Existence of a persistent hub in the convex preferential attachment model

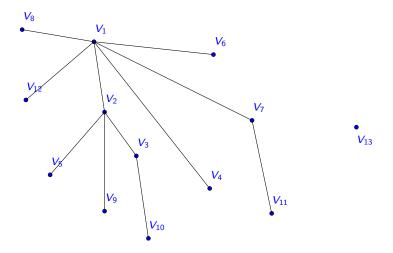
Pavel Galashin

St Petersburg State University

pgalashin@gmail.com

03.07.2014

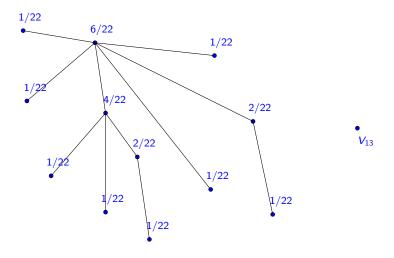
Barabási-Albert random graph



Pavel Galashin (SPbSU)

03.07.2014 2 / 13

Barabási-Albert random graph



Pavel Galashin (SPbSU)

- ∢ 🗇 እ

E ▶.

Question

Is there always a vertex which has the maximal degree for all but finitely many steps?

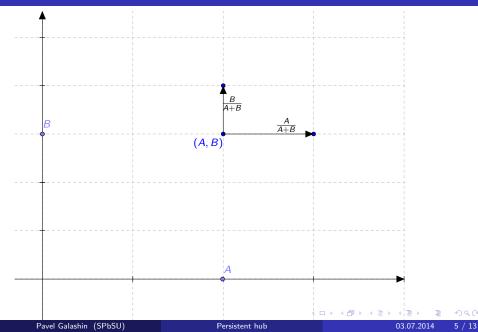
Definition

Such vertex is called a persistent hub.

Theorem

A persistent hub appears with probability 1.

Two-dimensional random walk



Lemma

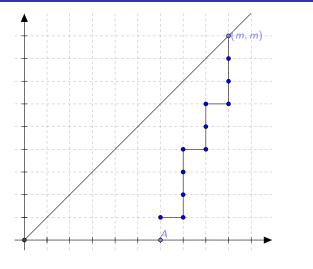
Let (A_1, B_1) and (A_2, B_2) be two points. Then for any path S connecting these points its probability equals

$$\mathbb{P}(S) = \frac{A_1 \cdot (A_1 + 1) \cdot ... \cdot (A_2 - 1) \cdot B_1 \cdot (B_1 + 1) \cdot ... \cdot (B_2 - 1)}{(A_1 + B_1) \cdot (A_1 + B_1 + 1) \cdot ... \cdot (A_2 + B_2 - 1)}$$

Remark

This probability does not depend on S.

The probability of crossing the diagonal



 $\mathbb{P}[(A,1) \rightarrow \text{ diagonal }] \leq P(A)/2^{A}.$

Finite number of leaders

Lemma

$$\mathbb{P}[(A,1) \rightarrow diagonal] \leq P(A)/2^{A}.$$

Lemma

The degree of the first vertex after n-th step grows like $C\sqrt{n}$ for some random non-zero constant C.

Corollary

For almost all vertices their degree will always be lower than the degree of the first vertex, because the series

$$\sum_{n=1}^{\infty} \frac{P(C\sqrt{n})}{2^{C\sqrt{n}}}$$

is convergent for any C.

Proposition

If our random walk starts at the point (A, 1) then the quantity $A_k/(A_k + B_k)$ tends to some random variable H(A) as k tends to infinity. Moreover, H(A) has a beta probability distribution:

 $H(A) \sim \textit{Beta}(1, A)$.

Corollary

The random walk crosses the diagonal only finitely many times.

Generalized model

Probability of assigning new edge to a vertex of degree k is proportional to $\mathcal{W}(k)$ for some weight function $\mathcal{W} : \mathbb{N} \to \mathbb{R}_{>0}$.

Linear model

$$\mathcal{W}(k) = k + \beta, \ \beta > -1.$$

Convex model

 $\mathcal{W}(k)$ is convex and unbounded.

Theorem

The persistent hub appears with probability 1 also in the linear and convex models.

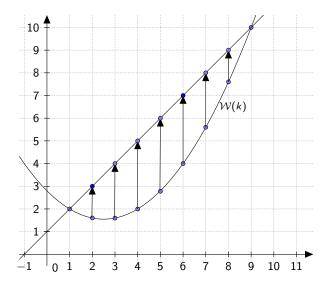
→ Ξ →

- ∢ 🗇 እ

Model	Total weight of the vertices is random	All pathes are equally likely	Beta limiting distribution
Basic	No	Yes	Yes
Linear	No	Yes	Yes
Convex	Yes	No	No

* ロ > * 個 > * 注 > * 注 >

Comparison with the linear model



Pavel Galashin (SPbSU)

03.07.2014 12 / 13

- ₹ 🗦 🕨

Thank you!

・ロト ・日下 ・ 日下