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Particle momenta

o Consider incoming particles with momenta Py, Ps, ..., P, € R??
which are null (P,2 = 0) and satisfy P; + P +---+ P, = 0.
o Here P = (po, p1, p2, p3) and P> = pg + pi — p5 — p3.
On the contrary, for complex-valued momenta p*, the angle and square spinors are inde-

pendent.! Tt may not seem physical to take p* complex, but it is a very very very useful
strategy. We will see this repeatedly.

1 One can keep p* real and change the spacetime signature to (—, 4, —, +); in that case, the angle and square
spinors are real and independent.

[Elvang, Huang. Scattering amplitudes in gauge theory and gravity. Cambridge
University Press, Cambridge, 2015.]
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@ Think of a null momentum vector P € R?>? as a pair (P7, P?) € C?
of complex numbers satisfying |P7 | = |P?|.
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Particle momenta

o Consider incoming particles with momenta Py, Ps, ..., P, € R??
which are null (P,2 = 0) and satisfy P; + P +---+ P, = 0.

e Here P = (po, p1, p2, p3) and P? = p3 + p? — p3 — p3.
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@ Think of a null momentum vector P € R?>? as a pair (P7, P?) € C?
of complex numbers satisfying |P7 | = |P?|.
@ Scattering amplitude A(Py, P2, ..., P,) = probability of ‘scattering’.



Origami crease patterns




Origami crease patterns

Faces: convex polygons
colored black and white;




Origami crease patterns

Faces: convex polygons
colored black and white;

Angle condition:

sum(white angles) = T,
sum(black angles) = ,
around each interior vertex.




Origami crease patterns

Faces: convex polygons
colored black and white;

Angle condition:

sum(white angles) = T,
sum(black angles) = ,
around each interior vertex.




Origami crease patterns

Faces: convex polygons
colored black and white;

Angle condition:
sum(white angles) = T,
sum(black angles) = ,
around each interior vertex.

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.




Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.




Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.




Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy [P/ | = |PO|!

1



Origami crease patterns
P

1

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
pg’)risometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

P
Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Py
Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1




Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Py
Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1




Origami crease patterns

P

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

P

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns
P

10

>

Origami map O:
isometry on each face
preserving/reversing
the orientations of
white/black faces.

Boundary vectors P/ and their images PP under O satisfy |P] | = |PO|!

1



Origami crease patterns

Pl Pl

Origami map O:
p7 isometry on each face
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Origami map O:
p7 isometry on each face
3
preserving/reversing
the orientations of
white/black faces.

Pl
Boundary vectors P/ and their images P under O satisfy |P/ | = |P?|!

Main result (preview):
A(P1, ..., P,) = integral over origami crease patterns with boundary Py, ..., P,.
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Positive kinematic space

o Spinor-helicity formalism: Since P; = (P/, PY) € C? with |P]| = |P?|,

can choose )\,,)\ € R? such that PT A )\ and PO

2-planes \, \ € Gr(2, n) with columns Ay, ...
Momentum conservation P; + - --
Positive kinematic space: [He-Zhang '18]
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As we saw in section 7, this can also be written as a residue of the top-form,

k) _ d>rc 5kX4(C'ﬁ) kx2 3 §2% (n—k iy
1= ]{vol(GL(k)) TRy (@N)FeA0). 82)

CCTy
Recall from section 4, the (ordinary) d-functions in (8.2) have the geometric
interpretation of constraining the k-plane C to be orthogonal to the 2-plane A and
to contain the 2-plane A, [14]:

A 2-plane

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka. Grassmannian
Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge, 2016.]
e A(P1,...,P,) = integral over {C € Grso(k,n) | A C C C A} [ABCGPT '16].
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@ Positive kinematic space: [He-Zhang '18]
(ii+1)>0,[ii+1]>0fori=1,...,n, }

,CZ” = {A LA wind(\) = (k — )7, and wind(\) = (k + )7

o Grxo(k,n) :={C € Gr(k,n) | A(C) =0forall I C[n], |l| =k}
[Postnikov '06/Lusztig '94]. Here A;(C) = maximal k x k minor on columns /.

Theorem (G. (2024), "Main bijection™)

Origami crease patterns are in natural bijection* with triples A C C C A\
such that (\,\) € K[ and C € Gro(k, n).

*modulo Lorentz transformations, little group action, global shift and
rotation, and square moves (assuming planar dual graph is reduced).
o (A, \) determine the (4-dimensional) boundary of the origami crease pattern.
o A(Py,...,P,) = integral over {C € Grso(k,n) | A C C C A"} [ABCGPT '16].
e Corollary: BCFW cells triangulate (Mandelstam-positive region of) ICZn.
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o Let u”,v7 be two vertices of an origami crease pattern and u©, v®
be their images under the origami map.

True or False: we always have [u7 — v7| > [u© — vO|?

@ A: True if the boundary polygon is convex. False in general.

o (Planar) Mandelstam variables: S, 5(i, /) := (Pis1+ -+~ + Pj)2.

o S, 5(i,j)=|u] — uT| |u® — uJO|2, where u] ..., ul’ — boundary
vertices of the origami crease pattern.

@ Mandelstam-positive region:

M: ={(\ ) € ICkJr’n | S,5(i,4) >0 forall i, j}.



o Let u”,v7 be two vertices of an origami crease pattern and u©, v®
be their images under the origami map.

True or False: we always have [u7 — v7| > [u© — vO|?

@ A: True if the boundary polygon is convex. False in general.
o (Planar) Mandelstam variables: S, 5(i, /) := (Pis1+ -+~ + Pj)2.

o S5 5(i,j)= lul — uT| |u® — uJO|2, where u] ..., ul’ — boundary
vertices of the origami crease pattern.
@ Mandelstam-positive region:

M; ={(\ ) € ICkJr’n | S,5(i,4) >0 forall i, j}.

Theorem (G. (2024), “BCFW triangulation™)

BCFW cells triangulate IC,'Y';

See also: [Arkani-Hamed-Trnka '14], [Even-Zohar—Lakrec—Tessler '21],

[Even-Zohar—Lakrec—Parisi-Tessler—Sherman-Bennett—Williams '23].
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Theorem (G. (2024), "BCFW triangulation, origami version” )

BCFW and a

For all generic (A, \) € IC,'Y': there exists a unique ' € T}’
unique origami crease pattern with boundary (\, 5\) whose dual graph is T.
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KM = {(\ ) € K, | Sy 5(i,4) > 0 forall i, j}.
Theorem (G. (2024), "BCFW triangulation™)

BCFW cells triangulate IC,':":

e BCFW recurrence: A(P1,...,Pn) = ZFGFECFW Ar(P1, ..., Pn).

@ Here I'E%FW is a collection of planar bipartite graphs I in a disk.

Theorem (G. (2024), "BCFW triangulation, origami version” )

For all generic (A, X) € KM there exists a unique T € FBSFW and 5

unique origami crease pattern with boundary (\, 5\) whose dual graph is T.

O Injectivity: for each I, the cell maps injectively;
@ Disjointness: the cells for ['; # '; do not overlap;
© Surjectivity: the cells together cover an open dense subset of IC,'Y':
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Step 1 (injectivity). Given (X, \) and I € FECFW find the origami crease pattern.
Geometric solution. v7 = v© is the intersection of the perpendicular bisector ¢
and the ray p, all of which are determined by (), ).

Algebraic solution. v — u; = tQ € C2, where Q = (A2, A1 \2) and

t=1t = % satisfies (uj — v)2 = (P2 +--- + Pj — tQ)? = 0 [BCFW '05].
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Solution. Choose j such that
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(Works assuming Mandelstam positivity.) r
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Step 3 (surjectivity). Show that
the above algorithm always outputs
a valid origami crease pattern.
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Here K(w, b) = £ wt(w, b) are Kasteleyn edge weights on T.
[Kasteleyn '61], [Temperley—Fisher '61], [Affolter—Glick—Pylyavskyy—Ramassamy '19]
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Theorem (G. (2024), "Main bijection™)

Origami crease patterns are in natural bijection* with triples A ¢ C C A+
such that (\,\) € K and C € Grzo(k, n).

@ Hard (G. '24): if (\,\) € K., then all faces are embedded properly oriented
convex polygons.

@ Key proof ingredient: the magic projector @y [Arkani-Hamed—Cachazo—Cheung '10].
@ Q) :R" - R"with A- @\ = 0. The columns of C - Q) are given by

1 .. . . . .
(C-Qy)i = m(C,~_1<Il—&—1>—|— Gii+1i—1)+ CGu(i—11)).

Proposition (G. (2024), "Q, preserves total positivity")
IF(A\X) € K, A C C, and C € Gryo(k, n), then C - Qx € Grso(k — 2, n).

Corollary (G. (2024))

If (A, 5\) € IC;:H then all faces are embedded properly oriented convex polygons.
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Shift by 2 for planar bipartite graphs (“T-duality”)

r r

@ [G. '17], [G.—Postnikov—Williams '19], [Balitskiy—Wellman '19],
[Lukowski—Parisi-Williams '20], [Parisi-Sherman-Bennett-Williams '21].
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3 (M (wawg)) (T, (w1 wz))
@ Extend A C C to white-holomorphic A\° : V°(I') = R2 < C°:V°(I) — Rk
o Kasteleyn edge weights are (wy wy) := det(A°(wy)|A°(w2)).
e Co(w):= " W3),<W31W1>.<W1 ) (Co(wr){wr ws) + C°(w2){ws wy) + C°(w3){(wy wa)).
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Shift by 2 for planar bipartite graphs (“T-duality”

Extend A C C to white-holomorphic \° : V°(T') = R? < C°:V°(l) — Rk
Kasteleyn edge weights are (wy wy) := det(A\°(wy)|A°(w2)).
Co(W) = sy twmwny oy (€0 (1) (w2 ws) + C°(wa) (ws wa) + C°(ws)(w wa)).

Claim: C° is the white-holomorphic extension of C - Q to V°(T).

C- Q\ € Gryo(k —2,n) = sign of each (w; wy) is fixed
= black triangles in the origami crease pattern are properly oriented.
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Momentum amplituhedron

[Damgaard—Ferro—Lukowski—Parisi '19]:
@ Pick A+ € Grog(k —2,n) and A € Grog(k + 2, n).
o )5 : Grao(k, n)—>/c+ C—M=CnAX=CEnA).
o Momentum amplituhedron: M i = Ppa(Gr=o(k, n)).
o Problem: (\,\) = ®, 4(C) is not always Mandelstam nonnegative.

Theorem (G. (2024), “Flag momentum amplituhedron™)

If A= C A belong to the positive part of the partial flag variety [Lusztig '94]
then ®, 5(C) is Mandelstam nonnegative for all C € Grxo(k, n).




Momentum amplituhedron

[Damgaard—Ferro—Lukowski—Parisi '19]:

Pick A~ € Grug(k —2,n) and A € Grag(k + 2, n).

o )5 : Grao(k, n)—>/c+ C»—>()\— CNAX=CENA).
o Momentum amplituhedron: M i = Ppa(Gr=o(k, n)).
o

Problem: (A, \) = ®, (C) is not always Mandelstam nonnegative.

Theorem (G. (2024), “Flag momentum amplituhedron™)

If A= C A belong to the positive part of the partial flag variety [Lusztig '94]
then ®, 5(C) is Mandelstam nonnegative for all C € Grxo(k, n).

Corollary (G. (2024), "Existence of t-embeddings”)

For any weighted planar bipartite graph (I',wt), there exists a dual origami
crease pattern whose geometric edge weights are gauge-equivalent to wt.




Momentum amplituhedron

[Damgaard—Ferro—Lukowski—Parisi '19]:

Pick A~ € Grug(k —2,n) and A € Grag(k + 2, n).

o )5 : Grao(k, n)—>/c+ C»—>()\— CNAX=CENA).
o Momentum amplituhedron: M i = Ppa(Gr=o(k, n)).
°

Problem: (A, \) = ®, (C) is not always Mandelstam nonnegative.

Theorem (G. (2024), “Flag momentum amplituhedron™)

If A= C A belong to the positive part of the partial flag variety [Lusztig '94]
then ®, 5(C) is Mandelstam nonnegative for all C € Grxo(k, n).

Corollary (G. (2024), "Existence of t-embeddings”)

For any weighted planar bipartite graph (I',wt), there exists a dual origami
crease pattern whose geometric edge weights are gauge-equivalent to wt.

@ Originally conjectured by [Kenyon—Lam—Ramassamy—Russkikh '18],
[Chelkak—Laslier—Russkikh '21].



Varchenko's conjecture

Given a weighted graph (I, wt), how many origami crease patterns with
prescribed (2-dim) boundary polygon does it admit?




Varchenko's conjecture

Given a weighted graph (I, wt), how many origami crease patterns with
prescribed (2-dim) boundary polygon does it admit?

4y
44




Varchenko's conjecture
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@ A: It is at most the number of bounded regions of hyperplane arrangement
given by the columns of C = Meas(I", wt).
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Varchenko's conjecture

Given a weighted graph (I, wt), how many origami crease patterns with
prescribed (2-dim) boundary polygon does it admit?

@ A: It is at most the number of bounded regions of hyperplane arrangement
given by the columns of C = Meas(I", wt).

@ Proof: apply Varchenko's conjecture [Varchenko '95] [Orlik—Terao '95] on the
number of critical points of a “master function.”
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@ Proof: apply Varchenko's conjecture [Varchenko '95] [Orlik—Terao '95] on the

number of critical points of a “master function.”
110-60 3 . .

C = Meas(I',wt) = [0 1170 —2} CHY scattering equations? [Lam '24]
00021 3

o m m
T He = {-22+3y = -3}
Ay = {y =0}
///&[; {7z + 2y =6}

5 bounded regions! 5 origami crease patterns!




Varchenko's conjecture

Given a weighted graph (I, wt), how many origami crease patterns with
prescribed (2-dim) boundary polygon does it admit?

@ A: It is at most the number of bounded regions of hyperplane arrangement
given by the columns of C = Meas(I", wt).

@ Proof: apply Varchenko's conjecture [Varchenko '95] [Orlik—Terao '95] on the
number of critical points of a “master function.”

110-60 3 . .
C = Meas(I',wt) = [8 é(l) 7 (11 —32} CHY scattering equations? [Lam '24]

Hs = {z =0}

/ Hy = {Tz + 2y =6}

5 bounded regions! 5 origami crease patterns!






