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Part 1: Ising model



Ising model: definition

Definition

A planar Ising network is a pair (G, J) where:
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Definition

A planar Ising network is a pair (G, J) where:

e G=(V,E) is a planar graph embedded in a disk
e J: E — R+ is a function

Spin configuration: a map o : V — {£1}
Ising model: probability measure on {+1}V

wt(o):= H exp(J{uvv}aua\,)
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Ising model: definition

Definition

A planar Ising network is a pair (G, J) where:

e G=(V,E) is a planar graph embedded in a disk
e J: E — R+ is a function

Spin configuration: a map o : V — {£1}
Ising model: probability measure on {+1}V

wt(o):= H exp J{u V}auav)
{u,v}eE

exp (Jo, + Jey + Jog + Jeg)
exp (Jog + Jey + Jog + Je; + Joy)
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Ising model: definition

Definition

A planar Ising network is a pair (G, J) where:

e G=(V,E) is a planar graph embedded in a disk
e J: E — R+ is a function

Spin configuration: a map o : V — {£1}
Ising model: probability measure on {+1}V

wt(o):= H exp(J{uyv}auav)
{uv}€E

Partition function: Z:= Z wt(o)
oe{x1}V

exp (Jo, + Jey + Jog + Jeg)

t =
wi() exp (Jo, + Joy + Jeu + Joy + Jeg)
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Ising model: definition

Definition

A planar Ising network is a pair (G, J) where:

e G=(V,E) is a planar graph embedded in a disk
e J: E — R+ is a function

Spin configuration: a map o : V — {£1}
Ising model: probability measure on {+1}V

wt(o):= H exp(J{uvv}aua\,)
{uv}€E

Partition function: Z:= Z wt(o)
oe{x1}V

exp (Jo, + Jey + Jog + Jeg)
exp (Jog + Jey + Jog + Je; + Joy)

wt(o)

wt(o) = 7

Prob(o):=
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Ising model: correlation functions

Definition

For u,v € V, their correlation is (¢,0,) := Prob(c, = 0,) — Prob(o, # o\).
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For u,v € V, we have (c,0,) > 0.
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Ising model: correlation functions

Definition

For u,v € V, their correlation is (¢,0,) := Prob(c, = 0,) — Prob(o, # 0\).

Theorem (Griffiths (1967))

For u,v € V, we have (c,0,) > 0.

Theorem (Kelly—Sherman (1968))

For u,v,w € V, we have (oc,04) > (0,0y) - (0,ow).
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Ising model: correlation functions

Definition

For u,v € V, their correlation is (5,0,) := Prob(c, = 0,) — Prob(o, # o).

Theorem (Griffiths (1967))

For u,v € V, we have (c,0,) > 0.

Theorem (Kelly—Sherman (1968))

For u,v,w € V, we have (oc,04) > (0,0y) - (0,ow).

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.
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Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity
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Ising model: correlation functions

Definition

For u,v € V, their correlation is (5,0,) := Prob(c, = 0,) — Prob(o, # o).

Theorem (Griffiths (1967))

For u,v € V, we have (c,0,) > 0.

Theorem (Kelly—Sherman (1968))

For u,v,w € V, we have (oc,04) > (0,0y) - (0,ow).

Question (Kelly-Sherman (1968))

Describe correlations of the Ising model by inequalities.

M. Lis (2017): more inequalities using objects from total positivity
Theorem (G.—Pylyavskyy (2018))

Describe boundary correlations of the planar Ising model by inequalities.
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920
@ Ising (1925): not a good model for ferromagnetism
Q: how does |F| depend on T°?
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): not a good model for ferromagnetism
Q: how does |F| depend on T°?

My

C

-

IF

Fl4

B

Curie point (P. Curie, 1895)

f

TO

Pavel Galashin (MIT)

Ising model and total positivity

MIT, 11/01/2018

6/ 30



Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D == not a good model for
ferromagnetism
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and set all J; := % for some temperature T € R.
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D = not a good model for
ferromagnetism

Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.

o Peierls (1937): phase transition in Z9 for d > 2

@ Kramers—Wannier (1941): critical temperature % = Llog (V2+1) for Z2
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Ising model: phase transition

Let G C Z9 be a (2N + 1) x (2N + 1) square
and J. = % for some fixed T € R-g.
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Let G C Z9 be a (2N + 1) x (2N + 1) square
and J. = % for some fixed T € R-g.
Suppose that o, = +1 for all u € 9G.
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Ising model: phase transition

Let G C Z9 be a (2N + 1) x (2N + 1) square
and J. = % for some fixed T € R-g.

Suppose that o, = +1 for all u € 9G.

Let v be the vertex in the middle of the square.
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Ising model: phase transition

Let G C Z9 be a (2N + 1) x (2N + 1) square
and J. = % for some fixed T € R-g.

Suppose that o, = +1 for all u € 9G.

Let v be the vertex in the middle of the square.

Define the spontaneous magnetization
M(T) = Nlim (Prob(o, = +1) — Prob(o, = —1))
—00
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D = not a good model for
ferromagnetism

Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.

o Peierls (1937): phase transition in Z9 for d > 2

@ Kramers—Wannier (1941): critical temperature % = Llog (V2 + 1) for Z2
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Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.
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@ Kramers—Wannier (1941): critical temperature T% = %Iog (ﬁ+ 1) for Z2
@ Onsager, Kaufman, Yang (1944-1952): exact expressions for the free
energy and spontaneous magnetization

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018 9 /30



Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D = not a good model for
ferromagnetism

Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.

o Peierls (1937): phase transition in Z9 for d > 2
1

@ Kramers—Wannier (1941): critical temperature T% = 5 log (V2 + 1) for Z2
@ Onsager, Kaufman, Yang (1944-1952): exact expressions for the free
energy and spontaneous magnetization

@ Belavin—Polyakov—Zamolodchikov (1984): conjectured conformal
invariance of the scaling limit at T = T for Z?
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Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D = not a good model for
ferromagnetism

Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.

o Peierls (1937): phase transition in Z9 for d > 2

@ Kramers—Wannier (1941): critical temperature T% = %Iog (V2 + 1) for Z2
@ Onsager, Kaufman, Yang (1944-1952): exact expressions for the free
energy and spontaneous magnetization

@ Belavin—Polyakov—Zamolodchikov (1984): conjectured conformal
invariance of the scaling limit at T = T for Z?

@ Smirnov, Chelkak, Hongler, Izyurov, ... (2010-2015): proved conformal
invariance and universality of the scaling limit at T = T, for Z?
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Ising model: boundary correlations

Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.

b4 bl

bs be
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Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.
Correlation: (o,0,) := Prob(c, = 0,) — Prob(c, # o).
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Ising model: boundary correlations

Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.

Correlation: (o,0,) := Prob(c, = 0,) — Prob(c, # o).

Definition

Boundary correlation matrix: M(G, J) = (my)];_;, where mj; := (op,04,).
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Definition

Boundary correlation matrix: M(G,J) = (my)];_;, where mj; := (0p,04,).

bs by

M(G, J) is a symmetric matrix
with 1's on the diagonal
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Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.
Correlation: (o,0,) := Prob(c, = 0,) — Prob(c, # o).

Definition

Boundary correlation matrix: M(G,J) = (my)];_;, where mj; := (0p,04,).

bs by
M(G, J) is a symmetric matrix
with 1's on the diagonal
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Lives inside R(3)
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Ising model: boundary correlations

Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.
Correlation: (o,0,) := Prob(c, = 0,) — Prob(c, # o).

Definition

Boundary correlation matrix: M(G,J) = (my)];_;, where mj; := (0p,04,).

b3 by
M(G, J) is a symmetric matrix
with 1's on the diagonal
ba by and nonnegative entries
Lives inside R(2)

bs be

Xy ={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}
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Ising model: boundary correlations

Recall: G is embedded in a disk. Let by,..., b, be the boundary vertices.
Correlation: (o,0,) := Prob(c, = 0,) — Prob(c, # o).

Definition

Boundary correlation matrix: M(G,J) = (my)];_;, where mj; := (0p,04,).

bs by
M(G, J) is a symmetric matrix
with 1's on the diagonal
ba by and nonnegative entries

Lives inside R(3)
bs be

Xn = {M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n X n matrices.
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Boundary correlations: an example for n = 2

bre ob; by @t |
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Boundary correlations: an example for n = 2

bre ob; by @t |

1 m
M(G, J) = (mlz 112>
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Boundary correlations: an example for n = 2

bre ob; by @t |

2exp(Je) — 2exp(—Je)
2exp(Je) + 2exp(—Je)

1
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Boundary correlations: an example for n = 2

bre ob; by @t |

2exp(Je) — 2exp(—Je)
2exp(Je) + 2exp(—Je)

1 mio
mio 1

M(G,J) = ( >, mi = (0102) =

Je=0 | Je€(0,00) | Je =0
mio =0 m126(0,1) mp =1
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Boundary correlations: an example for n = 2

bre ob; by @t |

2exp(Je) — 2exp(—Je)
2exp(Je) + 2exp(—Je)

1 mio
mio 1

M(G,J) = ( >, mi = (0102) =

Je=0 | Je€(0,00) | Je =0
mio =0 m126(0,1) mp =1

e We have X, 2 [0,1) and X, = [0, 1].
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Boundary correlations: an example for n = 2

bre ob; by @t |

2exp(Je) — 2exp(—Je)
2exp(Je) + 2exp(—Je)

1 mio
mio 1

M(G,J) = ( >, mi = (0102) =

Je=0 | Je€(0,00) | Je =0
mio =0 m126(0,1) mp =1

e We have X, 2 [0,1) and X, = [0, 1].

@ X, is neither open nor closed inside RE).
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Boundary correlations: an example for n = 2

byt ob, by @t | byeeby
(1 m B _ 2exp(Je) — 2exp(—Je)
M6 = (") el = S e

Je=0 | Je€(0,00) | Je =0
mio =0 m126(0,1) mp =1

e We have X, 2 [0,1) and X, = [0, 1].
@ X, is neither open nor closed inside RE).
e X, is obtained from X, by allowing Je. = oo (i.e., contracting edges).
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Part 2: Total positivity



The totally nonnegative (TNN) Grassmannian

Gr(k.n) = {W C R" | dim(W) = k}.
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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).
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The totally nonnegative (TNN) Grassmannian

Gr(k, n) := {W C R" | dim(W) = k}.

Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

110 -1
RowSpan <O > 1 1 )6 Gr(2,4)
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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

110 -1
RowSpan <O > 1 1 )6 Gr(2,4)

Pliicker coordinates: for | C [n] := {1,2,...,n} of size k,

A := k x k minor with column set /.
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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

RowSpan <1 10 A13 =1 A1p=2 Apu=1

1
021 1 >€Gr(2’4) A4 =3 Az =1 Dp3=1.

Pliicker coordinates: for | C [n] := {1,2,...,n} of size k,

A := k x k minor with column set /.

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018 13 / 30



The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

RowSpan <1 10 A13 =1 A1p=2 Apu=1

1
021 1 >€Gr(2’4) A4 =3 Az =1 Dp3=1.

Pliicker coordinates: for | C [n] := {1,2,...,n} of size k,

A := k x k minor with column set /.
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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

RowSpan <1 10 A13 =1 A1p=2 Apu=1

1
021 1 )6Gr(2’4) A4 =3 Az =1 Dp3=1.

Pliicker coordinates: for | C [n] := {1,2,...,n} of size k,

A := k x k minor with column set /.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is
Gr>o(k,n) :={W € Gr(k,n) | A/ (W) >0 for all /}.
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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W C R" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).

Example:

RowSpan <1 10 A13 =1 Ap=2 Au=1

1
009 1 1 )6 Gr20(274) Aog =3 A3p=1 Arz3=1.

Pliicker coordinates: for | C [n] := {1,2,...,n} of size k,

A := k x k minor with column set /.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is
Gr>o(k,n) :={W € Gr(k,n) | A/ (W) >0 for all /}.

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018



Example: Gr>o(2,4)

1 10 1
RowSpan (0 5 1 1>€Gr20(2,4)

Ai3=1 Axp=3, Ap=2 Ay=1 A;u=1 Ax=1L1
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Example: Gr>o(2,4)

1 1 0 -1
RowSpan (0 5 1 1>€Gr20(2,4)

ujp uz U3z Uy

Ai3=1 Axp=3, Ap=2 Ay=1 A;u=1 Ax=1L1
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Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1, D=3, Ap=2 Axp=1 Au=1 Ax=
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Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1

In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.
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Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A3, Aog, A1, A3, A14, 823 >0
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Example: Gr>o(2,4)

u2

Uy us
1 1 0 -1
RowSpan (0 S > € Gr>o(2,4)

ujp uz U3z Uy
Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: Aj» =0
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Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: Ao =0
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Example: Gr>o(2,4)

u2
Uy us3
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ax3 =0
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Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ay3 =0
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In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ay3 =0, A3 =0
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Example: Gr>o(2,4)

u2
u3
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
Uy
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ay3 =0, A3y =0, A4 =0.

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018

14 / 30



Example: Gr>o(2,4)

u2
Uy us
110 -1
RowSpan (0 > 1 1 > € Gr>o(2,4)
up Uy U3 g u

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ay3 =0, Az =0, A4 =0.
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Example: Gr>o(2,4)

u2

us U1

1 1 0 -1
RowSpan (0 5 1 1>€Gr20(2,4)

ujp uz U3z Uy
Ug

Aiz=1 Axp=3 Ap=2 Axp=1 Au=1 Ax=1L1
In Gr(2,4), we have a Pliicker relation: A13A04 = A12A34 + A14A23.

Top cell: A1z, Aza, A1, Azg, A4, A23 >0
Codimension 1 cells: A1 =0, Ay3 =0, Az =0, A4 =0.
Codimension 2 cell: A1y = A1a = NAys = 0.

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018 14 / 30



The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.
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The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.
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The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007),
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The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov—Speyer-Williams (2009),
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The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov—Speyer-Williams (2009), Rietsch-Williams (2010).
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The topology of Grq(k, n)

Theorem (Postnikov (2006))
Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov—Speyer-Williams (2009), Rietsch-Williams (2010).

Theorem (G.—Karp—Lam (2017))
Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.

MIT, 11/01/2018 15 / 30
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The topology of Grq(k, n)

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov—Speyer-Williams (2009), Rietsch-Williams (2010).
Theorem (G.—Karp—Lam (2017))

Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.

Theorem (G.—Karp—Lam (2018+))

The closure of each boundary cell is homeomorphic to a closed ball.
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The topology of Grq(k, n)

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Williams (2007), Postnikov—Speyer-Williams (2009), Rietsch-Williams (2010).
Theorem (G.—Karp—Lam (2017))

Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.

Theorem (G.—Karp—Lam (2018+))

The closure of each boundary cell is homeomorphic to a closed ball.

Theorem (Smale (1960), Freedman (1982), Perelman (2003))

Let C be a compact contractible topological manifold whose boundary is
homeomorphic to a sphere. Then C is homeomorphic to a closed ball.
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The totally nonnegative Grassmannian

N = 4 supersymmetric

Gr>o(k,n) +— amplituhedron +— YangMills theory
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The totally nonnegative Grassmannian

. N = 4 supersymmetric
Gr>o(k, n) < amplituhedron Yang—Mills theory
N = 6 supersymmetric

?
0G>o(n,2n) «— : 7 Chern-Simons matter theory
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The totally nonnegative Grassmannian

. N = 4 supersymmetric
Gr>o(k, n) < amplituhedron Yang—Mills theory
N = 6 supersymmetric

?
OGxo(n,2n)  «— ) ™ Chern-Simons matter theory

Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.
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The totally nonnegative Grassmannian

. N = 4 supersymmetric

G k — lituhed — .
ok, n) amprrtihedron Yang—Mills theory

N = 6 supersymmetric

Chern-Simons matter theory

Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.
The orthogonal Grassmannian:
OG(n,2n) :={W € Gr(n,2n) | Ay(W) = A (W) for all 1}

0G>o(n,2n) <+— ? —
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The totally nonnegative Grassmannian

. N = 4 supersymmetric

G k — lituhed — .
r>o(k, n) amplituhedron Yang—Mills theory

7 N = 6 supersymmetric

OGxo(n,2n)  «— ™ Chern-Simons matter theory

Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.
The orthogonal Grassmannian:
OG(n,2n) := {W € Gr(n,2n) | Ay (W) = Apnp (W) for all 1}.

Definition (Huang—Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OG>o(n,2n) := OG(n,2n) N Grxo(n, 2n)
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The totally nonnegative Grassmannian

. N = 4 supersymmetric
G k — lituhed — .
ok, n) amprrtihedron Yang—Mills theory
? N=6 supersymmetric
Chern-Simons matter theory

Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.
The orthogonal Grassmannian:
OG(n,2n) := {W € Gr(n,2n) | Ay (W) = Apnp (W) for all 1}.

OGZ()(I‘I, 2[1) —

Definition (Huang—Wen (2013))
The totally nonnegative orthogonal Grassmannian:
OG>o(n,2n) := OG(n,2n) N Gr>g(n, 2n), i.e.,
OG>o(n,2n) :={W € Gr(n,2n) | A)(W) = Apg\ (W) > 0 for all 1}.
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The totally nonnegative Grassmannian

. N = 4 supersymmetric
G k — lituhed — .
ok, n) amprrtihedron Yang—Mills theory
? N=6 supersymmetric
Chern-Simons matter theory

Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.
The orthogonal Grassmannian:
OG(n,2n) := {W € Gr(n,2n) | Ay (W) = Apnp (W) for all 1}.

OGZ()(I‘I, 2[1) —

Definition (Huang—Wen (2013))
The totally nonnegative orthogonal Grassmannian:
OG>o(n,2n) := OG(n,2n) N Gr>g(n, 2n), i.e.,
OGxo(n,2n) :={W € Gr(n,2n) | A)(W) = Apg\ (W) > 0 for all 1}.

o dim(Grsg(n,2n)) = n?
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The totally nonnegative Grassmannian

. N = 4 supersymmetric
Gr>o(k, n) < amplituhedron Yang—Mills theory

? N = 6 supersymmetric
OGxo(n,2n)  «— ) ™ Chern-Simons matter theory
Recall: Gr>o(k, n) :={W € Gr(k,n) | A;(W) >0 for all /}.

The orthogonal Grassmannian:

OG(n,2n) := {W € Gr(n,2n) | Ay (W) = Apnp (W) for all 1}.

Definition (Huang—Wen (2013))
The totally nonnegative orthogonal Grassmannian:
OG>o(n,2n) := OG(n,2n) N Gr>g(n, 2n), i.e.,
OGxo(n,2n) :={W € Gr(n,2n) | A)(W) = Apg\ (W) > 0 for all 1}.

e dim(Gr>o(n,2n)) = n?
e dim(0OGxo(n,2n)) = (3) = %

MIT, 11/01/2018 16 / 30
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

Pavel Galashin (MIT) Ising model and total positivity MIT, 11/01/2018 17 / 30



Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

= symmetric n X n matrices
sym A
We have X, X', C Maty™(R,1) := { with 1's on the diagonal }
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We have X,, X, C Mat¥™(R,1) := {

symmetric n X n matrices
with 1's on the diagonal

Definition
The doubling map ¢:

1 mpp m3 my 1 1 mi  —mp —m3 M3 My — My
mp 1 ma3 m oy | T M2 me 1 1 mp3  — M3 — Mp4 M
mi3 mp3 1 mag mi3 — M3 — M3 mo3 1 1 m3s  — ms3g
myg mp m3g 1 — My Mg Mg — Mg — M3 M3y 1 1
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We have X,, X, C Mat¥™(R,1) := {

symmetric n X n matrices
with 1's on the diagonal

Definition
The doubling map ¢:

1 mpp mz mg 1 1 mi  —mip — M3 M3 Mg — Mg
mi 1 m3 m oy | M2 me 1 1 mp3  — M3 — Mp4 M
miz mp3 1 mag mi3  — M3 — M3 Mmp3 1 1 m3s  — ms3g
mig mpq M3 1 — M4 My Mg — M4 — M3 M3y 1 1
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We have X,, X, C Mat¥™(R,1) := {

symmetric n X n matrices
with 1's on the diagonal

Definition
The doubling map ¢:

1 mpp m3 my 1 1 mip  —mp —m3 M3 My — My
mi 1 ma3 moy oy | T2 M2 1 1 my3  — Mp3 — Mg My
mi3 M3 1 mag mi3 — M3 — Mp3 M3 1 1 m3s  — ms3g
myg My m3g 1 — My M M4 — Mg — M3 M3y 1 1
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We have X,, X, C Mat¥™(R,1) := {

symmetric n X n matrices
with 1's on the diagonal

Definition
The doubling map ¢:

1 mpp mi3 my 1 1 my  —mp — M3 M3 M — M
my 1 m3z m oy | T M2 me 1 1 M3 — Mp3 — Mp4 Moy
m3 m3 1 m3g miz  — mi3 — Mp3 M3 1 1 Mm3g  — M3q
mis Mo mag 1 — M4 My Mg — Mg — M3g M3y 1 1
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Main result

Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We have X,, X, C Mat¥™(R,1) := {

symmetric n X n matrices
with 1's on the diagonal

Definition
The doubling map ¢:

1 mpp m3 my 1 1 my  —mp —m3 M3 My — M
my 1 ma3 mog oy | T M2 me 1 1 my3  — M3 — Mp4 Moy
m3 mp3 1 mag mi3 — M3 — M3 mo3 1 1 ms3q  — mag
my Mg m3g 1 — Mg Mg Mpg — Mg — M3g M3g 1 1
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Main result

Xy :={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}
X, := closure of X, inside the space of n x n matrices.
= symmetric n X n matrices
We h X, X Mat¥»™(R, 1) := . .
e have &y, & ¢ Maty™(R, 1) { with 1's on the diagonal }

The doubling map ¢:

1 mpp m3 my 1 1 mi  —mp —m3 M3 My — My
mp 1 ma3 m oy | T M2 me 1 1 mp3  — M3 — Mp4 M
mi3 mp3 1 mag mi3 — Mz — M3 mp3 1 1 m3g  — m3g
myg mp m3g 1 — My Mg Mg — Mg — M3 M3y 1 1

Theorem (G.—Pylyavskyy (2018))

Mat)y™ (R, 1) 7 OG(n, 2n)

J J

?n Ong(n, 2/7)

y
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Main result

Xy :={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}
X, := closure of X, inside the space of n x n matrices.
= symmetric n X n matrices
We h X, X Mat¥»™(R, 1) := . .
e have &y, & ¢ Maty™(R, 1) { with 1's on the diagonal }

The doubling map ¢:

1 mpp m3 my 1 1 mi  —mp —m3 M3 My — My
mp 1 ma3 m oy | T M2 me 1 1 mp3  — M3 — Mp4 M
mi3 mp3 1 mag mi3 — Mz — M3 mp3 1 1 m3g  — m3g
mis Mo mas 1 — M4 My Mg — Mg — M3s M3y 1 1

Theorem (G.—Pylyavskyy (2018))

e The map ¢ restricts to a homeomorphism  Mat™(R,1) —— OG(n,2n)
between X, and OG>o(n,2n). I ]
?n # Ong(n,2n)
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Main result

Xy :={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.
symmetric n X n matrices }

B sym -
We have &y, X C Maty™(R, 1) : { with 1's on the diagonal

The doubling map ¢:

1 mpp m3 my 1 1 mi  —mp —m3 M3 My — My
mp 1 ma3 m oy | T M2 me 1 1 mp3  — M3 — Mp4 M
mi3 mp3 1 mag mi3 — Mz — M3 mp3 1 1 m3g  — m3g
mis Mo mas 1 — M4 My Mg — Mg — M3s M3y 1 1

Theorem (G.—Pylyavskyy (2018))

e The map ¢ restricts to a homeomorphism  Mat™(R,1) —— OG(n,2n)
between X, and OG>o(n,2n). I ]

e FEach of the spaces is homeomorphic ) N
to an (g) -dimensional closed ball. Xy T OGxo(n, 2n)

v
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Example: n =2

Theorem (G.—Pylyavskyy (2018))

e The map ¢ restricts to a homeomorphism  Mat¥™(R,1) — OG(n,2n)

between X, and OG>o(n,2n). T I
e Each of the spaces is homeomorphic = N
to an (g) -dimensional closed ball. Xn p » 0G>o(n, 2n)
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e The map ¢ restricts to a homeomorphism  Mat¥™(R,1) — OG(n,2n)

between X, and OG>o(n,2n). T I
e Each of the spaces is homeomorphic = N
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Kramers—Wannier's duality



Ising model: history

@ Suggested by by W. Lenz to his student E. Ising in 1920

@ Ising (1925): no phase transition in 1D = not a good model for
ferromagnetism

Historically, we let G := Z9 N Q for some Q C R
and set all J; := % for some temperature T € R.

o Peierls (1937): phase transition in Z9 for d > 2

@ Kramers—Wannier (1941): critical temperature T% = %Iog (V2 + 1) for Z2
@ Onsager, Kaufman, Yang (1944-1952): exact expressions for the free
energy and spontaneous magnetization

@ Belavin—Polyakov—Zamolodchikov (1984): conjectured conformal
invariance of the scaling limit at T = T for Z?

@ Smirnov, Chelkak, Hongler, Izyurov, ... (2010-2015): proved conformal
invariance and universality of the scaling limit at T = T, for Z?
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Kramers—Wannier's duality
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Here J.~ is defined by
sinh(2Je) sinh(2Je+) = 1.
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Kramers—Wannier's duality

b3 by
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Here J.~ is defined by
sinh(2J.) sinh(2Je+) = 1.

Q: what happens if we
apply the duality twice? o

€6

(KWD)? = cyclic shift!
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Kramers—Wannier's duality vs. critical temperature

Recall: Je- is defined by sinh(2J.) sinh(2Je+) = 1.
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Recall: Je- is defined by sinh(2J.) sinh(2Je+) = 1.

@ Preserves partition function Z

@ Switches between high and low temperature expansions for Z
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Recall: Je- is defined by sinh(2J.) sinh(2Je+) = 1.

@ Preserves partition function Z

@ Switches between high and low temperature expansions for Z
o Takes correlations to “disorder variables”
°

The unique solution to sinh(2J) sinh(2J) = 1 is given by
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Kramers—Wannier's duality vs. critical temperature

Recall: Je- is defined by sinh(2J.) sinh(2Je+) = 1.

@ Preserves partition function Z

@ Switches between high and low temperature expansions for Z
o Takes correlations to “disorder variables”

@ The unique solution to sinh(2J)sinh(2J) = 1 is given by

J= %Iog(\@—i— 1)

Takes G =Z?NQ to G* ~ (Z—l—%)ZﬂQ
Fixed point of KWD <+ Ising model at critical temperature
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Cyclic shift on Grxq(k, n)

Theorem (G.—Karp—Lam (2017))

Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.
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Kramers—Wannier's duality vs. cyclic shift

Theorem (G.—Pylyavskyy (2018))

o The map ¢ restricts to a homeomorphism  \aty™(R, 1) — OG(n, 2n)
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to an (5)-dimensional closed ball. X # 0Gxo(n, 2n)
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Fixed point My of KWD < Ising model at critical temperature <> Xy?

Let G = with n boundary vertices and Je := 1 log (V2 +1).

Let My be the unique boundary n x n correlation matrix fixed by KWD.

Proposition (G.—Pylyavskyy (2018))
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e entries of Mo = (mj)];_; are given by m;; S A (Xo)
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Let G = with n boundary vertices and Je := 1 log (V2 +1).

Let My be the unique boundary n x n correlation matrix fixed by KWD.
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Fixed point My of KWD < Ising model at critical temperature <> Xy?

Let G = with n boundary vertices and Je := 1 log (V2 +1).

Let My be the unique boundary n x n correlation matrix fixed by KWD.

Proposition (G.—Pylyavskyy (2018))
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Kramers—Wannier's duality vs. cyclic shift
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Boundary measurement map

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.
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Boundary measurement map

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.
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Boundary measurement map

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

d
5 O wis h( )\ pel
wy Wa
W14 w2 "
Meas

A: almost perfect matching
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Boundary measurement map

Theorem (Postnikov (2006))

Each boundary cell (some A; > 0 and the rest A; = 0) is an open ball.

d
5 O wis h( )\ pel
wy Wa
W14 w2 "
Meas

A: almost perfect matching; 9(A) = {1,2,6}
wt(A) = wawawrwgwiawiswie
Postnikov (2006), Talaska (2007), Postnikov—Speyer—Williams (2009), Lam (2016)
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Ising network — planar bipartite graph

d3 Ce d>
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Ising network — planar bipartite graph

d3 Ce d>
e
b O—— || - - S Sp ==
dy Ce d

Here s, := sech(2J.), ce :=tanh(2J.) so that s? +c? = 1.
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Ising network — planar bipartite graph

e
bz._.bl

Here se := sech(2J.),

b3 b2
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Random almost perfect matchings
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Random almost perfect matchings

o What is the shape of a random almost perfect matching?

@ Is there a phase transition as (se, ce) changes from (1,0) to (0,1)?
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Slides: http://math.mit.edu/~galashin/slides/mit_ising.pdf
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