Move-reduced graphs on a torus vs positroid Catalan numbers

Pavel Galashin (UCLA) based on joint works with Terrence George and Thomas Lam

(scan to play the game)

• Let
$$n \ge 2$$
. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$

Let n≥ 2. Š_n := {f : Z → Z bijection | f(i + n) = f(i) + n ∀i ∈ Z}.
Example: s_i ∈ Š_n swaps i and i + 1 modulo n.

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps *i* and i + 1 modulo *n*.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps *i* and i + 1 modulo *n*.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps *i* and i + 1 modulo *n*.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- $f, f' \in \tilde{S}_n$ are c-equivalent $(f \stackrel{c}{\sim} f')$ if they are related by a sequence of

moves $g \mapsto s_i g s_i$ where $\ell(g) = \ell(s_i g s_i)$ [i.e. click on \bigcirc].

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\to} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \circ or \circ].

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\to} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \bigcirc or \bigcirc].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\rightarrow} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \bigcirc or \bigcirc].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.
- $k(f) := \frac{1}{n} \sum_{i=1}^{n} (f(i) i)$

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\rightarrow} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \bigcirc or \bigcirc].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.
- $k(f) := \frac{1}{n} \sum_{i=1}^{n} (f(i) i) = \#\{i \leq r \mid f(i) > r\} \#\{i > r \mid f(i) \leq r\} \quad \forall k \in \mathbb{Z}.$

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \hat{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\rightarrow} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \bigcirc or \bigcirc].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.
- $k(f) := \frac{1}{n} \sum_{i=1}^{n} (f(i) i) = \#\{i \le r \mid f(i) > r\} \#\{i > r \mid f(i) \le r\} \quad \forall k \in \mathbb{Z}.$ • $\tilde{S}_{k,n} := \{f \in \tilde{S}_n \mid k(f) = k\}.$

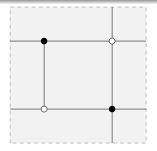
- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps i and i + 1 modulo n.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\rightarrow} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on \bigcirc or \bigcirc].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.
- $k(f) := \frac{1}{n} \sum_{i=1}^{n} (f(i) i) = \#\{i \le r \mid f(i) > r\} \#\{i > r \mid f(i) \le r\} \quad \forall k \in \mathbb{Z}.$ • $\tilde{S}_{k,n} := \{f \in \tilde{S}_n \mid k(f) = k\}.$
- $f \in \tilde{S}_n \quad \mapsto \quad \overline{f} \in S_n$ unique s.t. $\overline{f}(i) \equiv f(i) \pmod{n} \quad \forall \ 1 \leqslant i \leqslant n$.

- Let $n \ge 2$. $\tilde{S}_n := \{f : \mathbb{Z} \to \mathbb{Z} \text{ bijection } | f(i+n) = f(i) + n \ \forall i \in \mathbb{Z}\}.$
- Example: $s_i \in \tilde{S}_n$ swaps *i* and i + 1 modulo *n*.
- Example: $\Lambda = \Lambda_n \in \tilde{S}_n$ sends $i \mapsto i + 1 \ \forall i \in \mathbb{Z}$.
- Claim: \tilde{S}_n is generated by $\{s_1, s_2, \ldots, s_n = s_0\} \sqcup \{\Lambda\}$.
- Let $\ell(f) := \{i, j \in \mathbb{Z} \mid i < j, f(i) > f(j), \text{ and } 1 \leq i \leq n\}.$
- f, f' ∈ Š_n are c-equivalent (f ~ f') if they are related by a sequence of moves g → s_igs_i where ℓ(g) = ℓ(s_igs_i) [i.e. click on].
- We write $f \stackrel{c}{\to} f'$ if one can get from f to f' by moves $g \mapsto s_i g s_i$ where $\ell(s_i g s_i) \leq \ell(g)$. [i.e. click on or \blacksquare].
- f is c-reduced if $f \stackrel{c}{\rightarrow} f'$ implies $\ell(f) = \ell(f')$.
- $k(f) := \frac{1}{n} \sum_{i=1}^{n} (f(i) i) = \#\{i \le r \mid f(i) > r\} \#\{i > r \mid f(i) \le r\} \quad \forall k \in \mathbb{Z}.$ • $\tilde{S}_{k,n} := \{f \in \tilde{S}_n \mid k(f) = k\}.$
- $f \in \tilde{S}_n \mapsto \bar{f} \in S_n$ unique s.t. $\bar{f}(i) \equiv f(i) \pmod{n} \forall 1 \leq i \leq n$.
- $\operatorname{ncyc}(f) := \#\{\operatorname{cycles of } \overline{f}\}.$

Bipartite graphs on a torus

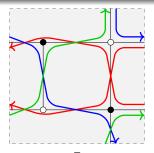
Definition

• Consider a bipartite graph Γ embedded on a torus.

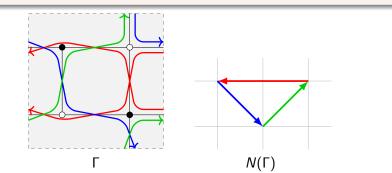


Bipartite graphs on a torus

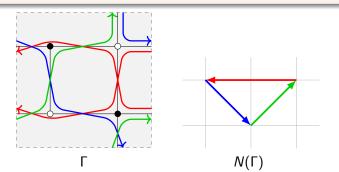
- Consider a bipartite graph Γ embedded on a torus.
- A zig-zag path in Γ is a path that makes a sharp right turn at black vertices and a sharp left turn at white vertices.



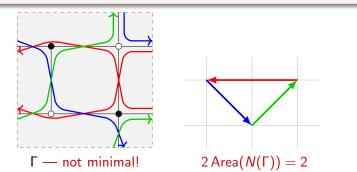
- Consider a bipartite graph Γ embedded on a torus.
- A zig-zag path in Γ is a path that makes a sharp right turn at black vertices and a sharp left turn at white vertices.
- The Newton polygon N(Γ) is the polygon whose boundary is given by homology vectors of zig-zag paths in counterclockwise order.



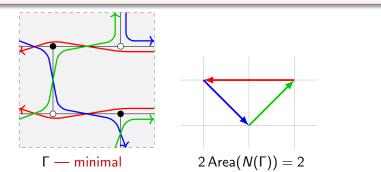
- Consider a bipartite graph Γ embedded on a torus.
- A zig-zag path in Γ is a path that makes a sharp right turn at black vertices and a sharp left turn at white vertices.
- The Newton polygon N(Γ) is the polygon whose boundary is given by homology vectors of zig-zag paths in counterclockwise order.
- [Goncharov–Kenyon '10] Γ is minimal if it has $2 \operatorname{Area}(N(\Gamma))$ faces.



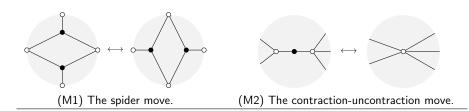
- Consider a bipartite graph Γ embedded on a torus.
- A zig-zag path in Γ is a path that makes a sharp right turn at black vertices and a sharp left turn at white vertices.
- The Newton polygon N(Γ) is the polygon whose boundary is given by homology vectors of zig-zag paths in counterclockwise order.
- [Goncharov–Kenyon '10] Γ is minimal if it has $2 \operatorname{Area}(N(\Gamma))$ faces.



- Consider a bipartite graph Γ embedded on a torus.
- A zig-zag path in Γ is a path that makes a sharp right turn at black vertices and a sharp left turn at white vertices.
- The Newton polygon N(Γ) is the polygon whose boundary is given by homology vectors of zig-zag paths in counterclockwise order.
- [Goncharov–Kenyon '10] Γ is minimal if it has $2 \operatorname{Area}(N(\Gamma))$ faces.



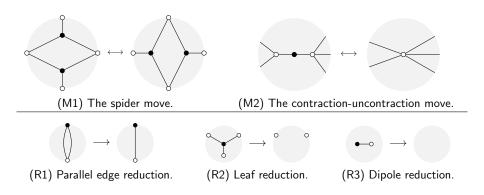
• Γ, Γ' are move-equivalent ($\Gamma \sim \Gamma'$) if they are related by moves (M1)–(M2).



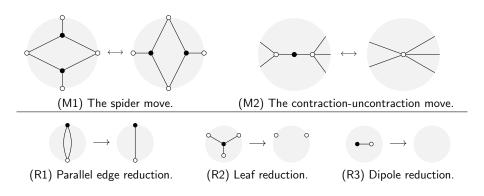
- Γ, Γ' are move-equivalent ($\Gamma \sim \Gamma'$) if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to Γ .



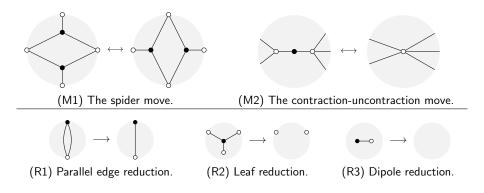
- Γ, Γ' are move-equivalent ($\Gamma \sim \Gamma'$) if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to Γ .
- [Goncharov–Kenyon '10] Γ is minimal $\Longrightarrow \Gamma$ is move-reduced.



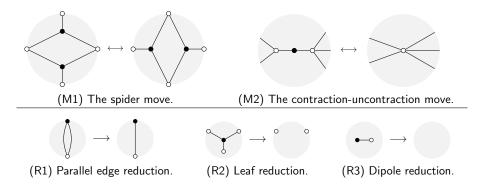
- Γ, Γ' are move-equivalent (Γ ~ Γ') if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to Γ .
- [Goncharov–Kenyon '10] Γ is minimal $\Longrightarrow \Gamma$ is move-reduced.
- [Goncharov–Kenyon '10] Let Γ, Γ' be minimal. Then $\Gamma \sim \Gamma' \iff N(\Gamma) = N(\Gamma').$



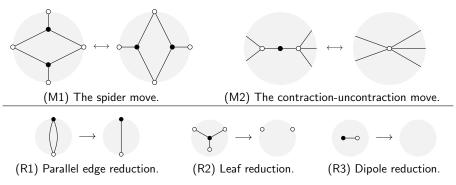
- Γ, Γ' are move-equivalent (Γ ~ Γ') if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to Γ .
- [Goncharov–Kenyon '10] Γ is minimal $\Longrightarrow \Gamma$ is move-reduced.
- [Goncharov–Kenyon '10] Let Γ, Γ' be minimal. Then $\Gamma \sim \Gamma' \iff N(\Gamma) = N(\Gamma').$
- Question: Is minimal the same as move-reduced?



- Γ, Γ' are move-equivalent (Γ ~ Γ') if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to Γ .
- [Goncharov–Kenyon '10] Γ is minimal $\Longrightarrow \Gamma$ is move-reduced.
- [Goncharov–Kenyon '10] Let Γ, Γ' be minimal. Then $\Gamma \sim \Gamma' \iff N(\Gamma) = N(\Gamma').$
- Question: Is minimal the same as move-reduced? No.



- Γ, Γ' are move-equivalent (Γ ~ Γ') if they are related by moves (M1)–(M2).
- Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any Γ' move-equivalent to $\Gamma.$
- [Goncharov–Kenyon '10] Γ is minimal $\Longrightarrow \Gamma$ is move-reduced.
- [Goncharov–Kenyon '10] Let Γ, Γ' be minimal. Then $\Gamma \sim \Gamma' \iff N(\Gamma) = N(\Gamma').$
- Question: Is minimal the same as move-reduced? No.
- Question: When are two move-reduced graphs move-equivalent?



• For a zig-zag path P of homology $(a, b) \in \mathbb{Z}^2$, let $d(P) := \operatorname{gcd}(a, b)$.

• For a zig-zag path P of homology $(a,b) \in \mathbb{Z}^2$, let $d(P) := \gcd(a,b)$.

Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(N(\Gamma)) + \sum_{P} (d(P) - 1)$$

• For a zig-zag path P of homology $(a,b) \in \mathbb{Z}^2$, let $d(P) := \gcd(a,b)$.

Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(N(\Gamma)) + \sum_P (d(P) - 1)$$

faces, where the sum is over zig-zag paths of Γ.
Let Γ, Γ' be move-reduced. Then Γ ~ Γ' if and only if
N(Γ) = N(Γ') and

• For a zig-zag path P of homology $(a,b) \in \mathbb{Z}^2$, let $d(P) := \gcd(a,b)$.

Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(N(\Gamma)) + \sum_P (d(P) - 1)$$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering;

• For a zig-zag path P of homology $(a,b) \in \mathbb{Z}^2$, let $d(P) := \gcd(a,b)$.

Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - $N(\Gamma) = N(\Gamma')$ and for each edge e of $N(\Gamma)$, the zig-zag paths in the direction of e have the same cyclic ordering;
 - 2 $\mu(\Gamma) = \mu(\Gamma')$, where $\mu(\Gamma) \in \mathbb{Z}/d\mathbb{Z}$ —modular invariant,
 - $d := \operatorname{gcd}(d(P) \mid \operatorname{zig-zag} path P).$

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(N(\Gamma)) + \sum_{P} (d(P) - 1)$$

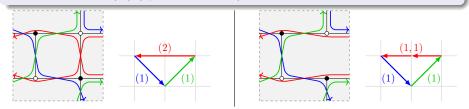
faces, where the sum is over zig-zag paths of $\boldsymbol{\Gamma}.$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - $N(\Gamma) = N(\Gamma')$ and for each edge e of $N(\Gamma)$, the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ ℤ/dℤ—modular invariant,
 d := gcd(d(P) | zig-zag path P).

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

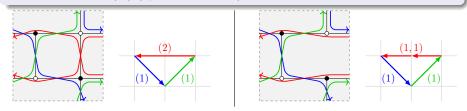
- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ ℤ/dℤ—modular invariant,
 d := gcd(d(P) | zig-zag path P).



• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ Z/dZ—modular invariant,
 d := gcd(d(P) | zig-zag path P).

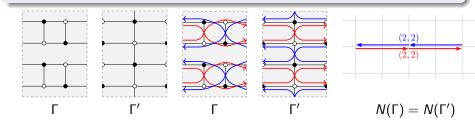


Both move-reduced!

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering, and
 - ② $\mu(\Gamma) = \mu(\Gamma')$, where $\mu(\Gamma) \in \mathbb{Z}/d\mathbb{Z}$ —modular invariant, $d := \operatorname{gcd}(d(P) \mid \operatorname{zig-zag} path P).$



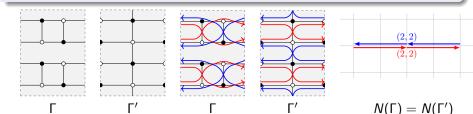
Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(N(\Gamma)) + \sum_P (d(P) - 1)$$

faces, where the sum is over zig-zag paths of $\Gamma.$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ ℤ/dℤ—modular invariant,
 d := gcd(d(P) | zig-zag path P).



Not move-equivalent! $\mu(\Gamma) = 0 \in \mathbb{Z}/2\mathbb{Z}$ and $\mu(\Gamma') = 1 \in \mathbb{Z}/2\mathbb{Z}$.

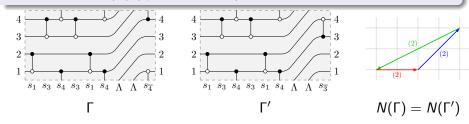
Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

faces, where the sum is over zig-zag paths of $\Gamma.$

- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - $N(\Gamma) = N(\Gamma')$ and for each edge e of $N(\Gamma)$, the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ Z/dZ—modular invariant,
 d := gcd(d(P) | zig-zag path P).



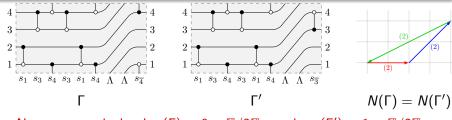
Theorem (G.–George)

• Γ is move-reduced $\iff \Gamma$ has

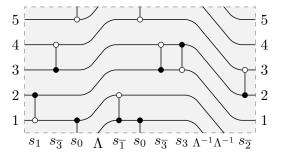
$$2\operatorname{Area}(\mathit{N}(\Gamma)) + \sum_{\mathit{P}}(\mathit{d}(\mathit{P}) - 1)$$

faces, where the sum is over zig-zag paths of $\Gamma.$

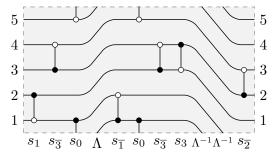
- Let Γ,Γ' be move-reduced. Then $\Gamma\sim\Gamma'$ if and only if
 - N(Γ) = N(Γ') and for each edge e of N(Γ), the zig-zag paths in the direction of e have the same cyclic ordering, and
 - µ(Γ) = µ(Γ'), where µ(Γ) ∈ Z/dZ—modular invariant,
 d := gcd(d(P) | zig-zag path P).



Not move-equivalent! $\mu(\Gamma) = 0 \in \mathbb{Z}/2\mathbb{Z}$ and $\mu(\Gamma') = 1 \in \mathbb{Z}/2\mathbb{Z}$.

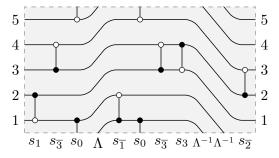


• Pick a word β in the alphabet $\{s_1, \ldots, s_n = s_0\} \sqcup \{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}.$



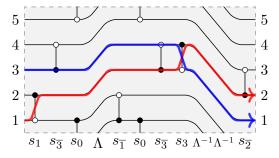
• Pick a word β in the alphabet $\{s_1, \ldots, s_n = s_0\} \sqcup \{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}.$

Associate a white-black bridge to s_i and a black-white bridge to s_i. Get a bicolored graph Γ on a torus.



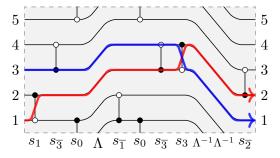
• Pick a word β in the alphabet $\{s_1, \ldots, s_n = s_0\} \sqcup \{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}.$

- Associate a white-black bridge to s_i and a black-white bridge to s_i. Get a bicolored graph Γ on a torus.
- Let f be the product of the letters of β in $\{s_1, \ldots, s_n = s_0\} \sqcup \{\Lambda^{\pm 1}\}$ and f' be the product of the letters of β in $\{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}$.



• Pick a word β in the alphabet $\{s_1, \ldots, s_n = s_0\} \sqcup \{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}.$

- Associate a white-black bridge to s_i and a black-white bridge to s_i. Get a bicolored graph Γ on a torus.
- Let f be the product of the letters of β in $\{s_1, \ldots, s_n = s_0\} \sqcup \{\Lambda^{\pm 1}\}$ and f' be the product of the letters of β in $\{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}$.
- f = zig-zag paths going left-to-right, f' = zig-zag paths going right-to-left.



• Pick a word β in the alphabet $\{s_1, \ldots, s_n = s_0\} \sqcup \{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}.$

- Associate a white-black bridge to s_i and a black-white bridge to s_i. Get a bicolored graph Γ on a torus.
- Let f be the product of the letters of β in $\{s_1, \ldots, s_n = s_0\} \sqcup \{\Lambda^{\pm 1}\}$ and f' be the product of the letters of β in $\{s_{\overline{1}}, \ldots, s_{\overline{n}} = s_{\overline{0}}\} \sqcup \{\Lambda^{\pm 1}\}$.
- f = zig-zag paths going left-to-right, f' = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov '16)

- If f, f' are c-reduced then Γ is move-reduced.
- Any move-reduced graph Γ can be obtained in this way.

Recall: $\tilde{S}_{k,n} := \{ f \in \tilde{S}_n \mid \frac{1}{n} \sum_{i=1}^n (f(i) - i) = k \}.$

Recall:
$$\tilde{S}_{k,n} := \{ f \in \tilde{S}_n \mid \frac{1}{n} \sum_{i=1}^n (f(i) - i) = k \}.$$

Definition (Knutson-Lam-Speyer '13)

Bounded affine permutations: $\mathcal{B}_{k,n} := \{ f \in \tilde{S}_{k,n} \mid i \leq f(i) \leq i+n \text{ for all } i \in \mathbb{Z} \}.$

Recall:
$$\tilde{S}_{k,n} := \{ f \in \tilde{S}_n \mid \frac{1}{n} \sum_{i=1}^n (f(i) - i) = k \}.$$

Definition (Knutson-Lam-Speyer '13)

Bounded affine permutations: $\mathcal{B}_{k,n} := \{ f \in \tilde{S}_{k,n} \mid i \leq f(i) \leq i + n \text{ for all } i \in \mathbb{Z} \}.$

Theorem (Knutson–Lam–Speyer '13)

$$Gr(k, n) = \bigsqcup_{f \in \mathcal{B}_{k,n}} \Pi_f^\circ$$
, where Π_f° are open positroid varieties.

Recall:
$$\tilde{S}_{k,n} := \{ f \in \tilde{S}_n \mid \frac{1}{n} \sum_{i=1}^n (f(i) - i) = k \}.$$

Definition (Knutson-Lam-Speyer '13)

Bounded affine permutations:

$$\mathcal{B}_{k,n} := \{ f \in \tilde{\mathcal{S}}_{k,n} \mid i \leqslant f(i) \leqslant i + n \text{ for all } i \in \mathbb{Z} \}.$$

Theorem (Knutson–Lam–Speyer '13)

$$Gr(k, n) = \bigsqcup_{f \in \mathcal{B}_{k,n}} \Pi_f^\circ$$
, where Π_f° are open positroid varieties.

Let $T := \{n \times n \text{ diagonal matrices}\}$ and $\prod_{f}^{\bullet} := \prod_{f}^{\circ} / T$.

Recall:
$$\tilde{S}_{k,n} := \{ f \in \tilde{S}_n \mid \frac{1}{n} \sum_{i=1}^n (f(i) - i) = k \}.$$

Definition (Knutson-Lam-Speyer '13)

Bounded affine permutations:

$$\mathcal{B}_{k,n} := \{ f \in \tilde{\mathcal{S}}_{k,n} \mid i \leqslant f(i) \leqslant i + n \quad \text{for all } i \in \mathbb{Z} \}.$$

Theorem (Knutson–Lam–Speyer '13)

$$Gr(k, n) = \bigsqcup_{f \in \mathcal{B}_{k,n}} \Pi_f^\circ$$
, where Π_f° are open positroid varieties.

Let $T := \{n \times n \text{ diagonal matrices}\}$ and $\Pi_f^{\bullet} := \Pi_f^{\circ} / T$.

Definition (G.-Lam)

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi_f^{\bullet}(\mathbb{C})) = \# \Pi_f^{\bullet}(\mathbb{F}_q)|_{q=1}.$

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi_f^{\bullet}(\mathbb{C})) = \# \Pi_f^{\bullet}(\mathbb{F}_q) |_{q=1}.$

Example

Let $f = \Lambda_n^k \in \mathcal{B}_{k,n}$, i.e., f(i) = i + k for all $i \in \mathbb{Z}$. Assume ncyc(f) = gcd(k, n) = 1.

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi_f^{\bullet}(\mathbb{C})) = \# \Pi_f^{\bullet}(\mathbb{F}_q) |_{q=1}.$

Example

Let $f = \Lambda_n^k \in \mathcal{B}_{k,n}$, i.e., f(i) = i + k for all $i \in \mathbb{Z}$. Assume ncyc(f) = gcd(k, n) = 1.

 $\Pi^{\bullet}_{\Lambda^k_n} \cong \left\{ \left[\mathsf{Id}_k \left| A \right] \in \mathsf{Mat}_{k \times n} \right| \Delta_{\{1, \dots, k\}} = \Delta_{\{2, \dots, k+1\}} = \dots = \Delta_{\{n, 1, \dots, k-1\}} = 1. \right\}$

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Example

Let $f = \Lambda_n^k \in \mathcal{B}_{k,n}$, i.e., f(i) = i + k for all $i \in \mathbb{Z}$. Assume ncyc(f) = gcd(k, n) = 1.

$$\Pi^{\bullet}_{\Lambda^k_n} \cong \left\{ \left[\mathsf{Id}_k \left| A \right] \in \mathsf{Mat}_{k \times n} \middle| \Delta_{\{1, \dots, k\}} = \Delta_{\{2, \dots, k+1\}} = \dots = \Delta_{\{n, 1, \dots, k-1\}} = 1. \right\}$$

Theorem (G.–Lam)

Assume
$$gcd(k, n) = 1$$
. Let $f = \Lambda_n^k \in \mathcal{B}_{k,n}$. Then

$$C_f = \frac{1}{n} \binom{n}{k} = \# \{ Dyck \text{ paths from } (0,0) \text{ to } (n-k,k) \text{ above diagonal} \}.$$

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi_f^{\bullet}(\mathbb{C})) = \# \Pi_f^{\bullet}(\mathbb{F}_q) |_{q=1}.$

Proposition (G.-Lam)

Assume ncyc(f) = 1.

• If n = 1 then $C_f = 1$. If $f(i) \in \{i, i + n\}$, removing i preserves C_f .

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi_f^{\bullet}(\mathbb{C})) = \# \Pi_f^{\bullet}(\mathbb{F}_q) |_{q=1}.$

Proposition (G.-Lam)

Assume ncyc(f) = 1.

• If n = 1 then $C_f = 1$. If $f(i) \in \{i, i + n\}$, removing i preserves C_f .

• If
$$f \stackrel{c}{\sim} f'$$
 then $C_f = C_{f'}$.

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Proposition (G.-Lam)

Assume ncyc(f) = 1.

• If n = 1 then $C_f = 1$. If $f(i) \in \{i, i + n\}$, removing i preserves C_f .

• If
$$f \stackrel{c}{\sim} f'$$
 then $C_f = C_{f'}$.

If ℓ(s_ifs_i) = ℓ(f) + 2 then C_f = C_{g1} · C_{g2} + C_{sifsi}, where g₁, g₂ are the two cycles of s_if ~ ts_i.

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Proposition (G.–Lam)

Assume ncyc(f) = 1.

• If n = 1 then $C_f = 1$. If $f(i) \in \{i, i + n\}$, removing i preserves C_f .

• If
$$f \stackrel{c}{\sim} f'$$
 then $C_f = C_{f'}$.

- If ℓ(s_ifs_i) = ℓ(f) + 2 then C_f = C_{g1} · C_{g2} + C_{sifsi}, where g₁, g₂ are the two cycles of s_if ~ fs_i.
- This recurrence computes C_f for any $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.

Let $f \in \mathcal{B}_{k,n}$ be such that ncyc(f) = 1. The positroid Catalan number is $C_f := (\text{Euler characteristic of } \Pi^{\bullet}_f(\mathbb{C})) = \#\Pi^{\bullet}_f(\mathbb{F}_q)|_{q=1}.$

Proposition (G.–Lam)

Assume ncyc(f) = 1.

• If n = 1 then $C_f = 1$. If $f(i) \in \{i, i + n\}$, removing i preserves C_f .

• If
$$f \stackrel{c}{\sim} f'$$
 then $C_f = C_{f'}$.

- If ℓ(s_ifs_i) = ℓ(f) + 2 then C_f = C_{g1} · C_{g2} + C_{sifsi}, where g₁, g₂ are the two cycles of s_if ~ ts_i.
- This recurrence computes C_f for any $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.

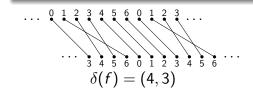
Question

What does this have to do with Dyck paths?

For
$$g \in \tilde{S}_{k,n}$$
, denote $\delta(g) := (n - k, k)$.

For
$$g \in \tilde{S}_{k,n}$$
, denote $\delta(g) := (n - k, k)$.

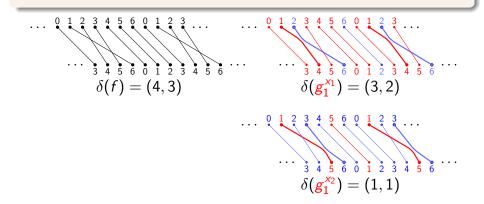
Let $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.



For
$$g \in \tilde{S}_{k,n}$$
, denote $\delta(g) := (n - k, k)$.

Let $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.

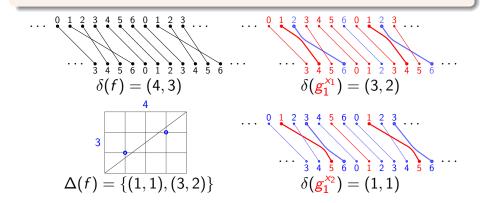
• For each crossing point x of f, resolving x gives two cycles g_1^x, g_2^x entering x from the top-left and top-right, respectively.



For
$$g \in \tilde{S}_{k,n}$$
, denote $\delta(g) := (n - k, k)$.

Let $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.

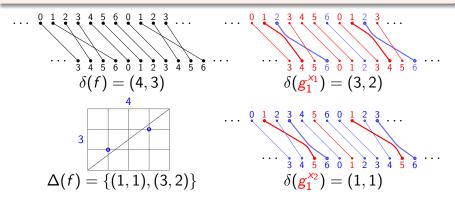
- For each crossing point x of f, resolving x gives two cycles g_1^x, g_2^x entering x from the top-left and top-right, respectively.
- Let $\Delta(f)$ be the multiset of $\delta(g_1^{\chi})$ for all crossings χ of f.



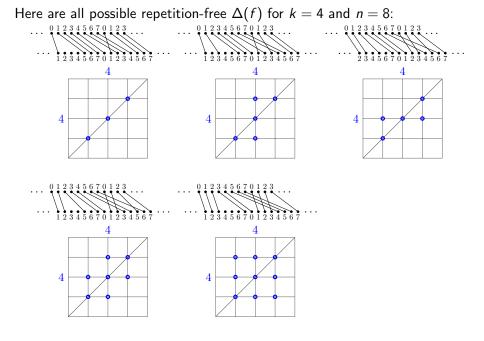
For
$$g \in \tilde{S}_{k,n}$$
, denote $\delta(g) := (n - k, k)$.

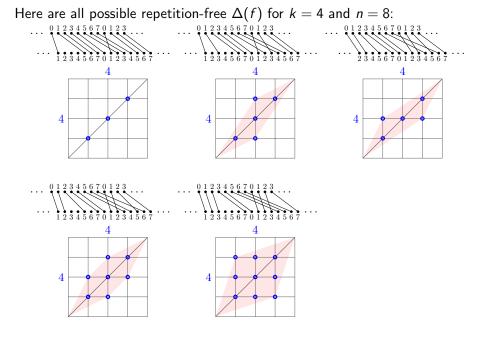
Let $f \in \mathcal{B}_{k,n}$ with ncyc(f) = 1.

- For each crossing point x of f, resolving x gives two cycles g_1^x, g_2^x entering x from the top-left and top-right, respectively.
- Let $\Delta(f)$ be the multiset of $\delta(g_1^{\chi})$ for all crossings χ of f.
- f is called repetition-free if all points in $\Delta(f)$ are distinct.

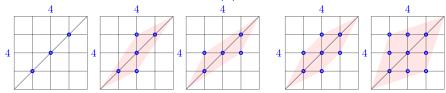


Here are all possible repetition-free $\Delta(f)$ for k = 4 and n = 8:

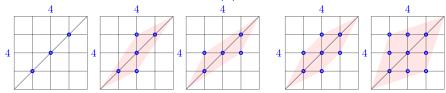




Here are all possible repetition-free $\Delta(f)$ for k = 4 and n = 8:



Here are all possible repetition-free $\Delta(f)$ for k = 4 and n = 8:

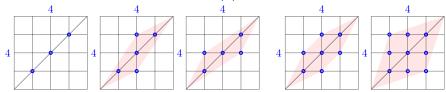


Theorem (G.–Lam)

 Δ ⊆ [n − k − 1] × [k − 1] arises as Δ(f) for some repetition-free f ∈ B_{k,n} if and only if Δ ⊔ {(0,0), (n − k, k)} = P ∩ Z²

for some convex centrally-symmetric polygon P.

Here are all possible repetition-free $\Delta(f)$ for k = 4 and n = 8:



Theorem (G.–Lam)

 Δ ⊆ [n − k − 1] × [k − 1] arises as Δ(f) for some repetition-free f ∈ B_{k,n} if and only if Δ ⊔ {(0,0), (n − k, k)} = P ∩ Z²

for some convex centrally-symmetric polygon P.

• If f is repetition-free, then $C_f = \# \operatorname{Dyck}(\Delta(f))$, where

 $Dyck(\Delta) = \{Dyck \text{ paths from } (0,0) \text{ to } (n-k,k) \text{ above } \Delta(f)\}.$

If f is repetition-free, then $C_f = \# \operatorname{Dyck}(\Delta(f))$.

If f is repetition-free, then $C_f = \# \operatorname{Dyck}(\Delta(f))$.

Recall: If $\ell(s_i f s_i) = \ell(f) + 2$ then

$$C_f = C_{g_1} \cdot C_{g_2} + C_{s_i f s_i},$$

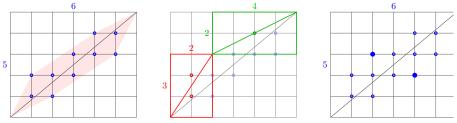
where g_1, g_2 are the two cycles of $s_i f \sim^c f s_i$.

If f is repetition-free, then $C_f = \# \operatorname{Dyck}(\Delta(f))$.

Recall: If $\ell(s_i f s_i) = \ell(f) + 2$ then

$$C_f = C_{g_1} \cdot C_{g_2} + C_{s_i f s_i},$$

where g_1, g_2 are the two cycles of $s_i f \stackrel{c}{\sim} fs_i$.



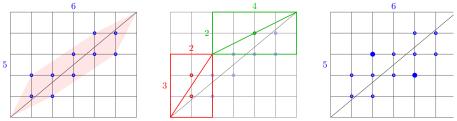
 $\# \operatorname{Dyck}(\Delta(f)) = \# \operatorname{Dyck}(\Delta(g_1)) \cdot \# \operatorname{Dyck}(\Delta(g_2)) + \# \operatorname{Dyck}(\Delta(s_i f s_i))$

If f is repetition-free, then $C_f = \# \operatorname{Dyck}(\Delta(f))$.

Recall: If $\ell(s_i f s_i) = \ell(f) + 2$ then

$$C_f = C_{g_1} \cdot C_{g_2} + C_{s_i f s_i},$$

where g_1, g_2 are the two cycles of $s_i f \stackrel{c}{\sim} fs_i$.



 $\#\operatorname{Dyck}(\Delta(f)) = \#\operatorname{Dyck}(\Delta(g_1)) \cdot \#\operatorname{Dyck}(\Delta(g_2)) + \#\operatorname{Dyck}(\Delta(s_i f s_i))$

Thanks!