Amplituhedra and origami

Pavel Galashin (UCLA)

Combinatorics of Fundamental Physics Workshop IAS, November 18, 2024

arXiv:2410.09574

• Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{3,1}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.

• Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{3,1}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.

Рı

 P_{12}

• Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 - p_1^2 - p_2^2 - p_3^2$.

 P_8

• Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{2,2}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.

Рı

 P_{12}

• Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 + p_1^2 - p_2^2 - p_3^2$.

 P_8

Consider incoming particles with momenta P₁, P₂,..., P_n ∈ ℝ^{2,2} which are null (P_i² = 0) and satisfy P₁ + P₂ + ··· + P_n = 0.
Here P = (p₀, p₁, p₂, p₃) and P² = p₀² + p₁² - p₂² - p₃².

On the contrary, for *complex-valued momenta* p^{μ} , the angle and square spinors are independent.¹ It may not seem physical to take p^{μ} complex, but it is a very very very useful strategy. We will see this repeatedly.

¹ One can keep p^{μ} real and change the spacetime signature to (-, +, -, +); in that case, the angle and square spinors are real and independent.

[Elvang, Huang. *Scattering amplitudes in gauge theory and gravity*. Cambridge University Press, Cambridge, 2015.]

• Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{2,2}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.

Рı

 P_{12}

• Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 + p_1^2 - p_2^2 - p_3^2$.

 P_8

- Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{2,2}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.
- Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 + p_1^2 p_2^2 p_3^2$.

Think of a null momentum vector P ∈ ℝ^{2,2} as a pair (P^T, P^O) ∈ ℂ² of complex numbers satisfying |P^T| = |P^O|.

- Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{2,2}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.
- Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 + p_1^2 p_2^2 p_3^2$.

- Think of a null momentum vector P ∈ ℝ^{2,2} as a pair (P^T, P^O) ∈ ℂ² of complex numbers satisfying |P^T| = |P^O|.
- Scattering amplitude $\mathcal{A}(P_1, P_2, \dots, P_n)$ = probability of 'scattering'.

- Consider incoming particles with momenta $P_1, P_2, \ldots, P_n \in \mathbb{R}^{2,2}$ which are null $(P_i^2 = 0)$ and satisfy $P_1 + P_2 + \cdots + P_n = 0$.
- Here $P = (p_0, p_1, p_2, p_3)$ and $P^2 = p_0^2 + p_1^2 p_2^2 p_3^2$.

- Think of a null momentum vector P ∈ ℝ^{2,2} as a pair (P^T, P^O) ∈ ℂ² of complex numbers satisfying |P^T| = |P^O|.
- Scattering amplitude $\mathcal{A}(P_1, P_2, \ldots, P_n)$ = probability of 'scattering'.

Faces: convex polygons colored black and white;

Faces: convex polygons colored black and white;

Angle condition: sum(white angles) = π , sum(black angles) = π , around each interior vertex.

Faces: convex polygons colored black and white;

Angle condition: sum(white angles) = π , sum(black angles) = π , around each interior vertex.

Faces: convex polygons colored black and white;

Angle condition: sum(white angles) = π , sum(black angles) = π , around each interior vertex.

Origami map \mathcal{O} :

isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing

the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : $P_{3}^{\mathcal{T}}$ isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Origami map *O*: P⁷₃ isometry on each face preserving/reversing the orientations of white/black faces.

Origami map \mathcal{O} : P_3^T isometry on each face preserving/reversing the orientations of white/black faces.

Boundary vectors $P_i^{\mathcal{T}}$ and their images $P_i^{\mathcal{O}}$ under \mathcal{O} satisfy $|P_i^{\mathcal{T}}| = |P_i^{\mathcal{O}}|!$ **Main result (preview):** $\mathcal{A}(P_1, \ldots, P_n) = \text{integral over origami crease patterns with boundary <math>P_1, \ldots, P_n$.

Origami map \mathcal{O} : isometry on each face preserving/reversing the orientations of white/black faces.

Boundary vectors $P_i^{\mathcal{T}}$ and their images $P_i^{\mathcal{O}}$ under \mathcal{O} satisfy $|P_i^{\mathcal{T}}| = |P_i^{\mathcal{O}}|!$ **Main result (preview):** $\mathcal{A}(P_1, \ldots, P_n) =$ integral over origami crease patterns with boundary P_1, \ldots, P_n .

• Spinor-helicity formalism: Since $P_i = (P_i^{\mathcal{T}}, P_i^{\mathcal{O}}) \in \mathbb{C}^2$ with $|P_i^{\mathcal{T}}| = |P_i^{\mathcal{O}}|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{C}$ such that $P_i^{\mathcal{T}} = \lambda_i \tilde{\lambda}_i$ and $P_i^{\mathcal{O}} = \bar{\lambda}_i \tilde{\lambda}_i$.

• Spinor-helicity formalism: Since $P_i = (P_i^{\mathcal{T}}, P_i^{\mathcal{O}}) \in \mathbb{C}^2$ with $|P_i^{\mathcal{T}}| = |P_i^{\mathcal{O}}|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^{\mathcal{T}} = \lambda_i \tilde{\lambda}_i$ and $P_i^{\mathcal{O}} = \bar{\lambda}_i \tilde{\lambda}_i$.

• Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.

• 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.
- Positive kinematic space: [He–Zhang '18]

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \, [i \, i + 1] > 0 \text{ for } i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \text{ and } \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.
- Positive kinematic space: [He–Zhang '18]

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \, [i \, i + 1] > 0 \text{ for } i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \text{ and } \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• Brackets: $\langle ij \rangle := \det(\lambda_i | \lambda_j)$ and $[ij] := \det(\tilde{\lambda}_i | \tilde{\lambda}_j)$.
Positive kinematic space

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.
- Positive kinematic space: [He–Zhang '18]

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

- Brackets: $\langle ij \rangle := \det(\lambda_i | \lambda_j) \text{ and } [ij] := \det(\tilde{\lambda}_i | \tilde{\lambda}_j).$
- Cyclic symmetry: $\lambda_{n+1} := (-1)^{k-1} \lambda_1$ and $\tilde{\lambda}_{n+1} := (-1)^{k-1} \tilde{\lambda}_1$.

Positive kinematic space

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^T = \lambda_i \tilde{\lambda}_i$ and $P_i^O = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2$, $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.
- Positive kinematic space: [He–Zhang '18]

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

- Brackets: $\langle ij \rangle := \det(\lambda_i | \lambda_j) \text{ and } [ij] := \det(\tilde{\lambda}_i | \tilde{\lambda}_j).$
- Cyclic symmetry: λ_{n+1} := (-1)^{k-1}λ₁ and λ̃_{n+1} := (-1)^{k-1}λ̃₁.
 wind(λ): total turning angle of λ₁ → λ₂ → ··· → λ_{n+1} = (-1)^{k-1}λ₁.

Positive kinematic space

- Spinor-helicity formalism: Since $P_i = (P_i^T, P_i^O) \in \mathbb{C}^2$ with $|P_i^T| = |P_i^O|$, can choose $\lambda_i, \tilde{\lambda}_i \in \mathbb{R}^2$ such that $P_i^{\mathcal{T}} = \lambda_i \tilde{\lambda}_i$ and $P_i^{\mathcal{O}} = \bar{\lambda}_i \tilde{\lambda}_i$.
- 2-planes $\lambda, \tilde{\lambda} \in Gr(2, n)$ with columns $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^2, \tilde{\lambda}_1, \ldots, \tilde{\lambda}_n \in \mathbb{R}^2$.
- Momentum conservation $P_1 + \cdots + P_n = 0$ is equivalent to $\lambda \perp \tilde{\lambda}$.
- Positive kinematic space: [He-Zhang '18]

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

- Brackets: $\langle i j \rangle := \det(\lambda_i | \lambda_i)$ and $[i j] := \det(\lambda_i | \lambda_i)$. • Cyclic symmetry: $\lambda_{n+1} := (-1)^{k-1}\lambda_1$ and $\tilde{\lambda}_{n+1} := (-1)^{k-1}\tilde{\lambda}_1$.
- wind(λ): total turning angle of $\lambda_1 \to \lambda_2 \to \cdots \to \lambda_{n+1} = (-1)^{k-1} \lambda_1$.

$$\mathcal{K}_{k,n}^{+} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for } i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \text{ and } \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for } i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k \text{ minor on columns } I.$

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \ i + 1 \rangle > 0, \ [i \ i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

*modulo Lorentz transformations, little group action, global shift and rotation, and square moves (assuming planar dual graph is reduced).

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \ i + 1 \rangle > 0, \ [i \ i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

*modulo Lorentz transformations, little group action, global shift and rotation, and square moves (assuming planar dual graph is reduced).

• $(\lambda, \tilde{\lambda})$ determine the (4-dimensional) boundary of the origami crease pattern.

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

*modulo Lorentz transformations, little group action, global shift and rotation, and square moves (assuming planar dual graph is reduced).

- $(\lambda, \tilde{\lambda})$ determine the (4-dimensional) boundary of the origami crease pattern.
- $\mathcal{A}(P_1, \ldots, P_n) = \text{integral over } \{C \in Gr_{\geq 0}(k, n) \mid \lambda \subset C \subset \tilde{\lambda}^{\perp}\}$ [ABCGPT '16].

As we saw in section 7, this can also be written as a residue of the top-form,

$$f_{\sigma}^{(k)} = \oint_{C \subset \Gamma_{\sigma}} \frac{d^{k \times n} C}{\operatorname{vol}(GL(k))} \frac{\delta^{k \times 4} (C \cdot \widetilde{\eta})}{(1 \cdots k) \cdots (n \cdots k - 1)} \frac{\delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n - k)} (\lambda \cdot C^{\perp})}{(1 \cdots k) \cdots (n \cdots k - 1)}.$$
(8.2)

Recall from section 4, the (ordinary) δ -functions in (8.2) have the geometric interpretation of constraining the k-plane C to be orthogonal to the 2-plane $\tilde{\lambda}$ and to contain the 2-plane λ , [14]:

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka. *Grassmannian Geometry of Scattering Amplitudes*. Cambridge University Press, Cambridge, 2016.]
A(P₁,..., P_n) = integral over {C ∈ Gr_{≥0}(k, n) | λ ⊂ C ⊂ λ̃[⊥]} [ABCGPT '16].

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \, i + 1 \rangle > 0, \ [i \, i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

*modulo Lorentz transformations, little group action, global shift and rotation, and square moves (assuming planar dual graph is reduced).

- $(\lambda, \tilde{\lambda})$ determine the (4-dimensional) boundary of the origami crease pattern.
- $\mathcal{A}(P_1, \ldots, P_n) = \text{integral over } \{C \in Gr_{\geq 0}(k, n) \mid \lambda \subset C \subset \tilde{\lambda}^{\perp}\}$ [ABCGPT '16].

$$\mathcal{K}^+_{k,n} := \left\{ \lambda \perp \tilde{\lambda} \middle| \begin{array}{l} \langle i \ i + 1 \rangle > 0, \ [i \ i + 1] > 0 \ \text{for} \ i = 1, \dots, n, \\ \text{wind}(\lambda) = (k - 1)\pi, \ \text{and} \ \text{wind}(\tilde{\lambda}) = (k + 1)\pi \end{array} \right\}.$$

• $\operatorname{Gr}_{\geq 0}(k, n) := \{ C \in \operatorname{Gr}(k, n) \mid \Delta_{I}(C) \geq 0 \text{ for all } I \subset [n], |I| = k \}$ [Postnikov '06/Lusztig '94]. Here $\Delta_{I}(C) = \operatorname{maximal} k \times k$ minor on columns I.

Theorem (G. (2024), "Main bijection")

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

*modulo Lorentz transformations, little group action, global shift and rotation, and square moves (assuming planar dual graph is reduced).

• $(\lambda, \tilde{\lambda})$ determine the (4-dimensional) boundary of the origami crease pattern.

- $\mathcal{A}(P_1, \ldots, P_n) = \text{integral over } \{ C \in Gr_{\geq 0}(k, n) \mid \lambda \subset C \subset \tilde{\lambda}^{\perp} \}$ [ABCGPT '16].
- Corollary: BCFW cells triangulate (Mandelstam-positive region of) $\mathcal{K}_{k,n}^+$.

Question

True or False: we always have $|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$?

Question

True or False: we always have $|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$?

• A: True if the boundary polygon is convex.

Question

True or False: we always have $|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$?

• A: True if the boundary polygon is convex. False in general:

Question

True or False: we always have $|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$?

• A: True if the boundary polygon is convex. False in general:

Question

True or False: we always have $|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$?

• A: True if the boundary polygon is convex. False in general:

Question

True or False: we always have
$$|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$$
?

- A: True if the boundary polygon is convex. False in general.
- (Planar) Mandelstam variables: $S_{\lambda,\tilde{\lambda}}(i,j) := (P_{i+1} + \cdots + P_j)^2$.

Question

True or False: we always have
$$|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$$
?

- A: True if the boundary polygon is convex. False in general.
- (Planar) Mandelstam variables: $S_{\lambda,\tilde{\lambda}}(i,j) := (P_{i+1} + \cdots + P_j)^2$.
- $S_{\lambda,\tilde{\lambda}}(i,j) = |u_i^T u_j^T|^2 |u_i^O u_j^O|^2$, where u_1^T, \dots, u_n^T boundary vertices of the origami crease pattern.

Question

True or False: we always have
$$|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$$
?

- A: True if the boundary polygon is convex. False in general.
- (Planar) Mandelstam variables: $S_{\lambda,\tilde{\lambda}}(i,j) := (P_{i+1} + \cdots + P_j)^2$.
- $S_{\lambda,\tilde{\lambda}}(i,j) = |u_i^{\mathcal{T}} u_j^{\mathcal{T}}|^2 |u_i^{\mathcal{O}} u_j^{\mathcal{O}}|^2$, where $u_1^{\mathcal{T}}, \ldots, u_n^{\mathcal{T}}$ boundary vertices of the origami crease pattern.
- Mandelstam-positive region: $\mathcal{K}_{k,n}^{\mathsf{M}^+} := \{(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+ \mid S_{\lambda, \tilde{\lambda}}(i, j) > 0 \text{ for all } i, j\}.$

Question

True or False: we always have
$$|u^{\mathcal{T}} - v^{\mathcal{T}}| \ge |u^{\mathcal{O}} - v^{\mathcal{O}}|$$
?

- A: True if the boundary polygon is convex. False in general.
- (Planar) Mandelstam variables: $S_{\lambda,\tilde{\lambda}}(i,j) := (P_{i+1} + \cdots + P_j)^2$.
- $S_{\lambda,\tilde{\lambda}}(i,j) = |u_i^{\mathcal{T}} u_j^{\mathcal{T}}|^2 |u_i^{\mathcal{O}} u_j^{\mathcal{O}}|^2$, where $u_1^{\mathcal{T}}, \ldots, u_n^{\mathcal{T}}$ boundary vertices of the origami crease pattern.
- Mandelstam-positive region: $\mathcal{K}_{k,n}^{M^+} := \{(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+ \mid S_{\lambda, \tilde{\lambda}}(i, j) > 0 \text{ for all } i, j\}.$

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

See also: [Arkani-Hamed–Trnka '14], [Even-Zohar–Lakrec–Tessler '21], [Even-Zohar–Lakrec–Parisi–Tessler–Sherman-Bennett–Williams '23].

$$\mathcal{K}_{k,n}^{\mathsf{M}^+} := \{ (\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+ \mid S_{\lambda, \tilde{\lambda}}(i, j) > 0 \text{ for all } i, j \}.$$

Theorem (G. (2024), "BCFW triangulation")

$$\mathcal{K}_{k,n}^{\mathsf{M}^+} := \{(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+ \mid \mathcal{S}_{\lambda, \tilde{\lambda}}(i, j) > 0 ext{ for all } i, j\}.$$

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

• BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\text{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$

Theorem (G. (2024), "BCFW triangulation")

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation")

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\text{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{\text{BCFW}}$ is a collection of planar bipartite graphs Γ in a disk. j+1

Theorem (G. (2024), "BCFW triangulation")

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\text{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{\text{BCFW}}$ is a collection of planar bipartite graphs Γ in a disk. j+1

Theorem (G. (2024), "BCFW triangulation")

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{BCFW}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation, origami version")

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation, origami version")

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Injectivity: for each Γ, the cell maps injectively;

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \mathbf{\Gamma}_{k,n}^{\text{BCFW}}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation, origami version")

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{M^+}$, there exists a unique $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

- **Injectivity**: for each Γ, the cell maps injectively;
- **2 Disjointness**: the cells for $\Gamma_1 \neq \Gamma_2$ do not overlap;

Theorem (G. (2024), "BCFW triangulation")

BCFW cells triangulate $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

- BCFW recurrence: $\mathcal{A}(P_1, \ldots, P_n) = \sum_{\Gamma \in \Gamma_{k,n}^{BCFW}} \mathcal{A}_{\Gamma}(P_1, \ldots, P_n).$
- Here $\Gamma_{k,n}^{BCFW}$ is a collection of planar bipartite graphs Γ in a disk.

Theorem (G. (2024), "BCFW triangulation, origami version")

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a

unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

- **O Injectivity**: for each Γ, the cell maps injectively;
- **2 Disjointness**: the cells for $\Gamma_1 \neq \Gamma_2$ do not overlap;
- **③ Surjectivity**: the cells together cover an open dense subset of $\mathcal{K}_{k,n}^{\mathsf{M}^+}$.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{M^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ .

Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\text{BCFW}}$, find the origami crease pattern. **Geometric solution.** $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_j and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern. Geometric solution. $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_j and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern. Geometric solution. $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_j and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2(P_k + \dots + P_j) + Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05].

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern. Geometric solution. $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_j and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2 \cdot (P_2 + \dots + P_j) \cdot Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05]. Step 2 (disjointness). Given generic $(\lambda, \tilde{\lambda})$, $u_{\mathcal{T}} = v_{\mathcal{T}}$

R

n

tG

find $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and the origami crease pattern.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . **Step 1 (injectivity).** Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k n}^{\mathsf{BCFW}}$, find the origami crease pattern. **Geometric solution.** $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_i and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2 \cdot (P_2 + \dots + P_j) \cdot Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05]. **Step 2 (disjointness).** Given generic $(\lambda, \tilde{\lambda})$, find $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and the origami crease pattern. **Solution.** Choose *j* such that

R

n

tG

 $t_i > 0$ is minimal possible.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . **Step 1 (injectivity).** Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k n}^{\mathsf{BCFW}}$, find the origami crease pattern. **Geometric solution.** $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_i and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2 \cdot (P_2 + \dots + P_j) \cdot Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05]. **Step 2 (disjointness).** Given generic $(\lambda, \overline{\lambda})$, find $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and the origami crease pattern. **Solution.** Choose *j* such that

R

n

tG

 $t_j > 0$ is minimal possible. (Works assuming Mandelstam positivity.)

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . Step 1 (injectivity). Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$, find the origami crease pattern. Geometric solution. $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_j and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2 \cdot (P_2 + \dots + P_j) \cdot Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05]. Step 2 (disjointness). Given generic $(\lambda, \tilde{\lambda})$, find $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and the origami crease pattern.

R

tG

Solution. Choose j such that $t_j > 0$ is minimal possible. (Works assuming Mandelstam positivity.)

Step 3 (surjectivity). Show that the above algorithm always outputs a valid origami crease pattern.

For all generic $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^{\mathsf{M}^+}$, there exists a unique $\Gamma \in \mathbf{\Gamma}_{k,n}^{\mathsf{BCFW}}$ and a unique origami crease pattern with boundary $(\lambda, \tilde{\lambda})$ whose dual graph is Γ . **Step 1 (injectivity).** Given $(\lambda, \tilde{\lambda})$ and $\Gamma \in \Gamma_{k n}^{\mathsf{BCFW}}$, find the origami crease pattern. **Geometric solution.** $v^{\mathcal{T}} = v^{\mathcal{O}}$ is the intersection of the perpendicular bisector ℓ_i and the ray ρ , all of which are determined by $(\lambda, \tilde{\lambda})$. Algebraic solution. $v - u_1 = tQ \in \mathbb{C}^2$, where $Q = (\lambda_1 \tilde{\lambda}_2, \bar{\lambda}_1 \tilde{\lambda}_2)$ and $t = t_j = \frac{(P_2 + \dots + P_j)^2}{2 \cdot (P_2 + \dots + P_j) \cdot Q}$ satisfies $(u_j - v)^2 = (P_2 + \dots + P_j - tQ)^2 = 0$ [BCFW '05]. **Step 2 (disjointness).** Given generic $(\lambda, \hat{\lambda})$, find $\Gamma \in \Gamma_{k,n}^{\mathsf{BCFW}}$ and the origami crease pattern. **Solution.** Choose *j* such that

R

tG

 $t_j > 0$ is minimal possible. (Works assuming Mandelstam positivity.)

Step 3 (surjectivity). Show that the above algorithm always outputs a valid origami crease pattern.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2$: $\sum_{w \sim b} \mathsf{K}(w, b)\lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ . [Kasteleyn '61], [Temperley–Fisher '61], [Affolter–Glick–Pylyavskyy–Ramassamy '19]

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $\mathsf{K}(w, b) = \pm \operatorname{wt}(w, b)$ are Kasteleyn edge weights on Γ . • $C \subset \tilde{\lambda}^{\perp} \iff \tilde{\lambda}$ extends to a black-holomorphic function $\tilde{\lambda}^{\bullet} : \mathbf{V}^{\bullet}(\Gamma) \to \mathbb{R}^2$.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $\mathsf{K}(w, b) = \pm \operatorname{wt}(w, b)$ are Kasteleyn edge weights on Γ . • $C \subset \tilde{\lambda}^{\perp} \iff \tilde{\lambda}$ extends to a black-holomorphic function $\tilde{\lambda}^{\bullet} : \mathbf{V}^{\bullet}(\Gamma) \to \mathbb{C}$.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ .

- C ⊂ λ̃[⊥] ⇐⇒ λ̃ extends to a black-holomorphic function λ̃[•] : V[•](Γ) → C.
- The origami crease pattern is obtained as the Kenyon–Smirnov primitive: $u^T - v^T = K(w, b)\lambda^{\circ}(w)\tilde{\lambda}^{\bullet}(b)$

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ .

- C ⊂ λ̃[⊥] ⇔ λ̃ extends to a black-holomorphic function λ̃[•] : V[•](Γ) → C.
- The origami crease pattern is obtained as the Kenyon–Smirnov primitive: $u^T - v^T = K(w, b)\lambda^{\circ}(w)\tilde{\lambda}^{\bullet}(b)$

[Kenyon '02], [Smirnov '10], [Chelkak–Smirnov '12] [Kenyon–Lam–Ramassamy–Russkikh '18], [Chelkak–Laslier–Russkikh '21]

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ .

- C ⊂ λ̃[⊥] ⇔ λ̃ extends to a black-holomorphic function λ̃[•] : V[•](Γ) → C.
- The origami crease pattern is obtained as the Kenyon–Smirnov primitive: $u^{T} - v^{T} = K(w, b)\lambda^{\circ}(w)\tilde{\lambda}^{\bullet}(b)$ and $u^{\mathcal{O}} - v^{\mathcal{O}} = K(w, b)\overline{\lambda^{\circ}(w)}\tilde{\lambda}^{\bullet}(b)$. [Kenyon '02], [Smirnov '10], [Chelkak–Smirnov '12] [Kenyon–Lam–Ramassamy–Russkikh '18], [Chelkak–Laslier–Russkikh '21]

K(w, b)

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ .

- C ⊂ λ̃[⊥] ⇔ λ̃ extends to a black-holomorphic function λ̃[•] : V[•](Γ) → C.
- The origami crease pattern is obtained as the Kenyon–Smirnov primitive: $u^{T} - v^{T} = K(w, b)\lambda^{\circ}(w)\tilde{\lambda}^{\bullet}(b)$ and $u^{\mathcal{O}} - v^{\mathcal{O}} = K(w, b)\overline{\lambda^{\circ}(w)}\tilde{\lambda}^{\bullet}(b)$. [Kenyon–Lam–Ramassamy–Russkikh '18], [Chelkak–Laslier–Russkikh '21] Easy: angle condition is satisfied mod 2π

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Boundary measurement map: C ∈ Gr_{≥0}(k, n) ↔ (Γ, wt) = planar bipartite graph in a disk with edge weights wt : E(Γ) → ℝ_{>0} [Postnikov '06].
- $\lambda \subset C \iff \lambda$ extends to a white-holomorphic function $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{C}$: $\sum_{w \sim b} \mathsf{K}(w, b) \lambda^{\circ}(w) = 0 \quad \text{for all interior black vertices } b.$

Here $K(w, b) = \pm wt(w, b)$ are Kasteleyn edge weights on Γ .

- C ⊂ λ̃[⊥] ⇔ λ̃ extends to a black-holomorphic function λ̃[•] : V[•](Γ) → C.
- The origami crease pattern is obtained as the Kenyon–Smirnov primitive: $u^{\mathcal{T}} - v^{\mathcal{T}} = \mathsf{K}(w, b)\lambda^{\circ}(w)\tilde{\lambda}^{\bullet}(b)$ and $u^{\mathcal{O}} - v^{\mathcal{O}} = \mathsf{K}(w, b)\overline{\lambda^{\circ}(w)}\tilde{\lambda}^{\bullet}(b).$

[Kenyon '02], [Smirnov '10], [Chelkak–Smirnov '12] [Kenyon–Lam–Ramassamy–Russkikh '18], [Chelkak–Laslier–Russkikh '21] **Easy:** angle condition is satisfied mod 2π **Hard (G. '24):** if $(\lambda, \tilde{\lambda}) \in \mathcal{K}^+_{k,n}$ then all faces are embedded properly oriented convex polygons

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

Hard (G. '24): if (λ, λ̃) ∈ K⁺_{k,n} then all faces are embedded properly oriented convex polygons.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Hard (G. '24): if (λ, λ̃) ∈ K⁺_{k,n} then all faces are embedded properly oriented convex polygons.
- Key proof ingredient: the magic projector Q_{λ} [Arkani-Hamed–Cachazo–Cheung '10].

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Hard (G. '24): if (λ, λ̃) ∈ K⁺_{k,n} then all faces are embedded properly oriented convex polygons.
- Key proof ingredient: the magic projector Q_{λ} [Arkani-Hamed–Cachazo–Cheung '10].

•
$$Q_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$$
 with $\lambda \cdot Q_{\lambda} = 0$. The columns of $C \cdot Q_{\lambda}$ are given by
 $(C \cdot Q_{\lambda})_i = \frac{1}{\langle i - 1 i \rangle \langle i i + 1 \rangle} (C_{i-1} \langle i i + 1 \rangle + C_i \langle i + 1 i - 1 \rangle + C_{i+1} \langle i - 1 i \rangle).$

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Hard (G. '24): if (λ, λ̃) ∈ K⁺_{k,n} then all faces are embedded properly oriented convex polygons.
- Key proof ingredient: the magic projector Q_{λ} [Arkani-Hamed–Cachazo–Cheung '10].

•
$$Q_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$$
 with $\lambda \cdot Q_{\lambda} = 0$. The columns of $C \cdot Q_{\lambda}$ are given by
 $(C \cdot Q_{\lambda})_i = \frac{1}{\langle i - 1 i \rangle \langle i i + 1 \rangle} (C_{i-1} \langle i i + 1 \rangle + C_i \langle i + 1 i - 1 \rangle + C_{i+1} \langle i - 1 i \rangle)$

Proposition (G. (2024), " Q_{λ} preserves total positivity")

If $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$, $\lambda \subset C$, and $C \in Gr_{\geq 0}(k, n)$, then $C \cdot Q_{\lambda} \in Gr_{\geq 0}(k-2, n)$.

Origami crease patterns are in natural bijection^{*} with triples $\lambda \subset C \subset \tilde{\lambda}^{\perp}$ such that $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ and $C \in Gr_{\geq 0}(k, n)$.

- Hard (G. '24): if (λ, λ̃) ∈ K⁺_{k,n} then all faces are embedded properly oriented convex polygons.
- Key proof ingredient: the magic projector Q_{λ} [Arkani-Hamed–Cachazo–Cheung '10].

•
$$Q_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$$
 with $\lambda \cdot Q_{\lambda} = 0$. The columns of $C \cdot Q_{\lambda}$ are given by
 $(C \cdot Q_{\lambda})_i = \frac{1}{\langle i - 1 i \rangle \langle i i + 1 \rangle} (C_{i-1} \langle i i + 1 \rangle + C_i \langle i + 1 i - 1 \rangle + C_{i+1} \langle i - 1 i \rangle)$

Proposition (G. (2024), " Q_{λ} preserves total positivity")

If
$$(\lambda, \tilde{\lambda}) \in \mathcal{K}^+_{k,n}$$
, $\lambda \subset C$, and $C \in Gr_{\geqslant 0}(k, n)$, then $C \cdot Q_{\lambda} \in Gr_{\geqslant 0}(k-2, n)$.

Corollary (G. (2024))

If $(\lambda, \tilde{\lambda}) \in \mathcal{K}_{k,n}^+$ then all faces are embedded properly oriented convex polygons.

• [G. '17], [G.-Postnikov-Williams '19], [Balitskiy-Wellman '19], [Lukowski-Parisi-Williams '20], [Parisi-Sherman-Bennett-Williams '21].

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \quad \subset \quad \mathbf{C}^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \subset C^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

• Kasteleyn edge weights are $\langle w_1 w_2 \rangle := \det(\lambda^{\circ}(w_1)|\lambda^{\circ}(w_2)).$

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \quad \subset \quad C^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

• Kasteleyn edge weights are $\langle w_1 w_2 \rangle := \det(\lambda^{\circ}(w_1)|\lambda^{\circ}(w_2)).$

•
$$\ddot{C}^{\circ}(\ddot{w}) := \frac{1}{\langle w_2 w_3 \rangle \cdot \langle w_1 w_1 \rangle \cdot \langle w_1 w_2 \rangle} (C^{\circ}(w_1) \langle w_2 w_3 \rangle + C^{\circ}(w_2) \langle w_3 w_1 \rangle + C^{\circ}(w_3) \langle w_1 w_2 \rangle).$$

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \quad \subset \quad C^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

- Kasteleyn edge weights are $\langle w_1 w_2 \rangle := \det(\lambda^{\circ}(w_1)|\lambda^{\circ}(w_2)).$
- $\ddot{C}^{\circ}(\ddot{w}) := \frac{1}{\langle w_2 w_3 \rangle \cdot \langle w_3 w_1 \rangle \cdot \langle w_1 w_2 \rangle} (C^{\circ}(w_1) \langle w_2 w_3 \rangle + C^{\circ}(w_2) \langle w_3 w_1 \rangle + C^{\circ}(w_3) \langle w_1 w_2 \rangle).$

• Claim: \ddot{C}° is the white-holomorphic extension of $C \cdot Q_{\lambda}$ to $\mathbf{V}^{\circ}(\ddot{\Gamma})$.

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \subset C^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

- Kasteleyn edge weights are $\langle w_1 w_2 \rangle := \det(\lambda^{\circ}(w_1)|\lambda^{\circ}(w_2)).$
- $\ddot{C}^{\circ}(\ddot{w}) := \frac{1}{\langle w_2 w_3 \rangle \cdot \langle w_1 w_1 \rangle \cdot \langle w_1 w_2 \rangle} (C^{\circ}(w_1) \langle w_2 w_3 \rangle + C^{\circ}(w_2) \langle w_3 w_1 \rangle + C^{\circ}(w_3) \langle w_1 w_2 \rangle).$
- Claim: \ddot{C}° is the white-holomorphic extension of $C \cdot Q_{\lambda}$ to $\mathbf{V}^{\circ}(\ddot{\Gamma})$.
- $C \cdot Q_{\lambda} \in Gr_{\geq 0}(k-2, n) \Longrightarrow$ sign of each $\langle w_1 w_2 \rangle$ is fixed
Shift by 2 for planar bipartite graphs ("T-duality")

• Extend $\lambda \subset C$ to white-holomorphic $\lambda^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^2 \quad \subset \quad C^{\circ} : \mathbf{V}^{\circ}(\Gamma) \to \mathbb{R}^k$.

- Kasteleyn edge weights are $\langle w_1 w_2 \rangle := \det(\lambda^{\circ}(w_1)|\lambda^{\circ}(w_2)).$
- $\ddot{C}^{\circ}(\ddot{w}) := \frac{1}{\langle w_2 w_3 \rangle \cdot \langle w_1 w_1 \rangle \cdot \langle w_1 w_2 \rangle} (C^{\circ}(w_1) \langle w_2 w_3 \rangle + C^{\circ}(w_2) \langle w_3 w_1 \rangle + C^{\circ}(w_3) \langle w_1 w_2 \rangle).$
- Claim:
 ^C[°] is the white-holomorphic extension of C · Q_λ to V[°](Γ).
- C · Q_λ ∈ Gr_{≥0}(k − 2, n) ⇒ sign of each ⟨w₁ w₂⟩ is fixed
 ⇒ black triangles in the origami crease pattern are properly oriented.

[Damgaard-Ferro-Lukowski-Parisi '19]:

[Damgaard-Ferro-Lukowski-Parisi '19]:

• Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.

[Damgaard–Ferro–Lukowski–Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}: \operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+, \quad \mathcal{C} \mapsto (\lambda = \mathcal{C} \cap \Lambda, \tilde{\lambda} = \mathcal{C}^{\perp} \cap \tilde{\Lambda}).$

[Damgaard-Ferro-Lukowski-Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}$: $\operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+$, $C \mapsto (\lambda = C \cap \Lambda, \tilde{\lambda} = C^{\perp} \cap \tilde{\Lambda}).$
- Momentum amplituhedron: $\mathcal{M}_{\Lambda,\tilde{\Lambda}} := \Phi_{\Lambda,\tilde{\Lambda}}(\operatorname{Gr}_{\geq 0}(k, n)).$

[Damgaard–Ferro–Lukowski–Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}$: $\operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+$, $C \mapsto (\lambda = C \cap \Lambda, \tilde{\lambda} = C^{\perp} \cap \tilde{\Lambda}).$
- Momentum amplituhedron: $\mathcal{M}_{\Lambda,\tilde{\Lambda}} := \Phi_{\Lambda,\tilde{\Lambda}}(Gr_{\geq 0}(k, n)).$
- Problem: $(\lambda, \tilde{\lambda}) = \Phi_{\Lambda, \tilde{\Lambda}}(C)$ is not always Mandelstam nonnegative.

[Damgaard–Ferro–Lukowski–Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}$: $\operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+$, $C \mapsto (\lambda = C \cap \Lambda, \tilde{\lambda} = C^{\perp} \cap \tilde{\Lambda}).$
- Momentum amplituhedron: $\mathcal{M}_{\Lambda,\tilde{\Lambda}} := \Phi_{\Lambda,\tilde{\Lambda}}(Gr_{\geq 0}(k, n)).$
- Problem: $(\lambda, \tilde{\lambda}) = \Phi_{\Lambda, \tilde{\Lambda}}(C)$ is not always Mandelstam nonnegative.

Theorem (G. (2024), "Flag momentum amplituhedron")

If $\Lambda^{\perp} \subset \tilde{\Lambda}$ belong to the positive part of the partial flag variety [Lusztig '94] then $\Phi_{\Lambda,\tilde{\Lambda}}(C)$ is Mandelstam nonnegative for all $C \in Gr_{\geq 0}(k, n)$.

[Damgaard–Ferro–Lukowski–Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}$: $\operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+, \quad C \mapsto (\lambda = C \cap \Lambda, \tilde{\lambda} = C^{\perp} \cap \tilde{\Lambda}).$
- Momentum amplituhedron: $\mathcal{M}_{\Lambda,\tilde{\Lambda}} := \Phi_{\Lambda,\tilde{\Lambda}}(Gr_{\geq 0}(k, n)).$
- Problem: $(\lambda, \tilde{\lambda}) = \Phi_{\Lambda, \tilde{\Lambda}}(C)$ is not always Mandelstam nonnegative.

Theorem (G. (2024), "Flag momentum amplituhedron")

If $\Lambda^{\perp} \subset \tilde{\Lambda}$ belong to the positive part of the partial flag variety [Lusztig '94] then $\Phi_{\Lambda,\tilde{\Lambda}}(C)$ is Mandelstam nonnegative for all $C \in Gr_{\geq 0}(k, n)$.

Corollary (G. (2024), "Existence of t-embeddings")

For any weighted planar bipartite graph (Γ , wt), there exists a dual origami crease pattern whose geometric edge weights are gauge-equivalent to wt.

[Damgaard–Ferro–Lukowski–Parisi '19]:

- Pick $\Lambda^{\perp} \in \operatorname{Gr}_{>0}(k-2,n)$ and $\tilde{\Lambda} \in \operatorname{Gr}_{>0}(k+2,n)$.
- $\Phi_{\Lambda,\tilde{\Lambda}}$: $\operatorname{Gr}_{\geq 0}(k,n) \to \mathcal{K}_{k,n}^+, \quad C \mapsto (\lambda = C \cap \Lambda, \tilde{\lambda} = C^{\perp} \cap \tilde{\Lambda}).$
- Momentum amplituhedron: $\mathcal{M}_{\Lambda,\tilde{\Lambda}} := \Phi_{\Lambda,\tilde{\Lambda}}(Gr_{\geq 0}(k, n)).$
- Problem: $(\lambda, \tilde{\lambda}) = \Phi_{\Lambda, \tilde{\Lambda}}(C)$ is not always Mandelstam nonnegative.

Theorem (G. (2024), "Flag momentum amplituhedron")

If $\Lambda^{\perp} \subset \tilde{\Lambda}$ belong to the positive part of the partial flag variety [Lusztig '94] then $\Phi_{\Lambda,\tilde{\Lambda}}(C)$ is Mandelstam nonnegative for all $C \in Gr_{\geq 0}(k, n)$.

Corollary (G. (2024), "Existence of t-embeddings")

For any weighted planar bipartite graph (Γ , wt), there exists a dual origami crease pattern whose geometric edge weights are gauge-equivalent to wt.

 Originally conjectured by [Kenyon–Lam–Ramassamy–Russkikh '18], [Chelkak–Laslier–Russkikh '21].

Question

Question

Question

Given a weighted graph (Γ , wt), how many origami crease patterns with prescribed (2-dim) boundary polygon does it admit?

• A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of $C = Meas(\Gamma, wt)$.

Question

Given a weighted graph (Γ , wt), how many origami crease patterns with prescribed (2-dim) boundary polygon does it admit?

 A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).

$$C = Meas(\Gamma, wt) = \begin{bmatrix} 1 & 1 & 0 & -6 & 0 & 3 \\ 0 & 1 & 1 & 7 & 0 & -2 \\ 0 & 0 & 0 & 2 & 1 & 3 \end{bmatrix}$$

Question

Given a weighted graph (Γ , wt), how many origami crease patterns with prescribed (2-dim) boundary polygon does it admit?

 A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).

Question

Given a weighted graph (Γ , wt), how many origami crease patterns with prescribed (2-dim) boundary polygon does it admit?

 A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).

Question

- A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).
- **Proof:** apply Varchenko's conjecture [Varchenko '95] [Orlik–Terao '95] on the number of critical points of a "master function."

Question

- A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).
- **Proof:** apply Varchenko's conjecture [Varchenko '95] [Orlik–Terao '95] on the number of critical points of a "master function."

Question

- A: It is at most the number of bounded regions of hyperplane arrangement given by the columns of C = Meas(Γ, wt).
- **Proof:** apply Varchenko's conjecture [Varchenko '95] [Orlik–Terao '95] on the number of critical points of a "master function."

