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The totally nonnegative Grassmannian

Gr(k, n;R) := {V ⊆ Rn | dim(V ) = k}.

Gr(k, n;R) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.

Matroid stratification of Gr(k , n;R):

Gr(k, n;R) =
⊔
M

SM, SM := {V ∈ Gr(k , n;R) |∆I (V ) 6= 0 for I ∈M;

∆J(V ) = 0 for J /∈M}.
[Gelfand–Goresky–MacPherson–Serganova (1987)]

This is a horrible stratification. [Mnëv (1988)]

Definition (Postnikov (2006), Lusztig (1994))

The totally nonnegative Grassmannian is

Gr>0(k , n) := {V ∈ Gr(k , n;R) | ∆I (V ) > 0 for all I}.

[Pos06] A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764.

[Lus94] G. Lusztig. Total positivity in reductive groups. In Lie theory and geometry, volume

123 of Progr. Math., pp. 531–568, Birkhäuser Boston, Boston, MA, 1994.

https://arxiv.org/abs/math/0609764


The totally nonnegative Grassmannian

Gr(k, n;R) := {V ⊆ Rn | dim(V ) = k}.
Gr(k, n;R) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.
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Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.

Matroid stratification of Gr(k , n;R):

Gr(k, n;R) =
⊔
M

SM, SM := {V ∈ Gr(k , n;R) |∆I (V ) 6= 0 for I ∈M;

∆J(V ) = 0 for J /∈M}.
[Gelfand–Goresky–MacPherson–Serganova (1987)]

This is a horrible stratification. [Mnëv (1988)]
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Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.

Matroid stratification of Gr(k , n;R):

Gr(k, n;R) =
⊔
M

SM, SM := {V ∈ Gr(k , n;R) |∆I (V ) 6= 0 for I ∈M;

∆J(V ) = 0 for J /∈M}.
[Gelfand–Goresky–MacPherson–Serganova (1987)]

This is a horrible stratification. [Mnëv (1988)]
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Example: Gr>0(2, 4)

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr>0(2, 4)

u1 u2 u3 u4 u1

u2

u3u4

u1u3
u3

u4

u4

u1

∆13 = 1, ∆24 = 3, ∆12 = 2, ∆34 = 1, ∆14 = 1, ∆23 = 1.

In Gr(2, 4), we have a Plücker relation: ∆13∆24 = ∆12∆34 + ∆14∆23.

Top cell: ∆13,∆24,∆12,∆34,∆14,∆23> 0
Codimension 1 cells: ∆12 = 0, ∆23 = 0, ∆34 = 0, ∆14 = 0.
Codimension 2 cell: ∆12 = ∆14 = ∆24 = 0.

Question

What is the topology of Gr>0(k, n) and of its boundary cells?
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Topology of Gr>0(k , n)

Theorem (Postnikov (2006))

Each boundary cell (some ∆I > 0 and the rest ∆J = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Lusztig (1998): Gr>0(k, n) is contractible.
Williams (2007): the face poset is shellable (i.e., a “combinatorial ball”).
Postnikov–Speyer–Williams (2009): Gr>0(k , n) is a CW complex.
Rietsch–Williams (2010): the closure of each cell is contractible.

Theorem (G.–Karp–Lam)

[GKL17] Gr>0(k , n) is homeomorphic to a closed ball.

[GKL21] The closure of each cell is homeomorphic to a ball.

[GKL17] P. Galashin, S. Karp, and T. Lam. The totally nonnegative Grassmannian is a ball.

Adv. Math., to appear. arXiv:1707.02010.

[GKL21] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag

varieties. J. Amer. Math. Soc., 35(2):513–579, 2021.

https://arxiv.org/abs/1707.02010
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[GKL21] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag

varieties. J. Amer. Math. Soc., 35(2):513–579, 2021.

Question

Is Gr>0(k, n) isomorphic to a polytope as a cell poset?

A d-dimensional polytope has at least d + 1 codimension 1 faces.
dim Gr>0(k , n) = dim Gr(k , n) = k(n − k).
Gr>0(k, n) has exactly n codimension 1 boundary faces, given by

∆1,...,k = 0, ∆2,...,k+1 = 0, . . . , ∆n,1,...,k−1 = 0.

Conclusion

Gr>0(k , n) is not a polytope, but the “next best thing” to a polytope.
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Gr(k , n;F) := {W ⊆ Fn | dim(W ) = k} =
{k × n matrices of rank k}

(row operations)
.

Question

How many points in Gr(k , n;Fq)?

What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!

=
∑

λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k , n;Fq) =

[
n

k

]
q

.

Poincaré polynomial:
∑
i

qi dimH2i (Gr(k , n;C)) =

[
n

k

]
q

.

Reason: Schubert decomposition.
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Poincaré polynomial:
∑
i

qi dimH2i (Gr(k , n;C)) =

[
n

k

]
q

.

Reason: Schubert decomposition.



Gr(k , n;F) := {W ⊆ Fn | dim(W ) = k} =
{k × n matrices of rank k}

(row operations)
.

Question

How many points in Gr(k , n;Fq)?
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Gr(k , n;F) := {W ⊆ Fn | dim(W ) = k} =
{k × n matrices of rank k}

(row operations)
.

Gr(k , n) is stratified into open positroid varieties.
Here’s the top-dimensional one:

Π◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ),∆2,...,k+1(V ), . . . ,∆n,1,...,k−1(V ) 6= 0},

where ∆I (V ) =maximal minor of V with column set I .

Example (k = 2, n = 4)

Π◦2,4
∼=
{(

1 0 a b
0 1 c d

)∣∣∣∣a 6= 0, d 6= 0, ad 6= bc

}
.

Point count over Fq? #Π◦2,4(Fq) = (q − 1)2 · (q2 − q + 1).

Poincaré polynomial over C?

P(Π◦2,4; q) = (q + 1)2 · (q2 + q + 1).

Π◦2,4(C) ∼=

homotopy equivalent

circle

q + 1

×

circle

q + 1

×

pinched torus

q2 + q + 1
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Rational Catalan numbers: for 1 6 k 6 n such that gcd(k , n) = 1, let

Ck,n−k :=
1

n

(
n

k

)
.

Counts the number of Dyck paths inside a k × (n − k) rectangle.
Example: k = 3, n = 8, Ck,n−k = 7 :

[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!
=

∑
λ⊆k×(n−k)

q|λ|.

Question

What is “the” q-analog of Ck,n−k?

Option 1: C ′k,n−k(q) = 1
[n]q

[n
k

]
q
.

Option 2: C ′′k,n−k(q) =
∑

P∈Dyckk,n−k
qarea(P).
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Question

What is “the” q-analog of Ck,n−k?

Option 1: C ′k,n−k(q) = 1
[n]q

[n
k

]
q
.

Option 2: C ′′k,n−k(q) =
∑

P∈Dyckk,n−k
qarea(P).

Example: k = 3, n = 8, Ck,n−k = 7 :

C ′k,n−k(q) = q8 + q6 + q5 + q4 + q3 + q2 + 1.

C ′′k,n−k(q)= q4 + q3 + q2 + q2 + q1 + q1 + q0.

The answers are different!

Theorem (G.–Lam (2020))
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Common generalization?

LHS: H∗(Π◦k,n) admits a canonical second grading via the Deligne

splitting. The bigraded Poincaré polynomial P(Π◦k,n; q, t) ∈ N[q
1
2 , t

1
2 ]

specializes to both #Π◦k,n(Fq) and P(Π◦k,n; q).

RHS: The q, t-Catalan numbers Ck,n−k(q, t) =
∑

P∈Dyckk,n−k

qarea(P)tdinv(P)

specialize to both C ′k,n−k(q) and C ′′k,n−k(q).

C3,5(q, t) = q4t0 + q3t1 + q2t2 + q2t1 + q1t3 + q1t2 + q0t4

Theorem (G.–Lam (2020))

Let gcd(k , n) = 1. Then the bigraded Poincaré polynomial of Π◦k,n is

P(Π◦k,n; q, t) =
(
q

1
2 + t

1
2

)n−1
Ck,n−k(q, t).
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Arbitrary positroid varieties

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k} =
{k × n matrices of rank k}

(row operations)
.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f . [Knutson–Lam–Speyer (2013)]

Let M be a full rank k × n matrix with columns M1,M2, . . . ,Mn.
Extend this labeling periodically to (Mi )i∈Z by setting Mi+n := Mi .
Let fM : {1, 2, . . . , n} → {1, 2, . . . , n} be given by

fM(i) ≡ min{j > i | Mi ∈ Span(Mi+1, . . . ,Mj)} (mod n).

Turns out fM is always a permutation!
For an arbitrary permutation f ∈ Sn, let

Π◦f := {RowSpan(M) ∈ Gr(k, n) | fM = f }.
Let fk,n ∈ Sn be given by fk,n(i) ≡ i + k (mod n) for all i . Then

Π◦fk,n = Π◦k,n.

Point count? Poincaré polynomial? P(Π◦f ; q, t) =?
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Point count? Poincaré polynomial? P(Π◦f ; q, t) =?



Arbitrary positroid varieties

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k} =
{k × n matrices of rank k}

(row operations)
.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f . [Knutson–Lam–Speyer (2013)]

Let M be a full rank k × n matrix with columns M1,M2, . . . ,Mn.
Extend this labeling periodically to (Mi )i∈Z by setting Mi+n := Mi .
Let fM : {1, 2, . . . , n} → {1, 2, . . . , n} be given by

fM(i) ≡ min{j > i | Mi ∈ Span(Mi+1, . . . ,Mj)} (mod n).

Turns out fM is always a permutation!
For an arbitrary permutation f ∈ Sn, let

Π◦f := {RowSpan(M) ∈ Gr(k, n) | fM = f }.
Let fk,n ∈ Sn be given by fk,n(i) ≡ i + k (mod n) for all i . Then

Π◦fk,n = Π◦k,n.
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Positroid links

A knot is an embedding of an oriented circle into R3.

A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.

Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.

If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.

If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

A knot is an embedding of an oriented circle into R3.
A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f , where each f is a permutation.

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


Positroid links

Associate a link Lf to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) for each i = 1, 2, . . . , n.
If i → j crosses i ′ → j ′ then i → j is above if and only if j < j ′.

f =

(
1 2 3 4 5 6 7
4 5 1 6 7 3 2

)
−→

1
2

3

4

5
6

7

[FPST17] S. Fomin, P. Pylyavskyy, E. Shustin, and D. Thurston. Morsifications and

mutations. arXiv:1711.10598.

[STWZ19] V. Shende, D. Treumann, H. Williams, and E. Zaslow. Cluster varieties from

Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf .

https://arxiv.org/abs/1711.10598


How to tell if two links are
isotopic?



One of these knots is not like the others

(A) (B)

(C) (D)



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0



One of these knots is not like the others

(A) P(L; a, q) = q4−q3+q2−q+1
a4q2

+q4−q3+2q2−q+1
a6q2 − q2+1

a8q

(B) P(L; a, q) = 1

(C) P(L; a, q) = 1 (D) P(L; a, q) = 1
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Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T-action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam (2020))

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

T acts freely on Π◦f ⇐⇒ f is a single cycle ⇐⇒ Lf is a knot.

Khovanov–Rozansky link homology yields a polynomial PKR(L; a, q, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.–Lam (2020))

Let f ∈ Sn be a single cycle. Then

P(Π◦f /T ; q, t) = top a-degree coefficient of PKR(Lf ; a, q, t).

Arbitrary f ∈ Sn: LHS = T -equivariant cohomology of Π◦
f with compact support.
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