The symmetry and Schur expansion of dual stable Grothendieck polynomials

Pavel Galashin

MIT

October 7, 2015

Joint work with Gaku Liu and Darij Grinberg

Part 1: Symmetry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Skew shapes

э

Pavel Galashin (MIT)

Semi-standard Young tableau (SSYT)

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015 3 / 25

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Semi-standard Young tableau (SSYT)

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015 3 / 25

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Semi-standard Young tableau (SSYT)

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< 4 → <

< 4 → <

< 4 → <

SSYT is a special case of RPP!

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015 4 / 25

Skew-Schur polynomials

Definition

If *T* is an SSYT then $w(T) := (\#T^{-1}(1), \#T^{-1}(2), ..., \#T^{-1}(m))$, where $\#T^{-1}(i) = [$ the number of entries in *T* equal to *i*].

Pavel Galashin (MIT)

Skew-Schur polynomials

Definition

If T is an SSYT then
$$w(T) := (\#T^{-1}(1), \#T^{-1}(2), ..., \#T^{-1}(m))$$
,
where $\#T^{-1}(i) = [$ the number of entries in T equal to $i]$.

Example

$$T = \begin{bmatrix} 1 & 3 \\ 2 & 2 & 4 \\ 2 & 6 & 6 \end{bmatrix}, \quad w(T) = (1, 3, 1, 1, 0, 2), \quad x^{w(T)} = x_1^1 x_2^3 x_3^1 x_4^1 x_5^0 x_6^2.$$

æ

Skew-Schur polynomials

Definition

If T is an SSYT then
$$w(T) := (\#T^{-1}(1), \#T^{-1}(2), ..., \#T^{-1}(m))$$
,
where $\#T^{-1}(i) = [$ the number of entries in T equal to $i]$.

Example

$$T = \begin{bmatrix} 1 & 3 \\ 2 & 2 & 4 \end{bmatrix}, \quad w(T) = (1, 3, 1, 1, 0, 2), \quad x^{w(T)} = x_1^1 x_2^3 x_3^1 x_4^1 x_5^0 x_6^2.$$

Definition

$$s_{\lambda/\mu}(x_1,\ldots,x_m) = \sum_{\substack{T \text{ is a SSYT} \\ \text{ of shape } \lambda/\mu \\ \text{ with entries } \leq m}} x^{w(T)}.$$

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

æ

< 🗇 > <

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

æ

< 🗇 🕨 🔸

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

ъ October 7, 2015 6 / 25

3

< 🗇 > <

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

6 / 25 October 7, 2015

< 17 × 4

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

< 4 → <

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

< 17 × <

æ

Let
$$m = 2$$
, $\lambda = (3, 2)$, $\mu = (1)$.

イロト イヨト イヨト イ

Dual stable Grothendieck polynomials

Definition

Pavel Galashin (MIT)

If R is an RPP then $w(R) := (w_1(R), w_2(R), \dots, w_m(R))$, where $w_i(R) = [$ the number of columns in R containing i].

Dual stable Grothendieck polynomials

Definition

If R is an RPP then
$$w(R) := (w_1(R), w_2(R), \dots, w_m(R))$$
, where $w_i(R) = [$ the number of columns in R containing i].

Definition

Pavel Galashin (MIT)

$$g_{\lambda/\mu}(x_1,\ldots,x_m) = \sum_{\substack{R \text{ is a RPP} \\ \text{ of shape } \lambda/\mu \\ \text{ with entries } \leq m}} x^{w(R)}.$$

Dual stable Grothendieck polynomials

Definition

If R is an RPP then
$$w(R) := (w_1(R), w_2(R), \dots, w_m(R))$$
, where $w_i(R) = [$ the number of columns in R containing $i]$.

Definition

$$g_{\lambda/\mu}(x_1,\ldots,x_m) = \sum_{\substack{R \text{ is a RPP} \\ \text{ of shape } \lambda/\mu \\ \text{ with entries } \leq m}} x^{w(R)}.$$

Example

• • • • • • • • •

글 > : < 글 >

 "represent the classes in K-homology of the ideal sheaves of the boundaries of Schubert varieties" (see [Lam, Pylyavskyy (2007)]);

- "represent the classes in K-homology of the ideal sheaves of the boundaries of Schubert varieties" (see [Lam, Pylyavskyy (2007)]);
- SSYT(λ/μ, ≤ m) ⊂ RPP(λ/μ, ≤ m) and the top-degree homogeneous component of g_{λ/μ} is s_{λ/μ};

- "represent the classes in K-homology of the ideal sheaves of the boundaries of Schubert varieties" (see [Lam, Pylyavskyy (2007)]);
- SSYT(λ/μ, ≤ m) ⊂ RPP(λ/μ, ≤ m) and the top-degree homogeneous component of g_{λ/μ} is s_{λ/μ};
- $g_{\lambda/\mu}$ are symmetric (see [Lam, Pylyavskyy (2007)]);

- "represent the classes in K-homology of the ideal sheaves of the boundaries of Schubert varieties" (see [Lam, Pylyavskyy (2007)]);
- SSYT(λ/μ, ≤ m) ⊂ RPP(λ/μ, ≤ m) and the top-degree homogeneous component of g_{λ/μ} is s_{λ/μ};
- $g_{\lambda/\mu}$ are symmetric (see [Lam, Pylyavskyy (2007)]);
- there exist involutions $B_i: {\rm RPP}(\lambda/\mu, \le m) \to {\rm RPP}(\lambda/\mu, \le m)$ such that

$$w(B_i(R)) = s_i w(R);$$

- "represent the classes in K-homology of the ideal sheaves of the boundaries of Schubert varieties" (see [Lam, Pylyavskyy (2007)]);
- SSYT $(\lambda/\mu, \leq m) \subset \operatorname{RPP}(\lambda/\mu, \leq m)$ and the top-degree homogeneous component of $g_{\lambda/\mu}$ is $s_{\lambda/\mu}$;
- $g_{\lambda/\mu}$ are symmetric (see [Lam, Pylyavskyy (2007)]);
- there exist involutions $B_i: {\rm RPP}(\lambda/\mu, \le m) \to {\rm RPP}(\lambda/\mu, \le m)$ such that

$$w(B_i(R)) = s_i w(R);$$

B_i restricted to SSYT(λ/μ, ≤ m) are classical Bender-Knuth involutions.

Pavel Galashin (MIT)

Want to construct $B_i : \operatorname{RPP}(\lambda/\mu, \leq m) \to \operatorname{RPP}(\lambda/\mu, \leq m)$. Note that it is enough to consider the case i = 1, m = 2:

10 / 25

Want to construct $B_i : \operatorname{RPP}(\lambda/\mu, \leq m) \to \operatorname{RPP}(\lambda/\mu, \leq m)$. Note that it is enough to consider the case i = 1, m = 2:

Reduction to the case m = 2let i = 5.

A ID > A ID > A

Want to construct $B_i : \operatorname{RPP}(\lambda/\mu, \leq m) \to \operatorname{RPP}(\lambda/\mu, \leq m)$. Note that it is enough to consider the case i = 1, m = 2:

10 / 25

Want to construct $B_i : \operatorname{RPP}(\lambda/\mu, \leq m) \to \operatorname{RPP}(\lambda/\mu, \leq m)$. Note that it is enough to consider the case i = 1, m = 2:

Three types of columns

October 7, 2015

< 17 ▶

æ

Three types of columns

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

• *mixed*, if it contains a 1 and a 2;

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015

< A

э

11 / 25

Three types of columns

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

• mixed, if it contains a 1 and a 2;

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015

< 17 ▶

э

11 / 25

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

mixed, if it contains a 1 and a 2;

• 1-pure, if it contains a 1 and not a 2;

< A

э

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

- mixed, if it contains a 1 and a 2;
- 1-pure, if it contains a 1 and not a 2;

< A

э

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

- mixed, if it contains a 1 and a 2;
- 1-pure, if it contains a 1 and not a 2;
- 2-pure, if it contains a 2 and not a 1;

< A

э

Definition

Let $R \in \operatorname{RPP}(\lambda/\mu, 2)$. A column of R is called

- mixed, if it contains a 1 and a 2;
- 1-pure, if it contains a 1 and not a 2;
- 2-pure, if it contains a 2 and not a 1;

< 行い

э

Flip map

October 7, 2015

æ

э

э

(M1) mixed vs. 1-pure;(2M) 2-pure vs. mixed;(21) 2-pure vs. 1-pure.

October 7, 2015

æ

October 7, 2015

14 / 25

October 7, 2015

October 7, 2015

æ

October 7, 2015

æ

October 7, 2015

æ

æ

Pavel Galashin (MIT)

æ

• ends after a finite number of steps;

э

- ends after a finite number of steps;
- the result does not depend on the order!

- ends after a finite number of steps;
- the result does not depend on the order!

Corollary

 B_1 is an involution on RPP(λ/μ , 2) that switches the number of 1-pure columns with the number of 2-pure columns.

Why is B_i an involution?

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015

Why is B_i an involution?

Part 2: Schur expansion

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Two words are *Knuth equivalent* if they can be obtained from each other by moves

$$yzx \leftrightarrow yxz$$
, if $x < y \le z$;
 $xzy \leftrightarrow zxy$, if $x \le y < z$.

Definition

Two words are *Knuth equivalent* if they can be obtained from each other by moves

$$yzx \leftrightarrow yxz$$
, if $x < y \le z$;
 $xzy \leftrightarrow zxy$, if $x \le y < z$.

Definition

Reading word: concatenate rows from bottom to top.

э

Definition

Two words are *Knuth equivalent* if they can be obtained from each other by moves

$$yzx \leftrightarrow yxz$$
, if $x < y \le z$;
 $xzy \leftrightarrow zxy$, if $x < y < z$.

Definition

Reading word: concatenate rows from bottom to top.

$$T = \begin{array}{c|c} 1 & 3 \\ \hline 2 & 2 & 4 \end{array}$$

э

Definition

Two words are *Knuth equivalent* if they can be obtained from each other by moves

$$yzx \leftrightarrow yxz$$
, if $x < y \le z$;
 $xzy \leftrightarrow zxy$, if $x \le y < z$.

Definition

Reading word: concatenate rows from bottom to top.

$$T = \begin{array}{c|c} 1 & 3 \\ \hline 2 & 2 & 4 \end{array} \quad rw(T) = (2, 2, 4, 1, 3).$$

18 / 25

э

Definition

Two words are *Knuth equivalent* if they can be obtained from each other by moves

$$yzx \leftrightarrow yxz$$
, if $x < y \le z$;
 $xzy \leftrightarrow zxy$, if $x \le y < z$.

Definition

Reading word: concatenate rows from bottom to top.

$$T = \begin{array}{c|c} 1 & 3 \\ \hline 2 & 2 & 4 \end{array} \quad rw(T) = (2, 2, 4, 1, 3).$$

Proposition

Every word is Knuth equivalent to exactly one word which is a reading word of a SSYT of straight shape $(\mu = ())$.

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015 18 / 25

Definition

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

Assume i = 3. u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4

3

Definition

 $E_i: [m]^r \to [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

• ignore all letters of u except for i and i + 1;

```
Assume i = 3.

u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4
```

3

Definition

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

• ignore all letters of u except for i and i + 1;

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$

< 67 ▶

э
$E_i: [m]^r \to [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$

< 🗗 🕨

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($

< 🗗 🕨

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;
- ignore all pairs of matching parentheses;

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;
- ignore all pairs of matching parentheses;

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;
- ignore all pairs of matching parentheses;
- replace the rightmost unmatched) by (.

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;
- ignore all pairs of matching parentheses;
- replace the rightmost unmatched) by (.

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),(,(,1,($

 $E_i: [m]^r o [m]^r \cup \{0\}$ is defined as follows. For $u \in [m]^r$,

- ignore all letters of u except for i and i + 1;
- label each i by) and each i + 1 by (;
- ignore all pairs of matching parentheses;
- replace the rightmost unmatched) by (.

Assume
$$i = 3$$
.
 $u = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,3,4,1,4$
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),),(,1,($
 $1,(,1,),5,(,(,),),1,),1,(,5,),1,),(,(,1,($
 $E_i(u) = 1,4,1,3,5,4,4,3,3,1,3,1,4,5,3,1,3,4,4,1,4$

Crystal operators on SSYT

Pavel Galashin (MIT)

• Crystal operators on words commute with Knuth equivalence relations;

- Crystal operators on words commute with Knuth equivalence relations;
- For any straight shape λ and any m, the crystal graph on SSYT(λ, m) is connected;

- Crystal operators on words commute with Knuth equivalence relations;
- For any straight shape λ and any m, the crystal graph on SSYT(λ , m) is connected;
- Only one tableau $T_{\lambda} \in \text{SSYT}(\lambda, m)$ satisfies $E_i^{-1}(T_{\lambda}) = \emptyset$ for all i < m:

1	1	1	1
2	2	2	2
3	3	3	

- Crystal operators on words commute with Knuth equivalence relations;
- For any straight shape λ and any m, the crystal graph on SSYT(λ , m) is connected;
- Only one tableau $T_{\lambda} \in \text{SSYT}(\lambda, m)$ satisfies $E_i^{-1}(T_{\lambda}) = \emptyset$ for all i < m:

1	1	1	1
2	2	2	2
3	3	3	

• We have $w(T_{\lambda}) = \lambda$.

- Crystal operators on words commute with Knuth equivalence relations;
- For any straight shape λ and any m, the crystal graph on SSYT(λ , m) is connected;
- Only one tableau $T_{\lambda} \in \text{SSYT}(\lambda, m)$ satisfies $E_i^{-1}(T_{\lambda}) = \emptyset$ for all i < m:

1	1	1	1
2	2	2	2
3	3	3	

• We have
$$w(T_{\lambda}) = \lambda$$
.

Corollary

If $W \subset [m]^r$ is closed under the action of E_i , then

$$\sum_{u \in W} x^{w(u)} = \sum_{u \in W: E_i^{-1}(u) = \emptyset \ \forall i} s_{w(u)}(x_1, \ldots, x_m).$$

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

			1	2
		1	1	4
	1	1	1	4
R =	1	3	3	4
	2	3	5	
	2	4	5	
	3	4		

< 47 ▶

æ

< 17 ►

æ

< 行い

æ

For $R \in \operatorname{RPP}(\lambda/\mu, m)$ define $\operatorname{ceq}(R) = (\operatorname{ceq}_1(R), \operatorname{ceq}_2(R), \dots)$ where $\operatorname{ceq}_i(R) := [$ number of equalities between rows *i* and *i* + 1].

э

A (10) F (10)

Pavel Galashin (MIT)

For $R \in \operatorname{RPP}(\lambda/\mu, m)$ define $\operatorname{ceq}(R) = (\operatorname{ceq}_1(R), \operatorname{ceq}_2(R), \dots)$ where $\operatorname{ceq}_i(R) := [$ number of equalities between rows i and i + 1].

Proposition

If $R \in \operatorname{RPP}(\lambda/\mu, m)$ then there exists a unique $Q \in \operatorname{RPP}(\lambda/\mu, m)$ with • $\operatorname{rw}(Q) = E_i(\operatorname{rw}(R));$

For $R \in \operatorname{RPP}(\lambda/\mu, m)$ define $\operatorname{ceq}(R) = (\operatorname{ceq}_1(R), \operatorname{ceq}_2(R), \dots)$ where $\operatorname{ceq}_i(R) := [$ number of equalities between rows i and i + 1].

Proposition

If $R \in \operatorname{RPP}(\lambda/\mu, m)$ then there exists a unique $Q \in \operatorname{RPP}(\lambda/\mu, m)$ with • $\operatorname{rw}(Q) = E_i(\operatorname{rw}(R));$ • $\operatorname{ceq}(Q) = \operatorname{ceq}(R).$

For $R \in \operatorname{RPP}(\lambda/\mu, m)$ define $\operatorname{ceq}(R) = (\operatorname{ceq}_1(R), \operatorname{ceq}_2(R), \dots)$ where $\operatorname{ceq}_i(R) := [$ number of equalities between rows i and i + 1].

Proposition

If $R \in \operatorname{RPP}(\lambda/\mu, m)$ then there exists a unique $Q \in \operatorname{RPP}(\lambda/\mu, m)$ with • $\operatorname{rw}(Q) = E_i(\operatorname{rw}(R));$

• $\operatorname{ceq}(Q) = \operatorname{ceq}(R)$.

Proposition

The ceq-statistics is preserved by flips and descent resolution steps.

3

イロト イポト イヨト イヨト

Theorem

 $g_{\lambda/\mu}$

$$(x_1, \ldots, x_m) = \sum_{\substack{R \text{ is a } RPP \\ \text{ of shape } \lambda/\mu \\ \text{ with entries } \leq m \\ \text{ such that } E_i^{-1}(\operatorname{rw}(R)) = \emptyset \text{ for all } i < m \end{cases} such that \sum_{i=1}^{R} \sum_{\substack{k \in \mathbb{Z}^n \\ k \neq k \\ k \neq k = 1 \\ k \neq k \\ k \neq k = 1 \\ k \neq k \\ k \neq k = 1 \\ k \neq k \\ k$$

Pavel Galashin (MIT)

Dual stable Grothendieck polynomials

October 7, 2015

< 行い

١.

æ

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Lam, T., Pylyavskyy, P., Combinatorial Hopf algebras and *K-homology* of Grassmanians, International Mathematics Research Notices, Vol. 2007, doi:10.1093/imrn/rnm125.
- Galashin, P. (2014). A Littlewood-Richardson Rule for Dual Stable Grothendieck Polynomials. *arXiv preprint* arXiv:1501.00051.
- Galashin, P., Grinberg, D., and Liu, G. (2015). Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions. *arXiv preprint* arXiv:1509.03803.
 - Kashiwara, M. (1995). On crystal bases. *Representations of groups* (Banff, AB, 1994), 16, 155-197.