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Let n > 2. S̃n := {f : Z→ Z bijection | f (i + n) = f (i) + n ∀i ∈ Z}.

Example: si ∈ S̃n swaps i and i + 1 modulo n.
Example: Λ = Λn ∈ S̃n sends i 7→ i + 1 ∀i ∈ Z.
Claim: S̃n is generated by {s1, s2, . . . , sn = s0} t {Λ}.
Let `(f ) := {i , j ∈ Z | i < j , f (i) > f (j), and 1 6 i 6 n}.
f , f ′ ∈ S̃n are c-equivalent (f

c∼ f ′) if they are related by a sequence of

moves g 7→ sigsi where `(g) = `(sigsi ) [i.e. click on ].

We write f
c→ f ′ if one can get from f to f ′ by moves g 7→ sigsi where

`(sigsi ) 6 `(g). [i.e. click on or ].

f is c-reduced if f
c→ f ′ implies `(f ) = `(f ′).

k(f ) := 1
n

∑n
i=1 (f (i)− i)

= #{i 6 r | f (i) > r} −#{i > r | f (i) 6 r} ∀k ∈ Z.

S̃k,n := {f ∈ S̃n | k(f ) = k}.
f ∈ S̃n 7→ f̄ ∈ Sn unique s.t. f̄ (i) ≡ f (i) (mod n) ∀ 1 6 i 6 n.
ncyc(f ) := #{cycles of f̄ }.
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Bipartite graphs on a torus

Definition

Consider a bipartite graph Γ embedded on a torus.

A zig-zag path in Γ is a path that makes a sharp right turn at black
vertices and a sharp left turn at white vertices.

The Newton polygon N(Γ) is the polygon whose boundary is given by
homology vectors of zig-zag paths in counterclockwise order.

[Goncharov–Kenyon ’10] Γ is minimal if it has 2 Area(N(Γ)) faces.

Γ

N(Γ)
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Γ, Γ′ are move-equivalent (Γ ∼ Γ′) if they are related by moves (M1)–(M2).

Γ is move-reduced if one cannot apply a reduction move (R1)–(R3) to any
Γ′ move-equivalent to Γ.

[Goncharov–Kenyon ’10] Γ is minimal =⇒ Γ is move-reduced.

[Goncharov–Kenyon ’10] Let Γ, Γ′ be minimal. Then
Γ ∼ Γ′ ⇐⇒ N(Γ) = N(Γ′).

Question: Is minimal the same as move-reduced? — No.

Question: When are two move-reduced graphs move-equivalent?

←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.
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Move-reduced bipartite graphs on a torus

For a zig-zag path P of homology (a, b) ∈ Z2, let d(P) := gcd(a, b).

Theorem (G.–George)

Γ is move-reduced ⇐⇒ Γ has
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Let Γ, Γ′ be move-reduced. Then Γ ∼ Γ′ if and only if
1 N(Γ) = N(Γ′) and for each edge e of N(Γ), the zig-zag paths in the

direction of e have the same cyclic ordering;
2 µ(Γ) = µ(Γ′), where µ(Γ) ∈ Z/dZ—modular invariant,

d := gcd(d(P) | zig-zag path P).
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Pick a word β in the alphabet {s1, . . . , sn = s0} t {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.

Associate a white-black bridge to si and a black-white bridge to sī . Get a
bicolored graph Γ on a torus.

Let f be the product of the letters of β in {s1, . . . , sn = s0} t {Λ±1} and
f ′ be the product of the letters of β in {s1̄, . . . , sn̄ = s0̄} t {Λ±1}.
f = zig-zag paths going left-to-right, f ′ = zig-zag paths going right-to-left.

Theorem (G.–George; see also Fock–Marshakov ’16)

If f , f ′ are c-reduced then Γ is move-reduced.

Any move-reduced graph Γ can be obtained in this way.
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Positroid Catalan numbers

Recall: S̃k,n := {f ∈ S̃n | 1
n

∑n
i=1(f (i)− i) = k}.

Definition (Knutson–Lam–Speyer ’13)

Bounded affine permutations:
Bk,n := {f ∈ S̃k,n | i 6 f (i) 6 i + n for all i ∈ Z}.

Theorem (Knutson–Lam–Speyer ’13)

Gr(k , n) =
⊔

f ∈Bk,n

Π◦f , where Π◦f are open positroid varieties.

Let T := {n × n diagonal matrices} and Π•f := Π◦f /T .

Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f ) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.
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Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f ) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Example

Let f = Λk
n ∈ Bk,n, i.e., f (i) = i + k for all i ∈ Z. Assume ncyc(f ) = gcd(k, n) = 1.

Π•Λk
n

∼=
{

[Idk |A] ∈ Matk×n
∣∣∆{1,...,k} = ∆{2,...,k+1} = · · · = ∆{n,1,...,k−1} = 1.

}
Theorem (G.–Lam)

Assume gcd(k, n) = 1. Let f = Λk
n ∈ Bk,n. Then

Cf =
1

n

(
n

k

)
= #{Dyck paths from (0, 0) to (n − k, k) above diagonal}.
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Definition (G.–Lam)

Let f ∈ Bk,n be such that ncyc(f ) = 1. The positroid Catalan number is

Cf := (Euler characteristic of Π•f (C)) = #Π•f (Fq)
∣∣
q=1

.

Proposition (G.–Lam)

Assume ncyc(f ) = 1.

If n = 1 then Cf = 1. If f (i) ∈ {i , i + n}, removing i preserves Cf .

If f
c∼ f ′ then Cf = Cf ′ .

If `(si fsi ) = `(f ) + 2 then Cf = Cg1 · Cg2 + Csi fsi , where g1, g2 are the
two cycles of si f

c∼ fsi .

This recurrence computes Cf for any f ∈ Bk,n with ncyc(f ) = 1.

Question

What does this have to do with Dyck paths?
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For g ∈ S̃k,n, denote δ(g) := (n − k , k).

Definition (G.–Lam)

Let f ∈ Bk,n with ncyc(f ) = 1.

For each crossing point x of f , resolving x gives two cycles g x
1 , g

x
2

entering x from the top-left and top-right, respectively.

Let ∆(f ) be the multiset of δ(g x
1 ) for all crossings x of f .

f is called repetition-free if all points in ∆(f ) are distinct.

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

. . .. . .

. . .. . .

0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

. . .. . .

. . .. . .

δ(f ) = (4, 3) δ(g x1
1 ) = (3, 2)

3

4
0 1 2 3 4 5 6 0 1 2 3

3 4 5 6 0 1 2 3 4 5 6

. . .. . .

. . .. . .

∆(f ) = {(1, 1), (3, 2)} δ(g x2
1 ) = (1, 1)
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Here are all possible repetition-free ∆(f ) for k = 4 and n = 8:
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Theorem (G.–Lam)

∆ ⊆ [n − k − 1]× [k − 1] arises as ∆(f ) for some repetition-free
f ∈ Bk,n if and only if

∆ t {(0, 0), (n − k , k)} = P ∩ Z2

for some convex centrally-symmetric polygon P.

If f is repetition-free, then Cf = # Dyck(∆(f )), where

Dyck(∆) = {Dyck paths from (0, 0) to (n − k , k) above ∆(f )}.
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Theorem (G.–Lam)

If f is repetition-free, then Cf = # Dyck(∆(f )).

Recall: If `(si fsi ) = `(f ) + 2 then

Cf = Cg1 · Cg2 + Csi fsi ,

where g1, g2 are the two cycles of si f
c∼ fsi .
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# Dyck(∆(f)) =# Dyck(∆(g1)) ·# Dyck(∆(g2))+ # Dyck(∆(sifsi))

Thanks!
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