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@ I, are move-equivalent (I' ~ ") if they are related by moves (M1)—(M2).
@ I is move-reduced if one cannot apply a reduction move (R1)-(R3) to any
" move-equivalent to T
@ [Goncharov—Kenyon '10] I is minimal = I is move-reduced.
@ [Goncharov—Kenyon '10] Let I, [’ be minimal. Then
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(]

I, T’ are move-equivalent (I' ~ ") if they are related by moves (M1)—(M2).

I is move-reduced if one cannot apply a reduction move (R1)—-(R3) to any
" move-equivalent to T

[Goncharov—Kenyon '10] T is minimal = T is move-reduced.

[Goncharov—Kenyon '10] Let ', " be minimal. Then
r~r < N(T)=N(").

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

&w%

(M1) The spider move. ) The contraction-uncontraction move.

)= worr e-

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.
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@ Pick a word 3 in the alphabet {si,...,s, = so} U {st,...,s5 = 55} L {A*}.

@ Associate a white-black bridge to s; and a black-white bridge to s;. Get a
bicolored graph I on a torus.
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@ Pick a word 3 in the alphabet {si,...,s, = so} U {st,...,s5 = 55} L {A*}.

@ Associate a white-black bridge to s; and a black-white bridge to s;. Get a
bicolored graph I on a torus.

@ Let f be the product of the letters of 3 in {s1,...,s, = so} U {A*!} and
f' be the product of the letters of 3 in {s,...,ss = s5+ LI {A*1}.

@ f = zig-zag paths going left-to-right, f' = zig-zag paths going right-to-left.

Theorem (G.—George; see also Fock—Marshakov '16)

@ Iff,f" are c-reduced then I is move-reduced.

@ Any move-reduced graph I can be obtained in this way.
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Let f € By, be such that ncyc(f) = 1. The positroid Catalan number is
Cr := (Euler characteristic of M3(C)) = #”;(]Fq)‘q:y

Let f = Ak € By, ice., f(i) =i+ k for all i € Z. Assume ncyc(f) = ged(k, n) = 1.

Mk = {[1dk |A] € Matixn|Agr,. sy = Do, 1y =+ = Dipr, ke1y = 1.}




Definition (G.—Lam)
Let f € By, be such that ncyc(f) = 1. The positroid Catalan number is
Cr := (Euler characteristic of M3(C)) = #I'I,':(IFq)‘qzl.

| A\

Example
Let f = Ak € By, ice., f(i) =i+ k for all i € Z. Assume ncyc(f) = ged(k, n) = 1.

M = {[1dx [A] € Matyxn|Aqr, k= Do, ki1y = = Dn1,. k-13 = 1.}

Theorem (G.—Lam)
Assume gcd(k,n) = 1. Let f = AK€ Bi,. Then

1
Cr = - (:) = #{Dyck paths from (0,0) to (n — k, k) above diagonal}.
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e This recurrence computes C¢ for any f € By, with ncyc(f) = 1.




Definition (G.—Lam)
Let f € By, be such that ncyc(f) = 1. The positroid Catalan number is
Cr := (Euler characteristic of M3(C)) = #I'I;(IFq)‘qzl.

Proposition (G.—Lam)

Assume ncyc(f) = 1.
o Ifn=1 then Cr = 1. If f(i) € {i,i + n}, removing i preserves Cy.
o Iff ~ f' then Cr = Cpr.

o IfU(sifs;) = £(f)+ 2 then Cr = Cy, - Cg, + Cy;55,, where g1, 8> are the
two cycles of s;f ~ fs;.

e This recurrence computes C¢ for any f € By, with ncyc(f) = 1.

What does this have to do with Dyck paths? I




For g € Sy, denote 6(g) := (n — k, k).



For g € Sk, denote §(g) := (n — k, k).

Definition (G.—Lam)
Let f € By p with ncyc(f) = 1.
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o(f) = (4,3)



For g € Sk, denote §(g) := (n — k, k).

Definition (G.—Lam)
Let f € By, with ncyc(f) = 1.

@ For each crossing point x of f, resolving x gives two cycles g;, g5
entering x from the top-left and top-right, respectively.
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Definition (G.—Lam)
Let f € By, with ncyc(f) = 1.

@ For each crossing point x of f, resolving x gives two cycles g;, g5
entering x from the top-left and top-right, respectively.

o Let A(f) be the multiset of d(g;) for all crossings x of f.
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For g € Sk, denote §(g) := (n — k, k).

Definition (G.—Lam)
Let f € By, with ncyc(f) = 1.

@ For each crossing point x of f, resolving x gives two cycles g;, g5
entering x from the top-left and top-right, respectively.

o Let A(f) be the multiset of d(g;) for all crossings x of f.

o f is called repetition-free if all points in A(f are distinct.

123456012

VRS

A(f) ={(1,1),(3,2)} 2) = (1, 1



Here are all possible repetition-free A(f) for k =4 and n=8:
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Theorem (G.—Lam)

o A C[n—k—1] x [k —1] arises as A(f) for some repetition-free
f € By, if and only if

A U{(0,0),(n— k,k)} = PNZ?

for some convex centrally-symmetric polygon P.
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Theorem (G.—Lam)

o A C[n—k—1] x [k —1] arises as A(f) for some repetition-free
f € By, if and only if

A L{(0,0),(n— k,k)} = PN Z2

for some convex centrally-symmetric polygon P.
e If f is repetition-free, then Cr = # Dyck(A(f)), where

Dyck(A) = {Dyck paths from (0,0) to (n — k, k) above A(f)}.
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If f is repetition-free, then Cr = # Dyck(A(f)).

Recall: If ¢(sifs;) = £(f) + 2 then
Cr=Cg - Cgp + Gty

where g1, g are the two cycles of s;f ~ fs;.
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Thanks!



