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The totally nonnegative Grassmannian

Gr(k,mR) :={V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).

Example:
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RowSpan (0 5 1 1)6 Gr(2,4)

Pliicker coordinates: for | C {1,2,...,n} of size k,

Aj = k X k minor with column set /.
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The totally nonnegative Grassmannian

Gr(k,mR) :={V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).

Example:
1 10 Ai3=1 App=2 Appu=1
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Pliicker coordinates: for | C {1,2,...,n} of size k,

Ay = k X k minor with column set /.
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The totally nonnegative Grassmannian

Gr(k,mR) :={V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).

Example:
110 -1 Aiz3=1 A1 =2 Aip=1
RowSpan (0 51 1 )6 Gr(2,4) Aot =3 Asg=1 Aps— 1.
Pliicker coordinates: for | C {1,2,...,n} of size k,
Ay = k X k minor with column set /.

The A;'s are defined up to common rescaling.
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The totally nonnegative Grassmannian

Gr(k,n;R) := {V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).
Example:

RowSpan (

110 -1 Aiz3=1 A1 =2 Aip=1
0 21 1>6Gr(2’4) Aoy =3 Nzs =1 Ny3=1.

Pliicker coordinates: for | C {1,2,...,n} of size k,
Ay = k X k minor with column set /.
The A;'s are defined up to common rescaling.
Matroid stratification of Gr(k, n; R):
Gr(k,mR) =| |Sm, Sm:={V € Gr(k,mR) |A/(V) #0 for | € M;
M A (V) =0 for J ¢ M}.
[Gelfand—Goresky—MacPherson—Serganova (1987)]
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The totally nonnegative Grassmannian

Gr(k,n;R) :={V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).

Example:

RowSpan (1 1.0 Aiz=1 A1p=2 Ap=1

021 11>6Gr(2’4) Dog =3 Dsg=1 Apz = 1.
Pliicker coordinates: for | C {1,2,...,n} of size k,
Ay = k X k minor with column set /.

The A;'s are defined up to common rescaling.
Matroid stratification of Gr(k, n; R):
Gr(k,mR) =| |Sm, Sm:={V € Gr(k,mR) |A/(V) #0 for | € M;

M A (V) =0 for J ¢ M}.
[Gelfand—Goresky—MacPherson—Serganova (1987)]

This is a horrible stratification. [Mnév (1988)]
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Gr(k, n;R) := {k x n matrices of rank k}/(row operations).
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110 -1 Aiz3=1 A1 =2 Aip=1
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The totally nonnegative Grassmannian

Gr(k,n;R) :={V CR" | dim(V) = k}.
Gr(k, n;R) := {k x n matrices of rank k}/(row operations).

Example:
110 -1 Aiz3=1 A1 =2 Aip=1
RowSpan (0 51 1 )6 Gr(2,4) Aot =3 Asg=1 Aps— 1.
Pliicker coordinates: for | C {1,2,...,n} of size k,

Ay = k X k minor with column set /.

The A;'s are defined up to common rescaling.

Definition (Postnikov (2006), Lusztig (1994))

The totally nonnegative Grassmannian is
Gr>o(k,n) :={V € Gr(k,m;R) | A;(V) > 0 for all /}.

[Pos06] A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764.
[Lus94] G. Lusztig. Total positivity in reductive groups. In Lie theory and geometry, volume
123 of Progr. Math., pp. 531-568, Birkhauser Boston, Boston, MA, 1994.
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The totally nonnegative Grassmannian

Gr(k,mR) :={V CR" | dim(V) = k}.

Gr(k, n;R) := {k x n matrices of rank k}/(row operations).
Example:
110 Aiz=1 A1p=2 Anp=1

-1
RowSpan (0 51 1 >E Gr=o(2,4) Aoy =3 N3zp =1 Aoz =1.

Pliicker coordinates: for | C {1,2,...,n} of size k,

Ay = k X k minor with column set /.

The A;'s are defined up to common rescaling.

Definition (Postnikov (2006), Lusztig (1994))

The totally nonnegative Grassmannian is
Gr>o(k,n) :={V € Gr(k,m;R) | A;(V) > 0 for all /}.

[Pos06] A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764.
[Lus94] G. Lusztig. Total positivity in reductive groups. In Lie theory and geometry, volume
123 of Progr. Math., pp. 531-568, Birkhauser Boston, Boston, MA, 1994.
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Example: Grso(2,4)

1 10 -1
RowSpan (0 5 1 1)€Gr>o(2,4)

Aiz=1 Axp=3, Ap=2 An=1 Au=1 Ax=1
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Aiz=1 Axp=3, Ap=2 An=1 Au=1 Ax=1
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Aiz=1 Axp=3, Ap=2 Ax=1 A=1,



Example: Grso(2,4)
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up up Uz Ug uy
Nrz = 1.

Aiz=1, Axp=3, Ap=2 Axp=1 Ayu=1,
In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.
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In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: A1z, Aog, A1z, Azg, A1, A23> 0
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Aiz=1, Axp=3, Ap=2 Axp=1 Ayu=1,
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Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
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In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
Codimension 1 cells: A1 =0, Ax3 =0
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up up Uz Ug uy
Nrz = 1.

Aiz=1, Axp=3, Ap=2 Axp=1 Ayu=1,
In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
Codimension 1 cells: A1 =0, Ax3 =0, A3y =0
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In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
Codimension 1 cells: A12 = 0, A23 = 0, A34 = 0, A14 =0.
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RowSpan (O > 1 1 ) € Gr=o(2,4)
up up Uz Ug uy
Nrz = 1.

Aiz=1, Axp=3, Ap=2 Axp=1 Ayu=1,
In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
Codimension 1 cells: A1 =0, Ax3 =0, Azqg =0, A4 =0.
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RowSpan (0 » 1 1>€Gr>0(2,4)

uy Uz U3z Ua
U
Aiz=1 Axp=3, Ap=2 Axp=1 Ayu=1 Ax=1L1

In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.

Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0
Codimension 1 cells: A1 =0, Ax3 =0, Azqg =0, A4 =0.
Codimension 2 cell: A1y = A1y = Ayy = 0.



Example: Grso(2,4)

u2

Uy us
1 1 0 -1
RowSpan (O > 1 1 ) € Gr>o(2,4)

up Uy U3 Ug u

Aiz=1 Axp=3, Ap=2 Axp=1 Ayu=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: Aj3A04 = A12A34 + A14023.
Top cell: Ay3, Aoa, A1, Azs, A14, A23> 0

Codimension 1 cells: A1 =0, Ax3 =0, Azqg =0, A4 =0.
Codimension 2 cell: A1y = A4 = Apq = 0.

What is the topology of Grso(k, n) and of its boundary cells? l




Topology of Gro(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.
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Conjecture (Postnikov (2006))
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o Lusztig (1998): Grxo(k, n) is contractible.
@ Williams (2007): the face poset is shellable (i.e., a “combinatorial ball").
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Topology of Gro(k, n)

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

o Lusztig (1998): Grxo(k, n) is contractible.
@ Williams (2007): the face poset is shellable (i.e., a “combinatorial ball").
@ Postnikov—Speyer—Williams (2009): Grso(k, n) is a CW complex.
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@ Rietsch-Williams (2010): the closure of each cell is contractible.
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Topology of Gr=o(k, n)

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

o Lusztig (1998): Grxo(k, n) is contractible.

@ Williams (2007): the face poset is shellable (i.e., a “combinatorial ball").
@ Postnikov—Speyer-Williams (2009): Grso(k, n) is a CW complex.

@ Rietsch-Williams (2010): the closure of each cell is contractible.

Theorem (G.—Karp—Lam)

[GKL17] Grxo(k, n) is homeomorphic to a closed ball.
[GKL21] The closure of each cell is homeomorphic to a ball.

[GKL17] P. Galashin, S. Karp, and T. Lam. The totally nonnegative Grassmannian is a ball.
Adv. Math., to appear. arXiv:1707.02010.

[GKL21] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag
varieties. J. Amer. Math. Soc., 35(2):513-579, 2021.
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Is Gr=o(k, n) isomorphic to a polytope as a cell poset?
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[GKL17] Grxo(k, n) is homeomorphic to a closed ball.
[GKL21] The closure of each cell is homeomorphic to a ball.

[GKL17] P. Galashin, S. Karp, and T. Lam. The totally nonnegative Grassmannian is a ball
Adv. Math., to appear. arXiv:1707.02010.

[GKL21] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag
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Is Gro(k, n) isomorphic to a polytope as a cell poset?
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Theorem (G.—Karp—Lam)

[GKL17] Grxo(k, n) is homeomorphic to a closed ball.

[GKL21] The closure of each cell is homeomorphic to a ball.

[GKL17] P. Galashin, S. Karp, and T. Lam. The totally nonnegative Grassmannian is a ball.
Adv. Math., to appear. arXiv:1707.02010.

[GKL21] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag
varieties. J. Amer. Math. Soc., 35(2):513-579, 2021.

Is Gro(k, n) isomorphic to a polytope as a cell poset?

@ A d-dimensional polytope has at least d + 1 codimension 1 faces.
e dim Gr>o(k, n) = dim Gr(k, n) = k(n — k).
@ Gr>o(k, n) has exactly n codimension 1 boundary faces, given by

Ay k=0, Ao x11=0, ..., Api . k1=0.

Gr>o(k, n) is not a polytope, but the "next best thing” to a polytope.
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Gr(k, m F) = {W C F" | dim(W) = k} = {k x n matrices of rank k}.

(row operations)



Gr(k, m F) = {W C F" | dim(W) = k} = {k x n matrices of rank k}.

(row operations)

e How many points in Gr(k, n;Fg)?




k i f rank k
Gr(k, m F) := {W C " | dim(W) — K} — -k x n matrices of rank k}
(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n; C)?
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@ What is the Poincaré polynomial of Gr(k, n;C)?
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@ What is the Poincaré polynomial of Gr(k, n;C)?
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k ices of rank k
Gr(k, n; F) 3={W§F"|dim(W):k}:{ X n matrices of ran }

(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n;C)?

[nlg:=14+q+ -+ gt [n]q! == [1]q[2]q - - [n]q
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k ices of rank k
Gr(k, n; F) 3={W§F"|dim(W):k}:{ X n matrices of ran }

(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n;C)?
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k ices of rank k
Gr(k, n; F) 3={W§F"|dim(W):k}:{ X n matrices of ran }

(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n;C)?

[nlg:=14+q+ -+ gt [n]q! == [1]q[2]q - - [n]q

n_ [nlg! Al
[kL  [Klg![n — K]q! )\Ckg(:nk)q .
_ [1q[2]4[3]4[4]4

o _ _ 43 2 .
samse || = g B, 72
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Gr(k, n; F) 3={W§F"|dim(W):k}:{ X n matrices of ran }

(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n;C)?

[nlg:=14+q+ -+ gt [n]q! == [1]q[2]q - - [n]q

|:Z:|q::[k]q![[:]q—!kh!: S g

ACkx (n—k)

@ Point count: #Gr(k,nFq) = [Z] :
q



Gr(k, m F) = {W C F" | dim(W) = k} = {k x n matrices of rank k}.

(row operations)

e How many points in Gr(k, n;Fg)?
@ What is the Poincaré polynomial of Gr(k, n;C)?

[nlg:=14+q+ -+ gt [n]q! == [1]q[2]q - - [n]q

mq:[k]q![[';]"_!sz S g

ACkx (n—k)

@ Point count: #Gr(k,nFq) = [n] :
q

x

S

@ Poincaré polynomial: Zqidim H? (Gr(k, n; C)) = [k] .
i q



Gr(k, m F) = {W C F" | dim(W) = k} = {k x n matrices of rank k}.

(row operations)

How many points in Gr(k, n;[Fg)?
What is the Poincaré polynomial of Gr(k, n; C)?

[nlg:=14+q+ -+ gt [n]q! == [1]q[2]q - - [n]q

mq:[k]q![[';]"_!sz S g

ACkx (n—k)

@ Point count: #Gr(k,nFq) = [n] :
q

x

[
S

oincaré polynomia Z q' dim H*'(Gr(k, n; C)) [k] .
Reason: Schubert decomposition.
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Gr(k, m;F) := {W C F" | dim(W) = k} = {k x n matrices of rank k}.

(row operations)

Gr(k, n) is stratified into open positroid varieties.
Here's the top-dimensional one:



k i f rank k
Gr(k, m F) = {W C " | dim(W) = k} — Lk > 1 matrices of rank k}
(row operations)
Gr(k, n) is stratified into open positroid varieties.
Here's the top-dimensional one:
2” = {V S Gl’(k, n) ‘ Al,...,k(v)v AZ,...,k+1(V)7 .. 7An,1,...,k71(v) 75 O},

where A;(V) =maximal minor of V with column set /.



k i f rank k
@Mmﬁﬁ:{WQFH&mwm:k}:{X"m“m“?m” ]
(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

a#O,d;éO,ad;ébc}.
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(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

@ Point count over Fg?

a#O,d;éO,ad;ébc}.




k i f rank k
@Wmﬁﬁ:{WQFH&mwm:k}:{X"m“m“?m” ]
(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

e Point count over F? #N34(Fq) = (9 - 12 (¢?—qg+1).

a#O,d;éO,ad;ébc}.




k i f rank k
@Wmﬁﬁ:{WQFH&mwm:k}:{X"m“m“?m” ]
(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

@ Point count over Fg? #N34(Fq) = (g — 1)2-(¢>—q+1).
@ Poincaré polynomial over C?

a#O,d;éO,ad;ébc}.




k i f rank k
@Wmﬁﬁ:{WQFH&mwm:k}:{X"m“m“?m” ]
(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

@ Point count over Fg? #N34(Fq) = (g — 1)2-(¢>—q+1).
@ Poincaré polynomial over C?

a#O,d;éO,ad;ébc}.

24(C) =

homotopy equivalent



k i f rank k
Qﬁmﬁj:{WQFW&mwwzk}:{X"m“m“?m” ]
(row operations)
Gr(k, n) is stratified into open positroid varieties.

Here's the top-dimensional one:

kn =1V €Gr(k,n) [ Ay «(V), A2 k41(V),- .., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ~J(1 0 a b
WA_{Q 1 ¢ J

@ Point count over Fg? #N34(Fq) = (g — 1)2-(¢>—q+1).
@ Poincaré polynomial over C?

e] ~
homotopy equivalent j

circle circle

a#O,d;éO,ad;ébc}.

pinched torus



{k x n matrices of rank k}
(row operations)

Gr(k,n;F) :={W CF" | dim(W) = k} =

Gr(k, n) is stratified into open positroid varieties.
Here's the top-dimensional one:

n={V €Gr(k,n) [ A1, k(V), D2, k41(V),- ., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ru 1 0 a b
rI274:{(01c )

@ Point count over Fg? #N34(Fq) = (g — 1)2-(¢>—q+1).

@ Poincaré polynomial over C?

q +qg+1

a#0,d#0, ad;ébc}

homotopy equalent



{k x n matrices of rank k}
(row operations)

Gr(k,n;F) :={W CF" | dim(W) = k} =

Gr(k, n) is stratified into open positroid varieties.
Here's the top-dimensional one:

n={V €Gr(k,n) [ A1, k(V), D2, k41(V),- ., Ay, k—1(V) # 0},
where A;(V) =maximal minor of V with column set /.

Example (k =2, n = 4)

o ru 1 0 a b
rI274:{(01c )

e Point count over Fg? #1M3 4(Fq) = (g9 — 1)2 ( 2 q+1).
e Poincaré polynomial over C?  P(134;q) = (9 + 1) 1 q +qg+1).

OO@

P+q+l

a#0,d#0, ad;ébc}

homotopy equalent
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e Counts the number of Dyck paths inside a k x (n — k) rectangle.
Example: k =3, n =8, Cynk =7:
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e Rational Catalan numbers: for 1 < k < n such that ged(k, n) =1, let

1/n
Ck,n_k = ; (k) .

e Counts the number of Dyck paths inside a k x (n — k) rectangle.
Example: k =3, n =8, Cynk =7:

- - %,

ACkx(n—k)

What is “the” g-analog of Cy ,—x? \

e Option 1: C,'(,,,,k(Q) = ﬁ[ﬂ]q
e Option 2: C,’(C,,_k(Q) = ZPGDyckk,n,k aq

area(P)'
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@ Option 1: C,’(,,,_k(q) = ﬁ[ﬂ]q
@ Option 2: ¢/, (q) = ZPEDkak,nfk q

area(P)



What is “the” g-analog of Cy ,—? l

@ Option 1: C,’(,,,_k(q) = ﬁ[ﬂ]q
@ Option 2: ¢/, (q) = ZPEDkak,nfk q

area(P)

Example: k =3, n =38, Gy pk =7



What is “the” g-analog of Cy ,—? l

@ Option 1: C,’(,,,_k(q) = ﬁ[ﬂ]q
@ Option 2: ¢/, (q) = ZPEDkak,nfk q

area(P)

Example: k =3, n =38, Gy pk =7
Conw@=a+++d*+ @+ +1.
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e Option 1: G}, ,(q) = ﬁmq

@ Option 2: ¢/, (q) = ZPEDyckk B garea(P),
Example: k =3, n =38, Gy pk =7
Conk@=0+a"+a+q*"+¢* + > +1.
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What is “the” g-analog of Cy ,—? \

e Option 1: G}, ,(q) = ﬁmq

@ Option 2: ¢/, (q) = ZPEDyckk B garea(P),
Example: k =3, n =38, Gy pk =7
Conk@=0+a"+a+q*"+¢* + > +1.

4

Clokla)= ¢ + @& + & + & + ¢ + ¢ + o

The answers are different!



What is “the” g-analog of Cy ,—? \

e Option 1: C; ,_(q) = [Z]q.

~ Ty
@ Option 2: ¢/, (q) = ZPGDyckk B garea(P),
Example: k =3, n =38, Gy pk =7
Conk@=0+a"+a+q*"+¢* + > +1.

Clokla)= ¢ + @& + & + & + ¢ + ¢ + o

The answers are different!

Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#Men(Fq) = (= 1)" - Chni(q),  P(MR4(C)ig) = (g +1)"" - Cni(d?)-




e Option 1: C,’ﬂ,,_k(Q) = ﬁ[ﬂq

e Option 2: G, (q) = > pepyek, ,_, grea(P).
Example: k =3, n =8, Gy ni =7
Conk@=a+++qd*+ ¢ +¢*+1.

Gokla= d* + & + @& + & + ¢ + ¢ + ¢

The answers are different!

Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#M5 n(Fq) = (@ = 1" Goai(@), P(MR,(C)iq) = (g+ 1) G ().




e Option 1: C,’ﬂ,,_k(Q) = ﬁ[ﬂq

e Option 2: G, (q) = > pepyek, ,_, grea(P).
Example: k =3, n =8, Gy ni =7
Conk@=a+++qd*+ ¢ +¢*+1.

Goila= ¢ + & + & + @& + ¢ + ¢ + ¢
The answers are different!
Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#M5 n(Fg) = (@ —1)""1 Ceni(@), P(MEL(C)ig)=(q+1)" - Ii/,n—k(q2)')

Corollary

Let gcd(k,n) = 1. Then a uniformly random point of Gr(k, n;Fq) belongs

to 113, ,(Fq) with probability (Z_—_li




e Option 1: C,’ﬂ,,_k(Q) = ﬁ[ﬂq

e Option 2: G, (q) = > pepyek, ,_, grea(P).
Example: k =3, n =8, Gy ni =7
Conk@=a+++qd*+ ¢ +¢*+1.

Goila= ¢ + & + & + @& + ¢ + ¢ + ¢
The answers are different!
Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#M5 n(Fg) = (@ —1)""1 Ceni(@), P(MEL(C)ig)=(q+1)" - Ii/,n—k(q2)')

Corollary

Let gcd(k,n) = 1. Then a uniformly random point of Gr(k, n;Fq) belongs

to I'Iim(]Fq) with probability (Z”_——li +— does not depend on k7!
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Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#Mi n(Fg) = (g = 1)"" Gepi(@)s PMG,4(C)ig) = (q+1)"" - G pi(d?).

Common generalization?

LHS: H*(I'Ii}n) admits a canonical second grading via the Deligne

splitting.  The bigraded Poincaré polynomial P(I'Iim; g,t) € N[q%, t%]
specializes to both #[ (Fq) and P(M3 ,; q).



Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#05n(Fq) = (0= 1" Gilq), P(M5a(Chig) = (a+1)"" G pi(0®):

Common generalization?
o LHS: H*(I'Ii}n) admits a canonical second grading via the Deligne
splitting.  The bigraded Poincaré polynomial P(M$, ; g, t) € N[q7, 2]
specializes to both #[ (Fq) and P(M3 ,; q).

@ RHS: The g, t-Catalan numbers Cy ,_«(q,t) = Z
PEDycky ,_
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specialize to both C; , ,(q) and C/ _,(q).



Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#05n(Fq) = (0= 1" Gilq), P(M5a(Chig) = (a+1)"" G pi(0®):

Common generalization?
o LHS: H*(I'Ii}n) admits a canonical second grading via the Deligne
splitting.  The bigraded Poincaré polynomial P(M$, ; g, t) € N[q7, 2]
specializes to both #[ (Fq) and P(M3 ,; q).

@ RHS: The g, t-Catalan numbers Cy ,_«(q,t) = Z
PEDycky ,_

qarea(P) tdinv(P)

specialize to both C; , ,(q) and C/ _,(q).

Gs(g,t)= q*® + @3t + ¢?t2 + ¢°t! + ¢'t2 + ¢'t? + Ot



Theorem (G.—Lam (2020))
Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial are
#05n(Fq) = (0= 1" Gilq), P(M5a(Chig) = (a+1)"" G pi(0®):

Common generalization?
o LHS: H*(I'Ii}n) admits a canonical second grading via the Deligne
splitting.  The bigraded Poincaré polynomial P(M$, ; g, t) € N[q7, 2]
specializes to both #[ (Fq) and P(M3 ,; q).

@ RHS: The g, t-Catalan numbers Cy ,_«(q,t) = Z
PEDycky ,_

qarea(P) tdinv(P)

specialize to both C; , ,(q) and C/ _,(q).

Gs(g,t)= q*® + @3t + ¢?t2 + ¢°tr + ¢'t2 + q't? + Ot

Theorem (G.—Lam (2020))
Let gcd(k,n) = 1. Then the bigraded Poincaré polynomial of My, is

n—1
P10 = (o +4)"” G ta)
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Gr(k, m F) = {V C " | dim(V) = K} {k x n matrices c.)f rank k}
(row operations)

Positroid stratification: Gr(k,n) = |_| M%.  [Knutson-Lam-Speyer (2013)]
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@ Let M be a full rank k x n matrix with columns My, M5, ..., M,.
Extend this labeling periodically to (M;)jcz by setting My, :== M;.
Let Ay : {1,2,...,n} — {1,2,...,n} be given by

fm(i) = min{j > i | M; € Span(Mj11,...,M;)} (mod n).
Turns out fy is always a permutation!
For an arbitrary permutation f € S, let

¢ = {RowSpan(M) € Gr(k,n) | f;s = f}.



Arbitrary positroid varieties

Gr(k, m F) = {V C " | dim(V) = K} {k x n matrices c.)f rank k}
(row operations)

Positroid stratification: Gr(k,n) = |_| M%.  [Knutson-Lam-Speyer (2013)]
f

@ Let M be a full rank k x n matrix with columns My, M5, ..., M,.
Extend this labeling periodically to (M;)jcz by setting My, :== M;.
Let Ay : {1,2,...,n} — {1,2,...,n} be given by

fm(i) = min{j > i | M; € Span(Mj11,...,M;)} (mod n).

Turns out fy is always a permutation!
For an arbitrary permutation f € S, let

MN% := {RowSpan(M) € Gr(k,n) | fyy = f}.
Let fx., € Sp be given by fi ,(i) =i+ k (mod n) for all i. Then

o _ Ao
fk,n - I_Ik,n'



Arbitrary positroid varieties

Gr(k, m F) = {V C " | dim(V) = K} {k x n matrices c.)f rank k}
(row operations)

Positroid stratification: Gr(k,n) = |_| M%.  [Knutson-Lam-Speyer (2013)]
f

@ Let M be a full rank k x n matrix with columns My, M5, ..., M,.
Extend this labeling periodically to (M;)jcz by setting My, :== M;.
Let Ay : {1,2,...,n} — {1,2,...,n} be given by

fm(i) = min{j > i | M; € Span(Mj11,...,M;)} (mod n).

Turns out fy is always a permutation!
For an arbitrary permutation f € S, let

MN% := {RowSpan(M) € Gr(k,n) | fyy = f}.
Let fx., € Sp be given by fi ,(i) =i+ k (mod n) for all i. Then

o _ Ao
fk,n - I_Ik,n'

Point count? Poincaré polynomial? P(M%; q, t) =7



Positroid links

@ A knot is an embedding of an oriented circle into R3.


https://arxiv.org/abs/1711.10598

Positroid links

@ A knot is an embedding of an oriented circle into R3.
@ A link is an embedding of several oriented circles into R3.


https://arxiv.org/abs/1711.10598

Positroid links

@ A knot is an embedding of an oriented circle into R3.
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Positroid links

@ A knot is an embedding of an oriented circle into R3.
@ A link is an embedding of several oriented circles into R3.
@ Knots/links are considered up to ambient isotopy.
Positroid stratification: Gr(k,n) = |_| M%, where each f is a permutation.
f
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Positroid links

@ A knot is an embedding of an oriented circle into R3.
@ A link is an embedding of several oriented circles into R3.
@ Knots/links are considered up to ambient isotopy.
Positroid stratification:  Gr(k, n) = |_| M%, where each f is a permutation.
f

Associate a link L to each permutation f € S, as follows:

a1 N
= W
~N o1
w o

~

) —

S B

1
= (4

N


https://arxiv.org/abs/1711.10598

Positroid links

@ A knot is an embedding of an oriented circle into R3.
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@ A link is an embedding of several oriented circles into R3.
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Positroid links

Associate a link L to each permutation f € S, as follows:
e Draw an arrow i — f(i) for each i =1,2,...,n.
o If i — j crosses i" — j' then i — j is above if and only if j < /.

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and
mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from
Legendrian knots. Duke Math. J., 168(15):2801-2871, 2019.

For each permutation f € S, get a variety 17 and a link L.
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How to tell if two links are
Isotopic?






Given a link L, the HOMFLY polynomial P(L; a, q) is defined by
P(O)=1 and aP(Ly)—a'P(L.)= <q% - q_%) P(Lp), where

Ly



One of these knots is not like the others
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(B) P(L;a,q)=1

(C) P(L;a,q)=1




Given a link L, the HOMFLY polynomial P(L; a, g) is defined by
P(O)=1 and aP(Ly)—a'P(L.)= <q% - q_%) P(Lp), where

Ly



Given a link L, the HOMFLY polynomial P(L; a, g) is defined by
P(O)=1 and aP(Ly)—a'P(L.)= <q% - q_%) P(Lp), where

KX
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Let f € S,. Then the point count of M3 is given by
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@ The T-action on 17 is free.
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Given a link L, the HOMFLY polynomial P(L; a, g) is defined by
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Lemma

Let f € S,,. The following are equivalent:
@ The T-action on 17 is free.
o f is a single cycle.
@ The link L¢ is a knot.

In this case, M7/ T is smooth and P(MN%; q,t) = (q% + t%>n -P(N$/T;q,t).
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Arbitrary f € S,: LHS = T-equivariant cohomology of % with compact support.



Thanks!

Theorem (G.—Lam (2020))
Let f € S,. Then the point count of 1% is given by
#MN2(F,) = (g — 1)" 1 - (top a-degree coefficient of P(Ls; a, q)).

T acts freely on 17 <=> f is a single cycle <= L¢ is a knot.

Khovanov—Rozansky link homology yields a polynomial Pkgr(L; a, g, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.—Lam (2020))
Let f € S, be a single cycle. Then
P(N2/T;q,t) = top a-degree coefficient of Pxr(Ly; a, q, t).

Arbitrary f € S,: LHS = T-equivariant cohomology of % with compact support.



