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Binomial coefficients

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!

=
∑

P∈Pathsk,n−k

qarea(P).

Properties of
[n
k

]
q
:

symmetry: coefficients form a palindromic sequence;
unimodality: coefficients increase up to the middle, then decrease;
symmetry is easy, unimodality is hard.

Theorem (Sylvester (1878); conjectured by Cayley (1856))

The coefficients of
[n
k

]
q

form a unimodal sequence.

“I am about to demonstrate a theorem which has been waiting proof for
the last quarter of a century and upwards. [...] I accomplished with
scarcely an effort a task which I had believed lay outside the range of
human power.”

– J. J. Sylvester, 1878.
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Rational Catalan numbers: for 1 6 k 6 n such that gcd(k , n) = 1, let

Ck,n−k :=
1

n

(
n

k

)
.

Counts the number of Dyck paths inside a k × (n − k) rectangle.
Example: k = 3, n = 8, Ck,n−k = 7 :

Ck,n−k(q, t) = t4q0 + t3q1 + t2q2 + t2q1 + t1q3 + t1q2 + t0q4.

C ′′k,n−k(t) = t4 + t3 + t2 + t2 + t1 + t1 + t0.

C ′k,n−k(q) = q8 + q6 + q5 + q4 + q3 + q2 + 1.

Ck,n−k := 1
n

(n
k

)

= # Dyckk,n−k

C ′k,n−k(q) := 1
[n]q

[n
k

]
q

q = 1

C ′′k,n−k(t) :=
∑

P∈Dyckk,n−k
tarea(P)

t = 1

Ck,n−k(q, t) :=
∑

P∈Dyckk,n−k
tarea(P)qdinv(P)

t = 1/q q = 1
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q, t-symmetry and unimodality

C2,3(q, t) = (q + t)

C3,5(q, t) = (q4 + q3t + q2t2 + qt3 + t4)

+ (q2t + qt2)

C5,6(q, t) = (q10 + q9t + q8t2 + q7t3 + q6t4 + q5t5 + q4t6 + q3t7 + q2t8 + qt9 + t10)

+ (q8t + q7t2 + q6t3 + q5t4 + q4t5 + q3t6 + q2t7 + qt8)

+ (q7t + 2 q6t2 + 2 q5t3 + 2 q4t4 + 2 q3t5 + 2 q2t6 + qt7)

+ (q6t + q5t2 + 2 q4t3 + 2 q3t4 + q2t5 + qt6)

+ (q4t2 + q3t3 + q2t4)

Corollary (G.–Lam)

Let gcd(k , n) = 1. Then Ck,n−k(q, t) satisfies:

q, t-symmetry: coefficients in each row form a palindromic sequence;

unimodality: coefficients in each row increase up to the middle, then decrease.

[Haiman ’94], [Haiman ’02], [Mellit ’16], [Carlsson–Mellit ’18], [Gorsky–Hogancamp–Mellit ’21]

Unimodality was not previously known.
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Grassmannian

Gr(k, n;F) := {V ⊆ Fn | dim(V ) = k}.

Gr(k , n;F) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

[
1 1 0 −1
0 2 1 1

]
∈ Gr(2, 4;F)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.
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Grassmannian

Gr(k, n;F) := {V ⊆ Fn | dim(V ) = k}.
Gr(k , n;F) := {k × n matrices of rank k}/(row operations).

Question

How many points in Gr(k, n;Fq)?

What is the Poincaré polynomial of Gr(k , n;C)?

Point count: # Gr(k , n;Fq) =

[
n

k

]
q

.

Poincaré polynomial:
∑
i

t
i
2 dimH i (Gr(k, n;C)) =

[
n

k

]
t

.

Reason: Schubert decomposition.

Observation (Stanley (1980))

Symmetry and unimodality of
[n
k

]
q

follow from the hard Lefschetz theorem

for the cohomology of Gr(k , n;C).
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Poincaré polynomial:
∑
i

t
i
2 dimH i (Gr(k, n;C)) =

[
n

k

]
t

.

Reason: Schubert decomposition.

Observation (Stanley (1980))

Symmetry and unimodality of
[n
k

]
q

follow from the hard Lefschetz theorem

for the cohomology of Gr(k , n;C).



Grassmannian

Gr(k, n;F) := {V ⊆ Fn | dim(V ) = k}.
Gr(k , n;F) := {k × n matrices of rank k}/(row operations).

Question

How many points in Gr(k, n;Fq)?
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Given a variety

[of “Hodge–Tate type”]

X (F) = {x ∈ Fr | P1(x) = · · · = Pn(x) = 0, Q1(x) 6= 0, . . . ,Qm(x) 6= 0}.

Step 1. Compute point count #X (Fq) over Fq.

Step 2. Compute Poincaré polynomial P(X (C); t):=
∑

i t
i
2 dimH i (X (C)).

Step 3. Compute the mixed Hodge polynomial P(X ; q, t)
[Deligne splitting / weight filtration → canonical second grading on H∗(X )]

Mixed Hodge polynomial P(X ; q, t) ∈ N
[
q

1
2 , t

1
2

]

Point count #X (Fq) Poincaré polynomial P(X (C); t)

t
1
2 = −q−

1
2 q

1
2 = 1

Euler characteristic

q = 1 t
1
2 = −1

Question: Which variety should we choose?
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Definition (G.–Lam)

Let gcd(k , n) = 1. The Catalan variety is given by

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Example:

X ◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a = 1, ae − bd = 1,
f = 1, bf − ce = 1

}
.

#X ◦2,5(Fq) = q2 + 1, P(X ◦2,5(C); t) = 1 + t, P(X ◦2,5; q, t) = q + t.

Theorem (G.–Lam)

Euler characteristic = Ck,n−k

Point count #X ◦k,n(Fq) = C ′k,n−k(q)

q = 1

Poincaré polynomial P(X ◦k,n(C); t) = C ′′k,n−k(t)

t
1
2 = −1

Mixed Hodge polynomial P(X ◦k,n; q, t) = Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1
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Poincaré polynomial P(X ◦k,n(C); t) = C ′′k,n−k(t)

t
1
2 = −1

Mixed Hodge polynomial P(X ◦k,n; q, t) = Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1



Definition (G.–Lam)

Let gcd(k , n) = 1. The Catalan variety is given by

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Example:

X ◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a = 1, ae − bd = 1,
f = 1, bf − ce = 1

}
.

#X ◦2,5(Fq) = q2 + 1, P(X ◦2,5(C); t) = 1 + t, P(X ◦2,5; q, t) = q + t.

Theorem (G.–Lam)

Euler characteristic = Ck,n−k

Point count #X ◦k,n(Fq) = C ′k,n−k(q)

q = 1
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The Grassmannian

Gr(k, n;F) := {V ⊆ Fn | dim(V ) = k}.
Gr(k , n;F) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

[
1 1 0 −1
0 2 1 1

]
∈ Gr(2, 4;F)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.

Definition (Gelfand–Goresky–MacPherson–Serganova (1987))

V ∈ Gr(k, n;F) −→ Matroid MV := {I | ∆I (V ) 6= 0}.

Matroid stratification: Gr(k , n;F) =
⊔
M SM, where

SM = {V ∈ Gr(k , n;F) | MV =M}.

This is a horrible stratification. [Mnëv (1988)]

Definition (Lusztig (1994), Postnikov (2006))

The nonnegative Grassmannian is

Gr>0(k , n) := {V ∈ Gr(k , n;R) | all ∆I (V ) > 0 or all ∆I (V ) 6 0}.

[Lus94] G. Lusztig. Total positivity in reductive groups. In Lie theory and geometry, volume

123 of Progr. Math., pp. 531–568, Birkhäuser Boston, Boston, MA, 1994.

[Pos06] A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764.

https://arxiv.org/abs/math/0609764
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Plücker coordinates: for I ⊆ {1, 2, . . . , n} of size k,

∆I := k × k minor with column set I .

The ∆I ’s are defined up to common rescaling.

Definition (Gelfand–Goresky–MacPherson–Serganova (1987))

V ∈ Gr(k, n;F) −→ Matroid MV := {I | ∆I (V ) 6= 0}.
Matroid stratification: Gr(k , n;F) =

⊔
M SM, where

SM = {V ∈ Gr(k , n;F) | MV =M}.

This is a horrible stratification. [Mnëv (1988)]
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Topology of Gr>0(k , n)

[Lusztig (1998)]: Gr>0(k, n) is contractible.

[Rietsch (1999)], [Postnikov (2006)]:
each boundary cell (some ∆I > 0 and the rest ∆J = 0) is an open ball.

Conjecture (Lusztig (1998) / Fomin–Shapiro (2000) / Postnikov (2006))

the closure of each boundary cell is homeomorphic to a closed ball;

in particular, Gr>0(k, n) is homeomorphic to a closed ball.

[Williams (2007)], [Rietsch–Williams (2010)], [Hersh (2014)], . . .

Theorem (G.–Karp–Lam)

[GKL1] Gr>0(k, n) is homeomorphic to a closed ball.

[GKL2] The closure of each cell is homeomorphic to a closed ball.

[GKL1] P. Galashin, S. Karp, and T. Lam. The totally nonnegative Grassmannian is a ball.

Adv. Math., 397: 108123, 2022.

[GKL2] P. Galashin, S. Karp, and T. Lam. Regularity theorem for totally nonnegative flag

varieties. J. Amer. Math. Soc., 35(2):513–579, 2021.
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Combinatorics of positroids

Recall: V ∈ Gr(k, n;F) −→ Matroid MV := {I | ∆I (V ) 6= 0} (horrible).

Better: V ∈ Gr(k , n;F) −→ Permutation fV : {1, 2, . . . , n} → {1, 2, . . . , n}.
Definition (Knutson–Lam–Speyer (2013))

Label the columns of V by u1, u2, . . . , un ∈ Fk . Set

fV (i) ≡ min{j > i | ui ∈ Span(ui+1, . . . , uj)} (mod n).

Example [
1 1 1 0 −1 −1
0 1 1 0 1 0

]
u1 u2 u3 u4 u5 u6

[
1 1 1 0 −1 −1
0 1 1 0 1 0

]
u1 u2 u3 u4 u5 u6

[
1 1 1 0 −1 −1
0 1 1 0 1 0

]
u1 u2 u3 u4 u5 u6

fV =

(

1 2 3 4 5 6
5 3 6 4 2 1

)
.
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fV = fk,n ⇐⇒ ∆1,...,k ,∆2,...,k+1 . . . ,∆n,1,...,k−1 6= 0.
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Π◦k,n = {V ∈ Gr(k , n;F) | fV = fk,n}
= {∆1,...,k ,∆2,...,k+1, . . . ,∆n,1,...,k−1 6= 0}.

For all V ∈ Gr(k , n;F), fV is a permutation.
Positroid stratification: [Knutson–Lam–Speyer (2013)]

Gr(k, n;F) =
⊔
f

Π◦f , where Π◦f := {V ∈ Gr(k, n;F) | fV = f }.

Motivated by total positivity [Postnikov (2006)].
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Definition

Let gcd(k , n) = 1.
X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Example:

X ◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a = 1, ae − bd = 1,
f = 1, bf − ce = 1

}
.

Theorem (G.–Lam)

Euler characteristic = Ck,n−k

#X ◦k,n(Fq) = C ′k,n−k(q)

q = 1

P(X ◦k,n(C); t) = C ′′k,n−k(t)

t
1
2 = −1

P(X ◦k,n; q, t) = Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1



Definition

Let gcd(k , n) = 1.
Π◦k,n := {V ∈ Gr(k , n) | ∆1,...,k(V ),∆2,...,k+1(V ), · · · ,∆n,1,...,k−1(V ) 6= 0}.

Example:

Π◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a 6= 0, ae − bd 6= 0,
f 6= 0, bf − ce 6= 0

}
.

Theorem (G.–Lam)

Euler characteristic = 0

#Π◦k,n(Fq) = (q − 1)n−1C ′k,n−k(q)

q = 1

P(Π◦k,n(C); t) = (1 + t
1
2 )n−1C ′′k,n−k(t)

t
1
2 = −1

P(Π◦k,n; q, t) = (q
1
2 + t

1
2 )n−1Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1



Summary so far

V ∈ Gr(k , n;F) −→ Permutation fV : {1, 2, . . . , n} → {1, 2, . . . , n}.

Positroid stratification:

Gr(k, n;F) =
⊔
f

Π◦f , where Π◦f := {V ∈ Gr(k, n;F) | fV = f }.

Top-dimensional piece: fk,n(i) ≡ i + k (mod n),

Π◦k,n = {V ∈ Gr(k , n;F) | fV = fk,n}
= {∆1,...,k ,∆2,...,k+1, . . . ,∆n,1,...,k−1 6= 0}.

Theorem (G.-Lam)

Cohomology/point count of Π◦k,n is given by q, t-Catalan numbers.

Question

What about arbitrary Π◦f ?
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Cohomology/point count of Π◦k,n is given by q, t-Catalan numbers.

Question

What about arbitrary Π◦f ?
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A link is an embedding of several oriented circles into R3.
Knots/links are considered up to ambient isotopy.
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Π◦f , where each f is a permutation.
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Associate a link Lf (on a torus) to each permutation f ∈ Sn as follows:

Draw an arrow i → f (i) in the NE direction for each i = 1, 2, . . . , n.
Arrows with higher slope are drawn above arrows with lower slope.

f =

(
1 2 3 4 5 6
5 4 6 3 1 2

)
−→

1

2

3

4

5

6

Conclusion

For each permutation f ∈ Sn, get a variety Π◦f and a link Lf ⊆ R3.
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How to tell if two knots/links are
isotopic?



One of these knots is not like the others

(A) (B)

(C) (D)



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0



One of these knots is not like the others

(A) P(L; a, q) = q4−q3+q2−q+1
a4q2

+q4−q3+2q2−q+1
a6q2 − q2+1

a8q

(B) P(L; a, q) = 1

(C) P(L; a, q) = 1 (D) P(L; a, q) = 1



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Theorem (G.–Lam)

Let f ∈ Sn. Then the point count of Π◦f is given by

#Π◦f (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(Lf ; a, q)).

The group T ⊆ SLn of diagonal n × n matrices acts on Π◦f by rescaling columns.

Lemma

Let f ∈ Sn. The following are equivalent:

The T -action on Π◦f is free.

f is a single cycle.

The link Lf is a knot.

In this case, Π◦f /T is smooth and P(Π◦f ; q, t) =
(
q

1
2 + t

1
2

)n−1
· P(Π◦f /T ; q, t).
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T acts freely on Π◦f ⇐⇒ f is a single cycle ⇐⇒ Lf is a knot.

Khovanov–Rozansky link homology yields a polynomial PKR(L; a, q, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.–Lam)

Let f ∈ Sn be a single cycle. Then

P(Π◦f /T ; q, t) = top a-degree coefficient of PKR(Lf ; a, q, t).

Arbitrary f ∈ Sn: LHS = T -equivariant cohomology of Π◦
f with compact support.
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Cluster structure on positroid varieties

Theorem (G.–Lam)

For each f ∈ Sn, the coordinate ring C[Π◦f ] is a cluster algebra.

[Fomin–Zelevinsky (2002)], [Scott (2006)], [Muller–Speyer (2014)],

[Leclerc (2014)], [Serhiyenko–Sherman-Bennett–Williams (2019)]

Theorem (Lam–Speyer (2016))

C[X ] is a cluster algebra =⇒ P(X ; q, t) is q, t-symmetric and unimodal.

Corollary (G.–Lam)

For f ∈ Sn, P(Π◦f ; q, t) is q, t-symmetric and unimodal.

In particular, for gcd(k , n) = 1, the q, t-Catalan numbers Ck,n−k(q, t) are
q, t-symmetric and unimodal.

Thanks!
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