Zamolodchikov periodicity and integrability

Pavel Galashin

MIT

galashin@mit.edu

October 7, 2016

Joint work with Pavlo Pylyavskyy

Part 1: *T*-systems

Bipartite recurrent quivers

T-system

T-system

T-system

Tropical *T*-system

Tropical *T*-system

Part 2: Zamolodchikov periodicity

ADE Dynkin diagrams

Name Finite diagram Affine diagram Name \hat{A}_{n-1} A_n D_n E_6 E_7

Tensor product

 $D_5 \otimes A_3$

Tensor product

 $D_5 \otimes A_3$

Tensor product

 $D_5 \otimes A_3$

Zamolodchikov periodicity

Theorem (B. Keller, 2013)

Tensor product of **finite** Dynkin diagrams \implies the T-system is periodic.

Coxeter number

Name **Picture** h A_n n+12n - 2 D_n E_6 12 E_7 18 E_8 30

Zamolodchikov periodicity

Theorem (B. Keller, 2013)

Tensor product of **finite** Dynkin diagrams ⇒ the T-system is periodic with period dividing

$$2(h + h')$$
.

Zamolodchikov periodicity

Tensor product of **finite** Dynkin diagrams \implies the T-system is periodic

 \longleftarrow the *T*-system is periodic

Zamolodchikov periodicity

Tensor product of **finite** Dynkin diagrams \implies the T-system is periodic $\qquad \qquad \Longleftrightarrow$ the T-system is periodic

The result

Theorem

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- 1
- 2
- 3
- 4
- The T-system associated with Q is periodic.

The result

Theorem

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- 1
- 2
- **3**
- **1** The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

The result

Theorem

- 1
- 2
- 3
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

The result

Theorem

- 1
- 2
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

Fixed point

Fixed point

$$a^2 = b + b$$
; $b^2 = a^2 + c$; $c^2 = b^2 + b^2$.

Fixed point

$$a^2 = b + b$$
; $b^2 = a^2 + c$; $c^2 = b^2 + b^2$.

$$a = \sqrt{4 + 2\sqrt{2}};$$
 $b = 2 + \sqrt{2};$ $c = 2 + 2\sqrt{2}.$

The result

Theorem

- 1
- 2
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

The result

Theorem

- 1
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

Strictly subadditive labeling

Strictly subadditive labeling

 $2a > \max(b, b);$ $2b > \max(a + a, c);$ $2c > \max(b + b, b + b).$

Strictly subadditive labeling

$$2a > \max(b, b);$$
 $2b > \max(a + a, c);$ $2c > \max(b + b, b + b).$

$$a = 2$$
; $b = 3$; $c = 4$.

The result

Theorem

- 1
- ② Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

The result

Theorem

- **1** Q is a finite \boxtimes finite quiver.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- 5 The T-system associated with Q is periodic.

• Bipartite recurrent quiver

- Bipartite recurrent quiver
- All red components are **finite** Dynkin diagrams

- Bipartite recurrent quiver
- All red components are **finite** Dynkin diagrams
- All blue components are finite Dynkin diagrams

- Bipartite recurrent quiver
- All red components are **finite** Dynkin diagrams
- All blue components are finite Dynkin diagrams

The classification of Zamolodchikov periodic quivers

Theorem (G.-Pylyavskyy, 2016)

- \bigcirc Q is a finite \boxtimes finite quiver.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- **1** The T-system associated with Q is periodic.

The classification of Zamolodchikov periodic quivers

Theorem (G.-Pylyavskyy, 2016)

- \bigcirc Q is a finite \boxtimes finite quiver.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

The classification of Zamolodchikov periodic quivers

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- \bigcirc Q is a finite \boxtimes finite quiver.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- The T-system associated with Q is periodic.

In all cases, both the \mathcal{T} -system and its tropicalization have period dividing

$$2(h + h')$$
.

$$h = 9 + 1 = 12 - 2 = 10;$$

$$h = 9 + 1 = 12 - 2 = 10;$$
 $h' = 5 + 1 = 8 - 2 = 6;$

$$h = 9 + 1 = 12 - 2 = 10$$
; $h' = 5 + 1 = 8 - 2 = 6$; Period = **32**

The classification of Zamolodchikov periodic quivers

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then the following are equivalent.

- **1** Q is a finite \boxtimes finite quiver.
- Q has a strictly subadditive labeling.
- Q has a fixed point.
- The tropical T-system is periodic for any initial value.
- **1** The T-system associated with Q is periodic.

In all cases, both the T-system and its tropicalization have period dividing

$$2(h + h')$$
.

$$2(h+h')=120$$

Plan of the proof

Plan of the proof

Plan of the proof

Part 3: Zamolodchikov

integrability

• Bipartite recurrent quiver

- Bipartite recurrent quiver
- All red components are **affine** Dynkin diagrams

- Bipartite recurrent quiver
- All red components are affine Dynkin diagrams
- All blue components are **finite** Dynkin diagrams

- Bipartite recurrent quiver
- All red components are affine Dynkin diagrams
- All blue components are finite Dynkin diagrams
 - "Affine ⊠ finite quiver"

A necessary condition

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then:

- **IF** the *T*-system associated with *Q* is linearizable,
- 2

A necessary condition

Theorem (G.-Pylyavskyy, 2016)

Let Q be a bipartite recurrent quiver. Then:

- **IF** the T-system associated with Q is linearizable,
- **2 THEN** Q is an affine \boxtimes finite quiver.

$$x_{n+1} - 3x_n + x_{n-1} = 0$$

$$\mathbf{1} \cdot x_{n+1} - \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{b}}{\mathbf{a}} + \frac{\mathbf{1}}{\mathbf{a}\mathbf{b}}\right) \cdot x_n + \mathbf{1} \cdot x_{n-1} = 0$$

Domino tilings of the cylinder

Domino tilings of the cylinder

Domino tilings of the cylinder

Theorem (G.-Pylyavskyy, 2016)

• Recurrence for boundary slice:

$$x_{t+(m+1)n} - H_1 x_{t+mn} + \ldots \pm H_m x_{t+n} \mp x_t = 0.$$

Theorem (G.-Pylyavskyy, 2016)

• Recurrence for boundary slice:

$$x_{t+(m+1)n} - H_1 x_{t+mn} + \ldots \pm H_m x_{t+n} \mp x_t = 0.$$

$$H_i = \sum_{\substack{T - cylinder \ tiling \ of \ Thurston \ height \ i}} \mathrm{wt}(T).$$

Theorem (G.-Pylyavskyy, 2016)

• Recurrence for boundary slice:

$$x_{t+(m+1)n} - H_1 x_{t+mn} + \ldots \pm H_m x_{t+n} \mp x_t = 0.$$

$$H_i = \sum_{\substack{T - cylinder \ tiling \ of \ Thurston \ height \ i}} \operatorname{wt}(T)$$
. "Goncharov-Kenyon Hamiltonians"

Theorem (G.-Pylyavskyy, 2016)

• Recurrence for boundary slice:

$$x_{t+(m+1)n} - H_1 x_{t+mn} + \ldots \pm H_m x_{t+n} \mp x_t = 0.$$

$$H_i = \sum_{\substack{T - cylinder \ tiling \ of \ Thurston \ height \ i}} \operatorname{wt}(T)$$
. "Goncharov-Kenyon Hamiltonians"

• Recurrence for r-th slice: express $e_i[e_r]$ in e_i 's and send $e_i \mapsto H_i$.

Time Tropical T-system

Tropical T-system of type $A_m \otimes \hat{A}_{2n-1}$: solitonic behavior

Theorem (G.-Pylyavskyy, 2016)

• ("soliton resolution") t sufficiently large ⇒ each affine slice moves independently with constant speed

Tropical T-system of type $A_m \otimes \hat{A}_{2n-1}$: solitonic behavior

Theorem (G.-Pylyavskyy, 2016)

- ("soliton resolution") t sufficiently large ⇒ each affine slice moves independently with constant speed
- ("speed conservation") the speed of some slice at $t \to +\infty$ equals the speed of its mirror image at $t \to -\infty$

$\overline{\mathsf{Affine}} \boxtimes \mathsf{affine} \ \mathsf{quivers?}$

$\overline{\mathsf{Affine} \; \boxtimes \; \mathsf{affine} \; \mathsf{quivers?}}$

Affine \boxtimes affine quivers?

$\overline{\mathsf{Affine}} \boxtimes \mathsf{affine} \ \mathsf{quivers?}$

Affine ⊠ affine quivers?

Thank you!

Bibliography

- Sergey Fomin and Andrei Zelevinsky. Y-systems and generalized associahedra. Ann. of Math. (2), 158(3):977–1018, 2003.
- Bernhard Keller.

 The periodicity conjecture for pairs of Dynkin diagrams.

 Ann. of Math. (2), 177(1):111–170, 2013.
- John R. Stembridge.

 Admissible W-graphs and commuting Cartan matrices.

 Adv. in Appl. Math., 44(3):203–224, 2010.
- Pavel Galashin and Pavlo Pylyavskyy
 The classification of Zamolodchikov periodic quivers.
 arXiv:1603.03942 (2016).
- Pavel Galashin and Pavlo Pylyavskyy
 Quivers with subadditive labelings: classification and integrability
 arXiv:1606.04878 (2016).