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Most interesting case: P(X; g, t) € N[q, t] (i.e., odd cohomology vanishes).

Question: Which variety should we choose?
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Cool reason: Mixed Hodge structure is pure, i.e., the mixed Hodge
polynomial P(Gr(k, n); g, t) contains no new information.
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e Rational Catalan numbers: for 1 < k < n such that ged(k,n) =1, let

1/n
Ckn—k = - (k)

e Counts the number of Dyck paths inside a k x (n — k) rectangle.
Example: k =3, n =38, Gy pk =17
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Definition (G.—Lam (2020))

Let gcd(k, n) = 1. The Catalan variety is given by
Xen ={V €Gr(k,n) [ A1, «(V)=2D2 s+1(V) =" =A0p1 xk-1(V) =1}

Example:

o 1 0 a b c\| —a=1, ae—bd=1,
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General picture

Gr(k, m F) = {V C " | dim(V) = K} {k x n matrices c.)f rank k}
(row operations)
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e Gr(k,n) = |_| M7 is stratified into open positroid varieties 7 defined
f

by cyclic rank conditions on k X n matrices. [Knutson-Lam—Speyer '13]

The top open positroid variety M}, | C Gr(k,n) is
My, :=A{V e€Gr(k,n) | A1 «(V), Do k+1(V), -+ s Apa, k—1(V) # 0}

o When gcd(k, n) = 1, the torus T = (C*)"~! of diagonal matrices acts
freely on 1} | by column rescaling, with quotient X/ .

e Open positr()id varieties inside Gr(k, n) are special cases of
open Richardson varieties inside the flag variety SL, /B.
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e Let G =SL,, B, B_ = subgroups of upper/lower triangular matrices.

e G/B = flag variety.
@ Open Richardson varieties: for v<w € S,, Ry, := (BwB N B_vB)/B.
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e Let G =SL,, B, B_ = subgroups of upper/lower triangular matrices.
e G/B = flag variety.
@ Open Richardson varieties: for v<w € S,, Ry, := (BwB N B_vB)/B.
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e Let G =SL,, B, B_ = subgroups of upper/lower triangular matrices.
o G/B = flag variety.
@ Open Richardson varieties: for v<w € S,, Ry, := (BwB N B_vB)/B.
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e the only potentially nonzero entries are to the right and above a 1;
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o take the permutation matrix of v;
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e Let G =SL,, B, B_ = subgroups of upper/lower triangular matrices.
o G/B = flag variety.
@ Open Richardson varieties: for v<w € S,, Ry, := (BwB N B_vB)/B.
o take the permutation matrix of v;
e the only potentially nonzero entries are to the right and above a 1;
e place a strawberry (¥ for each 1 in the permutation matrix of w;
o the rank of any NE submatrix must be equal to the number of
strawberries it contains.

o dimRy , = {(w) — £(v).
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Let G =SL,, B, B_ = subgroups of upper/lower triangular matrices.
G /B = flag variety.
Open Richardson varieties: for v <w € S, Ry, := (BwB N B_vB)/B.
take the permutation matrix of v;

e the only potentially nonzero entries are to the right and above a 1;

e place a strawberry (¥ for each 1 in the permutation matrix of w;

o the rank of any NE submatrix must be equal to the number of

strawberries it contains.

dim Ry, = {(w) — £(v).
T-action on Ry, is free iff c(wv™) = 1, where ¢ denotes the
number of cycles.

Theorem (G.—Lam (2020))

If c(wv™1) =1 then
P(RS,,/Tiq,t) = 772
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@ Given u € S, choose a reduced word u = s;;s}, - - - 5j, .

@ Make each crossing into a positive braid crossing, get braid 3(u).
e For v < w, set By, = B(w) B(v) L.

4 4 4 4
3 3 3N/ /3
2 2 2 R/ 2
1 1 1 1
U = $)53515S3 positive braid lift 5(u)
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1 i




Given u € 5, choose a reduced word u = s;sj, - - - 5

x

Make each crossing into a positive braid crossing, get braid 5(u).

For v < w, set By, = B(w) - B(v)~ L.

The rainbow closure 3, ,, is called a Richardson link.
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Given u € S, choose a reduced word u = s;; s}, - - - 5j,.

Make each crossing into a positive braid crossing, get braid 5(u).
For v < w, set By, = B(w) - B(v)~ L.
The rainbow closure BAV’W is called a Richardson link.

When c(wv1) =1, BA\,’W is a knot, i.e., has a unique connected
component.

4 4
3~/ //\3
QR/ 2
1 1

U = 555351553 positive braid lift 5(u)

= N W D
= N W b

3 O
3~/ J/ /_/\:
N — /
1 : —1

braid By = B(w) - B(v) ! Richardson knot fy..
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#Ry (Fq) = (q — 1)"1 . (top a-degree coefficient of P(By.w; a,q)).

o]

Lemma: T acts freely on Ry, <= c(wv 1) =1 By.w is a knot.

Khovanov—Rozansky link homology yields a polynomial Pxr(L; a, g, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.—Lam (2020))
Let v < w with c(wv~t) = 1. Then
P(Ry../T:q,t) = top a-degree coefficient of Per(Bv.wi a, q, t).




Given a link L, the HOMFLY polynomial P(L; a, g) is defined by
P(O)=1 and aP(Ly)—alP(L_)= (q% - q_%> P(Lp) , where

XXX

Ly L Lo

Theorem (G.—Lam (2020))
Let v < w. Then the point count of R

o
v,w

#Ry (Fq) = (q — 1)"1 . (top a-degree coefficient of P(By.w; a,q)).

is given by

Lemma: T acts freely on Ry, <= c(wv 1) =1 By.w is a knot.

Khovanov—Rozansky link homology yields a polynomial Pxr(L; a, g, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.—Lam (2020))

Let v < w with c(wv~t) = 1. Then
P(Ry w/T:q,t) = top a-degree coefficient of Per(Bv.wi a, q, t).

Arbitrary v < w: LHS = T-equivariant cohomology of Ry ,, with compact support.
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cluster algebras?
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Cluster algebras

@ Start with a quiver Q with some cluster variables labeling its vertices.
@ A mutation at a vertex produces a new quiver and a new cluster variable.
@ Mutate in all possible directions. Get lots of cluster variables.

o Cluster algebra A(Q) := C|cluster variables].

b d
Ky
? a
abx + cd
< / y

[Fomin—Zelevinsky '02]
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\

g, t-unimodality of Cy ,_k(qg, t) was not previously known!  [Haiman '94],
[Haiman '02], [Mellit '16], [Carlsson—Mellit '18], [Gorsky—Hogancamp—Mellit '21]
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[Muller '13] introduced a nice class of locally acyclic quivers.
Cluster algebras are hard. Locally acyclic cluster algebras are easy.

Theorem (G.—Lam (2019) + Muller=Speyer (2014))

Each % is a locally acyclic cluster variety. That is, the coordinate ring
C[N%] is a cluster algebra A(Q), where Q is locally acyclic.

[Muller-Speyer '14], [Serhiyenko—Sherman-Bennett—Williams '19], [Leclerc '14]
Theorem (Lam-Speyer (2016))

Suppose that X is a locally acyclic cluster variety. Then P(X; q,t) is
g, t-symmetric and q, t-unimodal.

Theorem (G.—Lam—Sherman-Bennett-Speyer (2022+))

R, is a locally acyclic cluster variety.

v,w

Partial results: [Leclerc '14], [Ingermanson '19], [Ménard '22]
Parallel work: [Casals—Gorsky—Gorsky—Le—Shen—Simental '22+]
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Positroid quivers

@ Each M3 corresponds to a planar bicolored graph G. [Postnikov '06]
@ The planar dual of G is naturally a quiver Q:

e vertices of Q = faces of G;

e arrows of @ = black-white edges of G.
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Consider Ry, for v =id. We have dim Ry , = {(w).

W = 5155535054535025152555453.
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[Berenstein—Fomin—Zelevinsky '05]
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Richardson quivers: case v = id

Consider Ry, for v =id. We have dim Ry , = {(w).

W = 5155535054535025152555453.

@ vertices of @ = chambers which are bounded from the right;
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Consider Ry, for v =id. We have dim Ry , = {(w).
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Richardson quivers: case v = id

Consider Ry, for v =id. We have dim Ry , = {(w).

W = 5155535054535025152555453.

@ vertices of @ = chambers which are bounded from the right;

@ arrows of @ = black-white edges of the planar bicolored graph
6 6
> -\ \ 5
4 .\- 4
3 3
i
; l/ -\/ ?
1 1

[Berenstein—Fomin—Zelevinsky '05]
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Richardson quivers: previous constructions

Consider Ry, for arbitrary v < w. We have dim Ry, = {(w) — £(v).

@ Associate a module over the A, preprojective algebra to each chamber.
vertices of @ = indecomposable summands of these modules;
arrows of Q = irreducible morphisms between these modules.
[Leclerc '14] showed that A(Q) is a subalgebra of C[Ry ,] and
conjectured that they are equal.

[Ingermanson '19] gave a different construction and showed that
C[RV »] is an upper cluster algebra.
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Richardson quivers: our construction

Consider Ry, for arbitrary v < w. We have dim Ry, = {(w) — £(v).
V = 5351525554, W = 5155535254535025152555453.
@ bicolored graph: find rightmost subexpression for v inside w;
@ vertices of @ = "“faces” of the bicolored graph;
@ each “face” starts at a bridge and propagates to the left according to:
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@ arrows = black-white edges, directions = conjugate surfaces of [Goncharov—Kenyon "13].
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Thanks!

Consider Ry, for arbitrary v < w. We have dim Ry, = {(w) — £(v).
V = 5351525554, W = 5155535254535025152555453.
@ bicolored graph: find rightmost subexpression for v inside w;
@ vertices of @ = "faces” of the bicolored graph;
@ each “face” starts at a bridge and propagates to the left according to:

7 0 A0 0 T

@ arrows = black-white edges, directions = conjugate surfaces of [Goncharov—Kenyon "13].
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