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Step 1. Choose a variety

[of “Hodge–Tate type”]

X (F) = {x ∈ Fk | P1(x) = · · · = Pn(x) = 0, Q1(x) 6= 0, . . . ,Qm(x) 6= 0}.

Step 2. Compute point count #X (Fq) over Fq.

Step 3. Compute Poincaré polynomial P(X (C); t):=
∑

i t
i
2 dimH i (X (C)).

Step 4. Compute the mixed Hodge polynomial P(X ; q, t)
[Deligne splitting / weight filtration → canonical second grading on H∗(X )]

Mixed Hodge polynomial P(X ; q, t) ∈ N
[
q

1
2 , t

1
2

]

Point count #X (Fq) Poincaré polynomial P(X (C); t)

t
1
2 = −q−

1
2 q

1
2 = 1

Euler characteristic

q = 1 t
1
2 = −1

Most interesting case: P(X ; q, t) ∈ N[q, t] (i.e., odd cohomology vanishes).

Question: Which variety should we choose?
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Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k}

Question

How many points in Gr(k , n;Fq)?

What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!

=
∑

λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.

Poincaré polynomial:
∑
i

t
i
2 dimH i (Gr(k , n;C)) =

[
n

k

]
t

.

Lame reason: Schubert decomposition.

Cool reason: Mixed Hodge structure is pure, i.e., the mixed Hodge
polynomial P(Gr(k , n); q, t) contains no new information.

Euler characteristic:

(
n

k

)
.
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What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!
=

∑
λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.
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What is the Poincaré polynomial of Gr(k, n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!
=

∑
λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.
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Poincaré polynomial:
∑
i

t
i
2 dimH i (Gr(k , n;C)) =

[
n

k

]
t

.

Lame reason: Schubert decomposition.

Cool reason: Mixed Hodge structure is pure, i.e., the mixed Hodge
polynomial P(Gr(k , n); q, t) contains no new information.

Euler characteristic:

(
n

k

)
.



Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k}
[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q[

n

k

]
q

:=
[n]q!

[k]q![n − k]q!
=

∑
λ⊆k×(n−k)

q|λ|.

Point count: # Gr(k, n;Fq) =

[
n

k

]
q

.
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Rational Catalan numbers: for 1 6 k 6 n such that gcd(k , n) = 1, let

Ck,n−k :=
1

n

(
n

k

)
.

Counts the number of Dyck paths inside a k × (n − k) rectangle.
Example: k = 3, n = 8, Ck,n−k = 7 :

C ′′k,n−k(t) = t4 + t3 + t2 + t2 + t1 + t1 + t0.

C ′k,n−k(q) = q8 + q6 + q5 + q4 + q3 + q2 + 1.

Ck,n−k := 1
n

(n
k

)

= # Dyckk,n−k

C ′k,n−k(q) := 1
[n]q

[n
k

]
q

q = 1

C ′′k,n−k(t) :=
∑

P∈Dyckk,n−k
tarea(P)

t
1
2 = −1

Ck,n−k(q, t) :=
∑

P∈Dyckk,n−k
tarea(P)qdinv(P)

t
1
2 = −q−

1
2 q

1
2 = 1
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The Catalan variety

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k}

=
{k × n matrices of rank k}

(row operations)
.

For I of size k , let ∆I (V ) be the maximal minor of V with column set I .

Definition (G.–Lam (2020))

Let gcd(k , n) = 1. The Catalan variety is given by

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Example:

X ◦2,5 =

{
RowSpan

(
1 0 a b c
0 1 d e f

)∣∣∣∣ −a = 1, ae − bd = 1,
f = 1, bf − ce = 1

}
.

#X ◦2,5(Fq) = q2 + 1, P(X ◦2,5(C); t) = 1 + t, P(X ◦2,5; q, t) = q + t.

Theorem (G.–Lam (2020))

Euler characteristic = Ck,n−k

Point count #X ◦k,n(Fq) = C ′k,n−k(q)

q = 1

Poincaré polynomial P(X ◦k,n(C); t) = C ′′k,n−k(t)

t
1
2 = −1

Mixed Hodge polynomial P(X ◦k,n; q, t) = Ck,n−k(q, t)

t
1
2 = −q−

1
2 q

1
2 = 1
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General picture

Gr(k , n;F) := {V ⊆ Fn | dim(V ) = k} =
{k × n matrices of rank k}

(row operations)
.

X ◦k,n := {V ∈ Gr(k, n) | ∆1,...,k(V ) = ∆2,...,k+1(V ) = · · · = ∆n,1,...,k−1(V ) = 1}.

Gr(k , n) =
⊔
f

Π◦f is stratified into open positroid varieties Π◦f defined

by cyclic rank conditions on k × n matrices. [Knutson–Lam–Speyer ’13]

Example

The top open positroid variety Π◦k,n ⊆ Gr(k , n) is
Π◦k,n := {V ∈ Gr(k , n) | ∆1,...,k(V ),∆2,...,k+1(V ), · · · ,∆n,1,...,k−1(V ) 6= 0}.

When gcd(k , n) = 1, the torus T ∼= (C∗)n−1 of diagonal matrices acts
freely on Π◦k,n by column rescaling, with quotient X ◦k,n.
Open positroid varieties inside Gr(k , n) are special cases of
open Richardson varieties inside the flag variety SLn /B.
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Let G = SLn, B,B− = subgroups of upper/lower triangular matrices.

G/B = flag variety.
Open Richardson varieties: for v 6 w ∈ Sn, R◦v ,w := (BwB ∩ B−vB)/B.

take the permutation matrix of v ;
the only potentially nonzero entries are to the right and above a 1;

place a strawberry
X

for each 1 in the permutation matrix of w ;
the rank of any NE submatrix must be equal to the number of
strawberries it contains.

dimR◦v ,w = `(w)− `(v).
T -action on R◦v ,w is free iff c(wv−1) = 1, where c denotes the
number of cycles.Example

Let v =

(
1 2 3 4 5
3 2 1 5 4

)
, w =

(
1 2 3 4 5
5 4 3 2 1

)
.

R◦v ,w
∼=




1

1
1

1
1


∣∣∣∣∣∣∣∣∣∣
f 6= 0, ce − bf 6= 0,
a 6= 0, bd − ae 6= 0


∼= Π◦2,5.

Theorem (G.–Lam (2020))

If c(wv−1) = 1 then
P(R◦v ,w/T ; q, t) = ???
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Given u ∈ Sn, choose a reduced word u = si1si2 · · · si` .

Make each crossing into a positive braid crossing, get braid β(u).

For v 6 w , set βv ,w := β(w) · β(v)−1.

The rainbow closure β̂v ,w is called a Richardson link.

When c(wv−1) = 1, β̂v ,w is a knot, i.e., has a unique connected
component.
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Given a link L, the HOMFLY polynomial P(L; a, q) is defined by

P( ) = 1 and

aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0) , where

L+ L− L0

Theorem (G.–Lam (2020))

Let v 6 w . Then the point count of R◦v ,w is given by

#R◦v ,w (Fq) = (q − 1)n−1 · (top a-degree coefficient of P(β̂v ,w ; a, q)).

Lemma: T acts freely on R◦v ,w ⇐⇒ c(wv−1) = 1 ⇐⇒ β̂v ,w is a knot.

Khovanov–Rozansky link homology yields a polynomial PKR(L; a, q, t)
which specializes to the HOMFLY polynomial P(L; a, q).

Theorem (G.–Lam (2020))

Let v 6 w with c(wv−1) = 1. Then

P(R◦v ,w/T ; q, t) = top a-degree coefficient of PKR(β̂v ,w ; a, q, t).

Arbitrary v 6 w : LHS = T -equivariant cohomology of R◦
v ,w with compact support.
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What does it all have to do with
cluster algebras?



Cluster algebras

Start with a quiver Q with some cluster variables labeling its vertices.
A mutation at a vertex produces a new quiver and a new cluster variable.

Mutate in all possible directions. Get lots of cluster variables.
Cluster algebra A(Q) := C[cluster variables].
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y

[Fomin–Zelevinsky ’02]
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[Muller ’13] introduced a nice class of locally acyclic quivers.

Cluster algebras are hard. Locally acyclic cluster algebras are easy.

Theorem (G.–Lam (2019) + Muller–Speyer (2014))

Each Π◦f is a locally acyclic cluster variety.

That is, the coordinate ring
C[Π◦f ] is a cluster algebra A(Q), where Q is locally acyclic.
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Positroid quivers

Each Π◦f corresponds to a planar bicolored graph G . [Postnikov ’06]

The planar dual of G is naturally a quiver Q:
vertices of Q = faces of G ;
arrows of Q = black-white edges of G .
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Richardson quivers: case v = id

Consider R◦v ,w for v = id. We have dimR◦v ,w = `(w).

w = s1s5s3s2s4s3s2s1s2s5s4s3.

vertices of Q = chambers which are bounded from the right;
arrows of Q = black-white edges of the planar bicolored graph
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Richardson quivers: previous constructions

Consider R◦v ,w for arbitrary v 6 w . We have dimR◦v ,w = `(w)− `(v).

Associate a module over the An preprojective algebra to each chamber.

vertices of Q = indecomposable summands of these modules;
arrows of Q = irreducible morphisms between these modules.
[Leclerc ’14] showed that A(Q) is a subalgebra of C[R◦v ,w ] and
conjectured that they are equal.
[Ingermanson ’19] gave a different construction and showed that
C[R◦v ,w ] is an upper cluster algebra.
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Associate a module over the An preprojective algebra to each chamber.

vertices of Q = indecomposable summands of these modules;
arrows of Q = irreducible morphisms between these modules.
[Leclerc ’14] showed that A(Q) is a subalgebra of C[R◦v ,w ] and
conjectured that they are equal.
[Ingermanson ’19] gave a different construction and showed that
C[R◦v ,w ] is an upper cluster algebra.
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Richardson quivers: our construction

Consider R◦v ,w for arbitrary v 6 w . We have dimR◦v ,w = `(w)− `(v).

v = s3s1s2s5s4, w = s1s5s3s2s4s3s2s1s2s5s4s3.

bicolored graph: find rightmost subexpression for v inside w ;
vertices of Q = “faces” of the bicolored graph;
each “face” starts at a bridge and propagates to the left according to:

arrows = black-white edges, directions = conjugate surfaces of [Goncharov–Kenyon ’13].
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Thanks!
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