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Part 1: Symmetry



Young diagrams, skew-shapes, SSYT

Skew shapes

λ = (4, 4, 3) λ/µ = (4, 4, 3)/(2, 1)

Semi-standard Young tableau (SSYT)

1 3

2 2 4

2 6 6

1
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6
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Reverse plane partitions (RPP)

1 3

1 2 3

2 2 2
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Reverse plane partitions (RPP)

1 3

1 2 3

2 2 2

1 3
1 2 2

3 2 2

SSYT is a special case of RPP!
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Skew-Schur polynomials

Definition
If T is an SSYT then w(T ) := (#T−1(1), #T−1(2), . . . , #T−1(m)),
where #T−1(i) = [the number of entries in T equal to i ].

Example

T = 1 3

2 2 4

2 6 6

, w(T ) = (1, 3, 1, 1, 0, 2), xw (T ) = x1
1x

3
2x

1
3x

1
4x

0
5x

2
6 .

Definition

sλ/µ(x1, . . . , xm) = ∑
T is a SSYT
of shape λ/µ

with entries ≤ m

xw (T ).
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Example

Example
Let m = 2, λ = (3, 2), µ = (1).

w(T ) = (3, 1) (2, 2) (2, 2) (1, 3)
sλ/µ(x1, x2) = x3

1x2 +x2
1x

2
2 +x2

1x
2
2 +x1x

3
2 .
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Problem

Example
Let m = 2, λ = (3, 2), µ = (1).

1 1

1

1 2

1

1 1

2

1 2

2

2 2

2
“w(R) =” (3, 0) (2, 1) (2, 1) (1, 2) (0, 3)

(3, 0) (2, 1) (2, 1) (1, 2) (0, 3)
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Dual stable Grothendieck polynomials

Definition
If R is an RPP then w(R) := (w1(R),w2(R), . . . ,wm(R)), where
wi (R) = [the number of columns in R containing i ].

Definition

gλ/µ(x1, . . . , xm) = ∑
R is a RPP
of shape λ/µ

with entries ≤ m

xw (R).

Example

1 1

1

1 2

1

1 1

2

1 2

2

2 2

2

w(R) = (2, 0) (1, 1) (2, 1) (1, 2) (0, 2)
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Properties of gλ/µ

“represent the classes in K-homology of the ideal sheaves of the
boundaries of Schubert varieties” (see [Lam, Pylyavskyy (2007)]);
SSYT(λ/µ,≤ m) ⊂ RPP(λ/µ,≤ m) and the top-degree
homogeneous component of gλ/µ is sλ/µ;
gλ/µ are symmetric (see [Lam, Pylyavskyy (2007)]);
there exist involutions Bi : RPP(λ/µ,≤ m)→ RPP(λ/µ,≤ m) such
that

w(Bi (R)) = siw(R);

Bi restricted to SSYT(λ/µ,≤ m) are classical Bender-Knuth
involutions.
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sλ/µ and gλ/µ are symmetric!

Bender-Knuth involutions
Want to construct Bi : RPP(λ/µ,≤ m)→ RPP(λ/µ,≤ m). Note that it
is enough to consider the case i = 1,m = 2:

Reduction to the case m = 2
Let i = 5.

1

2 7

1 3 3 7 8

1 1 8 9

9

7 7 8

−→ 5 5

6

5 6 6

5 5 6 6

6
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Three types of columns

1
2

2 2
1 1 1

2

Definition
Let R ∈ RPP(λ/µ, 2). A column of R is called

mixed, if it contains a 1 and a 2;
1-pure, if it contains a 1 and not a 2;
2-pure, if it contains a 2 and not a 1;
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Construction of Bender-Knuth involutions

Flip map

1
2

2 2
1 1 1

2

−→

1
1

1 2
2 1 2

2
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Descent-resolution step

A lot of descents

1
1

1 2
2 1 2

2

(M1) mixed vs. 1-pure;
(2M) 2-pure vs. mixed;
(21) 2-pure vs. 1-pure.

(MM) mixed vs. mixed – never happens!
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Descent-resolution steps

(M1)

(2M) (21)

1 1

2

→

1

1
2

1

2
2

→ 1 2

2

1
2

→ 2
1
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Properties

The descent-resolution process

ends after a finite number of steps;
the result does not depend on the order!

Corollary
B1 is an involution on RPP(λ/µ, 2) that switches the number of 1-pure
columns with the number of 2-pure columns.
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Why is Bi an involution?

(M1) (2M) (21)

1 1

2

→

1

1
2

1

2
2

→ 1 2

2

1
2

→ 2
1

↑ flip ↓ ↑ flip ↓ ↑ flip ↓

1 2

2

←

1

2
2

1

1
2

← 1 1

2

2
1

← 1
2

(2M) (M1) (21)
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Why is Bi an involution?
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Part 2: Schur expansion



Knuth equivalence

Definition
Two words are Knuth equivalent if they can be obtained from each other by
moves

yzx ↔ yxz , if x < y ≤ z ;

xzy ↔ zxy , if x ≤ y < z .

Definition
Reading word: concatenate rows from bottom to top.

T= 1 3

2 2 4
rw(T ) = (2, 2, 4, 1, 3).

Proposition
Every word is Knuth equivalent to exactly one word which is a reading
word of a SSYT of straight shape (µ = ()).
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Crystal operators

Definition
Ei : [m]r → [m]r ∪ {0} is defined as follows. For u ∈ [m]r ,

ignore all letters of u except for i and i + 1;
label each i by ) and each i + 1 by (;
ignore all pairs of matching parentheses;
replace the rightmost unmatched ) by (.

Assume i = 3.
u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4

Ei (u) = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,4,4,1,4
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Crystal operators on SSYT

(a picture from
[Kashiwara (1995)])
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Littlewood-Richardson rule

Crystal operators on words commute with Knuth equivalence relations;

For any straight shape λ and any m, the crystal graph on SSYT(λ,m)
is connected;
Only one tableau Tλ ∈ SSYT(λ,m) satisfies E−1

i (Tλ) = ∅ for all
i < m:

1 1 1 1

2 2 2 2

3 3 3

We have w(Tλ) = λ.

Corollary
If W ⊂ [m]r is closed under the action of Ei , then

∑
u∈W

xw (u) = ∑
u∈W :E−1

i (u)=∅ ∀i
sw (u)(x1, . . . , xm).
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Reading words for RPP

Definition

R =

1 2
1 1 4

1 1 1 4
1 3 3 4
2 3 5
2 4 5
3 4

→

2

1 1
1 3 4

3
2 5
3 4

rw(R) = 34253134112.
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Crystal action on RPP

Definition
For R ∈ RPP(λ/µ,m) define ceq(R) = (ceq1(R), ceq2(R), . . . ) where
ceqi (R) := [number of equalities between rows i and i + 1].

Proposition
If R ∈ RPP(λ/µ,m) then there exists a unique Q ∈ RPP(λ/µ,m) with

rw(Q) = Ei (rw(R));
ceq(Q) = ceq(R).

Proposition
The ceq-statistics is preserved by flips and descent resolution steps.
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Schur expansion of gλ/µ

Theorem

gλ/µ(x1, . . . , xm) = ∑
R is a RPP
of shape λ/µ

with entries ≤ m
such that E−1

i (rw(R)) = ∅ for all i < m

sw (R)(x1, . . . , xm).
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Thank you!
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