve a conjecture of an A-regular plabic graph
of Kodama-Williams (2011) (Karpman—Kodama (2018))
\ ,
\ ’

S~ Soliton solutions .-
-~ i |
of KP equation

A

Scattering amplitudes
in N =4 SYM

Cluster algebras

Plabic graphs

Electrical networks

Ising model
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Diameter of the higher associahedron

Confirming a conjecture of Sleator—Tarjan—Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron fA’l equals 2n — 10 for all n > 12.
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Diameter of the higher associahedron

Confirming a conjecture of Sleator—Tarjan—Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron fA’l equals 2n — 10 for all n > 12.

What is the diameter of the higher associahedron b Ak?
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Diameter of the higher associahedron

Confirming a conjecture of Sleator—Tarjan—Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron fA’l equals 2n — 10 for all n > 12.

v

What is the diameter of the higher associahedron b Ak’

\

Conjecture (M. Farber (2014))
o For n =2k, the diameter of the “middle” higher associahedron
ZA,k—l = _Z.A,k—l equals %k(k — 1)2.

v
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Diameter of the higher associahedron

Confirming a conjecture of Sleator—Tarjan—Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron fA’l equals 2n — 10 for all n > 12.

v

What is the diameter of the higher associahedron b Ak’

\

Conjecture (M. Farber (2014))

o For n =2k, the diameter of the “middle” higher associahedron
T Ak—1=—ZAk-1 equals %k(k —1)=

o More generally, the square move distance between any bipartite
(k,2k)-plabic graph and its “opposite” plabic graph equals %k(k — 1)2.

v

Pavel Galashin (UCLA) Higher secondary polytopes DGAC, 09/23/2019 44 / 47



Diameter of the higher associahedron for k =3, n =16
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Diameter of the higher associahedron for k =3, n =16

The distance between any two antipodal points equals %k(k —1)? =6.
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Thank you!




