03/12/24 Intro to cluster algebras. Fomin-Zelevinsky 2002 Textbook: Fomin-Williams-Zelevinsky 1) Quivers 2024+ Def. A quiver is a directed graph without of and and a Def. An ice quiver is a quiver with vertex set partitioned into mutable and Frozen vertices. Arrows between frozen vertices are always omitted. $\frac{14}{2} = \frac{1}{2} - \frac{1$ Ex. II 25 Def. Let Q-quiver, $j \in V(Q)$ -mutable vertex. DC Mi(Q) is obtained from Q by. 21 (1) for each 2-path i-j-sk in Q, create shortcut i-sk. (2) reverse all arrows incident to j. (3) remove all pairs o= 0 one by one. Exercise: M_{δ} is an involution: $M_{\delta}(M_{\delta}(Q)) = Q$. Running ex. T-triangulation of a polygon P. Q(T) - quiver: mutable verts: diagonals in T
 mutable verts: diagonals in T
 for each triangle in T. Claim. Any two triangulations of P are related by a sequence of <u>flips</u>:

2 (Jain: If T₁, T₂ are related by a flip then Q(T₁), Q(T₂)
are related by motation.
2 Seeds:
Fix F - embient field. Usually, F = C(x,...,x₁),
bef. A seed is a pair (Q, f), where F= (f₃)₃eQ f₃e F - algebraically.
Def. A seed is a pair (Q, f), where F= (f₃)₃eQ f₃e F - algebraically.
Def. Seed mutation: (Q, f)-seed, jeV(Q)-mutable
=>
$$\mu_{3}(Q, f) = (Q, fr)$$
 is detained from (Q, f) as follows:
 $Q = \mu_{3}(Q)$;
 $f'_{1} = f_{1}$ for it j
 $f'_{2} = f_{1}$ for it j
 $f'_{3} = f_{1} = f_{2} = f_{3}$
Rominder. Ptolemy's thm. If AB(D inscribed quadrilateral, then
 $f(f) = f'_{3} = f_{4}$
 $f'_{4} = f_{4}$
 $f'_{5} = f_{5}$
 $f'_{5} = f_{5}$
 $f'_{6} = f_{6}$
 $f'_{7} = f_{7}$
 $f'_{8} = f_{1} = f_{8}$
 $f'_{9} = f_{1} = f_{9}$
 $f'_{9} = f_{1} = f_{9}$
 $f'_{9} = f_{1} = f_{2} = f_{1} = f_{2} = f_{1} = f_{1} = f_{2} = f_{1} = f_{2} = f_{1} = f_{2} = f_{1} = f_{1} = f_{2} = f_{1} = f_{2} = f_{2} = f_{1} = f_{2} = f_{3} = f_$

Def. $M \in Mat_{2\times n}$ $\Delta_{AB} = Jet \left[M_A M_B \right]$ $i \in A < B \le n$ $M = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \end{bmatrix}$ Plücker relation: DAC ABD = DAB ACD + DAD ABC. ABCDPx0-yp0ziw(FK. $\begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ $x_1' = \frac{x_2 \times u + x_1 \times x_3}{x_1} = \frac{p_2 y + p_1 w}{p_2} = x_1 w + z_2 = \Delta BD.$ $\rightarrow p$ Summary. Let $F = C(m_{11}, m_{12}, \dots, m_{2n})$, P-polypon, $V(P) = 1, 2, \dots, n$. For each triangulation T of P, get a seed (Q_T, X_T) For each diagonal B of T (or side of P), set $x_j = A_{AB}(M)$. IF T, Tz are related by flip then seeds (QT, XT,), (QTz, XTz) are related by a mutation. Questions: (1) How to generalize this from 2×n matrices to k×n? (2) What does it have to do with dimers? (3) What is a cluster algebra?

4 3 Cluster algebras. Let Q be a quiver, mut. verts 1,2,..., h Frozen verts nel,..., nem. Set $F = C(x_1, x_2, \dots, x_{n+m})$ Let (Q, x) - initial setd, $x = (x_1, \dots, x_{n+m})$. Write down all other seeds obtained from (Q,x) via a seq. of Elements of F obtained this way are called nutations cluster variables. If $(Q, x) \longrightarrow \dots \longrightarrow (Q', x')$, x'_1, \dots, x'_{nem} are said to $M'_{\delta 1}$ $M'_{\delta N}$ $M'_{\delta N}$ form a cluster $x_{nen, \dots, x_{nem}}$ are called Frozen variables. Def. Cluster algebra $\mathcal{A}(Q) \subseteq \mathcal{F}$ is the subalgebra generated by all cluster variables. $A^{0}(Q) \cong C[x_{i}, x_{i}, x_{i}]/(x, x_{i}' = x_{i})$ $\underbrace{E_X} \cdot Q = 1 \longrightarrow 2 \quad (Q, x) = x_1 \longrightarrow [x_2] \qquad \mu_1(Q, x) = \frac{x_2 + 1}{x_1} \leftarrow [x_2] \qquad \text{initial seed} \qquad \text{other seed}$ Cluster vars: $X_1, X_2, \frac{X_2+1}{X_1}$ $\begin{array}{c} ux y + ers : (x_1, x_2), (\frac{x_2 + 1}{x_1}, x_2) \\ A(Q) \cong C[x_1, x_1', x_2]/(x_1 x' = x_2 + 1) \\ A(Q) \cong C[x_1, x_1', x_2]/(x_1 x' = x_2 + 1) \\ \end{array}$ c (usters: (x_1, x_2) , $(\frac{x_2+1}{x_1}, x_2)$) Ex. T-triang. of an m-gon. m Frozen, n=m-3 mutable verts. # clusters = Catalan number C_{m-2} $C_{k} = \frac{1}{k+1} \begin{pmatrix} 2k \\ k \end{pmatrix}$ $\begin{array}{c} \text{ + cluster vars = } \begin{pmatrix} m \\ z \end{pmatrix} & \text{ ring of polynomial fcns} \\ \text{ A (QT) depends only on } M. & \text{ on Grassmannian Grz, m} \end{array}$

	4'			1	hn	<u>\</u> .	A	ny	٤.	lus	fei	r	var	ia k	sle	ίs	C	e l	_QU	i <i>ren</i>	.t	po	lyn	om	ial) . iv	1	t4	2						
initial cluster with positive integer coeff															fi	cie	n f	S .																	
																	ςι	irpr	isin	p [×+	+y+	1		h of	1	our	ont						
				- (-													-				>	X+V												
				<u>[</u>	<u>-^</u>	•		χ.		> Y												×	3+	y3 :	= X	² – x	·y+ (2	L	aure	nt,	n	. <i>0</i> 11-	posit	i've.
								y+1	. E	- y													X+	ÿ			0 0				,				
								×																\succ	\bigwedge	\backslash									
							1	<u>}</u> ×	>	<u>×</u> +	<u>у+1</u> У		X.	+ 4+ ×4	+1	= ×	+y+1	+ ×y 1)	- *	<u>F1</u>				$\langle \rangle$	/ _×	•\y	A								
								<u>x + </u>	E	<u>×+</u>	y*1			ال ار ا	×	2	3 (3)	y I	•	σ				V	Ì										
								у		۲	ry																								
								<u>×+</u> 3	->	×								,																	
								у	~	×			Surp	r i sì	ng: f	perio	dici	ty !																	
																												_							
																										_									
																_																			
																																		_	
																_									-										
																_																			
																									_									+	
																																		_	

Def. G is a (k,n) - graph if $\Pi_G(i) \equiv i+k \mod n \forall i$, and G has k(n-k)+1 faces. Thm (Postnikov'06) Any two (kin)-graphs are related by square moves. Thm. (Scott '06) 6. (k,n)-graph => A(QG) = ring of polynomial Functions on $Gr(\kappa,n) = \mathbb{C}[\Delta_I | I \in \mathbb{N}], (I = k]/(plücker relations)$