
Move-reduced graphs on a torus vs positroid Catalan numbers

Pavel Galashin (UCLA)
based on joint works with Terrence George and Thomas Lam

(scan to play the game)

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.

Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.

Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.

Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.

Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.

f , f ′ ∈ S̃n are c-equivalent (f
c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i) = #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i) = #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.

f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i) = #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.

ncyc(f) := #{cycles of f̄ }.

Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.
Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi) [i.e. click on].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi) 6 `(g). [i.e. click on or].

f is c-reduced if f
c→ f ′ implies `(f) = `(f ′).

k(f) := 1
n

∑n
i=1 (f (i)− i) = #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f) := #{cycles of f̄ }.

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ

N(Γ)

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ

N(Γ)

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ N(Γ)

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ N(Γ)

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ — not minimal! 2 Area(N(Γ)) = 2

Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ — minimal 2 Area(N(Γ)) = 2

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced?

— No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering;
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering;
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and

for each edge e of N(Γ), the zig-zag paths in the
direction of e have the same cyclic ordering;

2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,
d := gcd(d(P) | zig-zag path P).

Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering;

2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,
d := gcd(d(P) | zig-zag path P).

Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering;
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

(2)

(1) (1)

(1, 1)

(1) (1)

Both move-reduced!

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

(2)

(1) (1)

(1, 1)

(1) (1)

Both move-reduced!

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

(2, 2)

(2, 2)

Γ Γ′ Γ Γ′ N(Γ) = N(Γ′)

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.
Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

(2, 2)

(2, 2)

Γ Γ′ Γ Γ′ N(Γ) = N(Γ′)

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

s1 s3 s4s0 s3 s1 s4s0 s4s0Λ Λs1 s3 s4 s3 s1 s4 s4

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

s1 s3 s4s0 s3 s1 s4s0 s3Λ Λs1 s3 s4 s3 s1 s4 s3

(2)

(2)

(2)

Γ Γ′ N(Γ) = N(Γ′)

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has

2 Area(N(Γ)) +
∑
P

(d(P)− 1)

faces, where the sum is over zig-zag paths of Γ.

Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering, and
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

s1 s3 s4s0 s3 s1 s4s0 s4s0Λ Λs1 s3 s4 s3 s1 s4 s4

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

s1 s3 s4s0 s3 s1 s4s0 s3Λ Λs1 s3 s4 s3 s1 s4 s3

(2)

(2)

(2)

Γ Γ′ N(Γ) = N(Γ′)

Not move-equivalent! µ(Γ) = 0 ∈ Z/2Z and µ(Γ′) = 1 ∈ Z/2Z.

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

s1 s3 s5s0 s1 s5s0 s3 s3 s2Λ Λ−1Λ−1s1 s3 s0 s1 s0 s3 s3 s2

Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.

Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

s1 s3 s5s0 s1 s5s0 s3 s3 s2Λ Λ−1Λ−1s1 s3 s0 s1 s0 s3 s3 s2

Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

s1 s3 s5s0 s1 s5s0 s3 s3 s2Λ Λ−1Λ−1s1 s3 s0 s1 s0 s3 s3 s2

Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.

f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

s1 s3 s5s0 s1 s5s0 s3 s3 s2Λ Λ−1Λ−1s1 s3 s0 s1 s0 s3 s3 s2

Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.

−2 −2

−1 −1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

s1 s3 s5s0 s1 s5s0 s3 s3 s2Λ Λ−1Λ−1s1 s3 s0 s1 s0 s3 s3 s2

Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.

Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Example

Let f = Λk
n ∈ Bk,n, i.e., f (i) = i + k for all i ∈ Z. Assume ncyc(f) = gcd(k, n) = 1.

Π•Λk
n

∼=
{

[Idk |A] ∈ Matk×n
∣∣∆{1,...,k} = ∆{2,...,k+1} = · · · = ∆{n,1,...,k−1} = 1.

}
Theorem (G.–Lam)

Assume gcd(k, n) = 1. Let f = Λk
n ∈ Bk,n. Then

Cf =
1

n

(
n

k

)
= #{Dyck paths from (0, 0) to (n − k, k) above diagonal}.

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Example

Let f = Λk
n ∈ Bk,n, i.e., f (i) = i + k for all i ∈ Z. Assume ncyc(f) = gcd(k, n) = 1.

Π•Λk
n

∼=
{

[Idk |A] ∈ Matk×n
∣∣∆{1,...,k} = ∆{2,...,k+1} = · · · = ∆{n,1,...,k−1} = 1.

}
Theorem (G.–Lam)

Assume gcd(k, n) = 1. Let f = Λk
n ∈ Bk,n. Then

Cf =
1

n

(
n

k

)
= #{Dyck paths from (0, 0) to (n − k, k) above diagonal}.

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Example

Let f = Λk
n ∈ Bk,n, i.e., f (i) = i + k for all i ∈ Z. Assume ncyc(f) = gcd(k, n) = 1.

Π•Λk
n

∼=
{

[Idk |A] ∈ Matk×n
∣∣∆{1,...,k} = ∆{2,...,k+1} = · · · = ∆{n,1,...,k−1} = 1.

}

Theorem (G.–Lam)

Assume gcd(k, n) = 1. Let f = Λk
n ∈ Bk,n. Then

Cf =
1

n

(
n

k

)
= #{Dyck paths from (0, 0) to (n − k, k) above diagonal}.

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Example

Let f = Λk
n ∈ Bk,n, i.e., f (i) = i + k for all i ∈ Z. Assume ncyc(f) = gcd(k, n) = 1.

Π•Λk
n

∼=
{

[Idk |A] ∈ Matk×n
∣∣∆{1,...,k} = ∆{2,...,k+1} = · · · = ∆{n,1,...,k−1} = 1.

}
Theorem (G.–Lam)

Assume gcd(k , n) = 1. Let f = Λk
n ∈ Bk,n. Then

Cf =
1

n

(
n

k

)
= #{Dyck paths from (0, 0) to (n − k , k) above diagonal}.

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi) = `(f) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f) = 1.

Question

What does this have to do with Dyck paths?

For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f) be the multiset of δ(g x
1) for all crossings x of f .

f is called repetition-free if all points in ∆(f) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

δ(f) = (4, 3) δ(g x1
1) = (3, 2)

3

4
0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

∆(f) = {(1, 1), (3, 2)} δ(g x2
1) = (1, 1)

For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f) be the multiset of δ(g x
1) for all crossings x of f .

f is called repetition-free if all points in ∆(f) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

δ(f) = (4, 3)

δ(g x1
1) = (3, 2)

3

4
0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

∆(f) = {(1, 1), (3, 2)} δ(g x2
1) = (1, 1)

For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f) be the multiset of δ(g x
1) for all crossings x of f .

f is called repetition-free if all points in ∆(f) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

δ(f) = (4, 3) δ(g x1
1) = (3, 2)

3

4

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

∆(f) = {(1, 1), (3, 2)}

δ(g x2
1) = (1, 1)

For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f) be the multiset of δ(g x
1) for all crossings x of f .

f is called repetition-free if all points in ∆(f) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

δ(f) = (4, 3) δ(g x1
1) = (3, 2)

3

4
0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

∆(f) = {(1, 1), (3, 2)} δ(g x2
1) = (1, 1)

For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f) be the multiset of δ(g x
1) for all crossings x of f .

f is called repetition-free if all points in ∆(f) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

δ(f) = (4, 3) δ(g x1
1) = (3, 2)

3

4
0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

.

.

∆(f) = {(1, 1), (3, 2)} δ(g x2
1) = (1, 1)

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

4

4

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:
0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

4

4

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:
0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

4

4

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

0 1 2 3 4 5 6 7 0 1 2 3

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.

.

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:

4

4

4

4

4

4

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:

4

4

4

4

4

4

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Here are all possible repetition-free ∆(f) for k = 4 and n = 8:

4

4

4

4

4

4

4

4

4

4

Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f)), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f)}.

Theorem (G.–Lam)

If f is repetition-free, then Cf = # Dyck(∆(f)).

Recall: If `(si fsi) = `(f) + 2 then

Cf = Cg1 · Cg2 + Csi fsi ,

where g1, g2 are the two cycles of si f
c∼ fsi .

5

6

5

6

3

2

2

4

5

6

Dyck(∆(f)) =# Dyck(∆(g1)) ·# Dyck(∆(g2))+ # Dyck(∆(sifsi))

Thanks!

Theorem (G.–Lam)

If f is repetition-free, then Cf = # Dyck(∆(f)).

Recall: If `(si fsi) = `(f) + 2 then

Cf = Cg1 · Cg2 + Csi fsi ,

where g1, g2 are the two cycles of si f
c∼ fsi .

5

6

5

6

3

2

2

4

5

6

Dyck(∆(f)) =# Dyck(∆(g1)) ·# Dyck(∆(g2))+ # Dyck(∆(sifsi))

Thanks!

Theorem (G.–Lam)

If f is repetition-free, then Cf = # Dyck(∆(f)).

Recall: If `(si fsi) = `(f) + 2 then

Cf = Cg1 · Cg2 + Csi fsi ,

where g1, g2 are the two cycles of si f
c∼ fsi .

5

6

5

6

3

2

2

4

5

6

Dyck(∆(f)) =# Dyck(∆(g1)) ·# Dyck(∆(g2))+ # Dyck(∆(sifsi))

Thanks!

Theorem (G.–Lam)

If f is repetition-free, then Cf = # Dyck(∆(f)).

Recall: If `(si fsi) = `(f) + 2 then

Cf = Cg1 · Cg2 + Csi fsi ,

where g1, g2 are the two cycles of si f
c∼ fsi .

5

6

5

6

3

2

2

4

5

6

Dyck(∆(f)) =# Dyck(∆(g1)) ·# Dyck(∆(g2))+ # Dyck(∆(sifsi))

Thanks!

