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Part 1. Topology



Regular CW complexes

Definition

A regular CW complex is a topological space subdivided into open cells so
that the closure of each cell is homeomorphic to a ball.*
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Definition

A regular CW complex is a topological space subdivided into open cells so
that the closure of each cell is homeomorphic to a ball.*
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Face poset — regular CW complex

Theorem (Bjorner (1984))

A regular CW complex can be uniquely reconstructed from its face poset.
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Face poset — regular CW complex

Theorem (Bjorner (1984))
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Face poset — regular CW complex

Theorem (Bjorner (1984))

A regular CW complex can be uniquely reconstructed from its face poset.
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Bruhat order

Theorem (Bjorner (1984))

Poset is thin and shellable —> face poset of some regular CW complex
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Bruhat order

Theorem (Bjorner (1984))

Poset is thin and shellable —> face poset of some regular CW complex

Theorem (Bjorner—Wachs (1982))

(Sn \ {id}, <) is thin and shellable.
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Bruhat order

Theorem (Bjorner (1984))

Poset is thin and shellable —> face poset of some regular CW complex

Theorem (Bjorner—Wachs (1982))
(Sn \ {id}, <) is thin and shellable.

Question (Bjorner—Bernstein)

Does the corresponding regular CW complex exist “in nature”?
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Total positivity

Definition

An n x n matrix is totally nonnegative if all of its minors are nonnegative.
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Total positivity

Definition

An n x n matrix is totally nonnegative if all of its minors are nonnegative.

Uso := {upper unitriangular totally nonnegative n x n matrices}.
Given w =s;, - - -5, € 5, define

;VO = {Xil(tl) .- ~X,'m(tm) | t; > 0 for all i} C U}().

Theorem (Lusztig (1994))
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Fomin—Shapiro conjecture

Uso= | | U%.
weS,
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Fomin—Shapiro conjecture

Uso= | | U%.
weS,
Lkil0 U= = Cone (kaj()) .
51 S2
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Conjecture (Fomin—Shapiro (2000))

kajo C Uxq is a regular CW complex.
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Fomin—Shapiro conjecture

WES,,
Lkil0 U= = Cone (kaj()) .
Face poset of Lkﬁ0 is (Sp \ {id}, <).

Conjecture (Fomin—Shapiro (2000))

kajo C Uxq is a regular CW complex.

Theorem (Hersh (2014))

The Fomin—-Shapiro Conjecture is true.
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Flag variety

Let G :=GLy(R) and B := {upper triangular n x n matrices}.
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Flag variety

Let G :=GLy(R) and B := {upper triangular n x n matrices}.

Definition

Flag variety:
G/B = {VocVic---CV,=R"|dimV; =i forall 0 <i<n}.
gB <+ (Vo, Vi,..., Vi), where V; := span of first i columns of g.

Definition (Lusztig (1994))

Let G>o = {totally nonnegative matrices in G} and

(G/B)so:={gB| g € G0} = {gB | g € U5}

All n! coordinate flags {wB | w € S,} belong to (G/B)>o.
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Face poset of (G/B)xg

Definition
Let Q :={(v,w) € S, x S| v < w}.
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(vyw) X (V,w) = V<<v<w<w.

Theorem (Rietsch (1999, 2006))
(Q, =) is the “face poset” of (G/B)>o.

Theorem (Williams (2007))

The poset (Q, =) is thin and shellable.
Thus there exists some regular CW complex with face poset (Q, =<).

Conjecture (Williams (2007))
(G/B)xo is a regular CW complex.
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Let P D B be a parabolic subgroup of G.
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Partial flag variety
Let P D B be a parabolic subgroup of G. We get a projection

flag partial flag
(Vo, Vi, ..., Vo1, Vo) = (W, Vjy, ..,
Lusztig (1994): (G/P)s0 :=7((G/B)>0) .

GLk(R) * )
0 GL, «(R))

m:G/B— G/P

Maximal parabolic subgroup: P = (
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Partial flag variety

Let P D B be a parabolic subgroup of G. We get a projection

flag partial flag
(Vo, Vi,..., Vo1, Vn) — (Vo, le, ey VJ
Lusztig (1994): (G/P)s0 :=7((G/B)>0) .

m:G/B— G/P

Example
GLk(R) *

0 GL,—«(R)/ -
In this case G/P = Gr(k, n), and the projection is

Maximal parabolic subgroup: P = (

m: G/B — Gr(k,n), (Vo, Vi, ..., Vo1, Vi) = V.

Postnikov (2006):
Gr=o(k, n) := {Vk € Gr(k,n) | A;(Vk) = 0 for all | C [n] of size k}.

Surprising fact: When G/P = Gr(k, n), we have (G/P)~o = Gr>o(k, n).
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Regularity theorem

Conjecture (Postnikov (2006), Williams (2007))

o Grxo(k,n) is a regular CW complex homeomorphic to a ball.
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Regularity theorem

Conjecture (Postnikov (2006), Williams (2007))

o Grxo(k,n) is a regular CW complex homeomorphic to a ball.
e (G/P)xo is a regular CW complex homeomorphic to a ball.

Lusztig (1998): (G/P)xo is contractible.

Williams (2007): The face poset is thin and shellable.
Postnikov—Speyer—Williams (2009): Gr>o(k,n) is a CW complex.
Rietsch—Williams (2008): (G/P)>o is a CW complex.
Rietsch—Williams (2010): The closure of each cell is contractible.

Theorem (G.—Karp—Lam)

2017: Grso(k, n) is homeomorphic to a closed ball.
2018: (G/P)so is homeomorphic to a closed ball.
2019: Grso(k, n) and (G/P)=o are regular CW complexes.

Corollary of proof (Hersh (2014)): Lkil0 C U is a regular CW complex.
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Proof idea

Theorem (G.—Karp—Lam (2019))
Gr>o(k,n) and (G/P)=o are regular CW complexes.
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Gr>o(k,n) and (G/P)=o are regular CW complexes.

Bruhat atlas = Fomin—Shapiro atlas = Regular CW complex
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Part 2. Applications



Ising model

Definition

@ Planar Ising network: planar weighted graph embedded in a disk.
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Ising model

Definition

@ Planar Ising network: planar weighted graph embedded in a disk.

@ Ising model: probability measure on spin configurations.

by b
e More spins aligned = higher probability
by b e Mathematical model for ferromagnetism
e Phase transitions, critical temperatures, . ..
bs be

Pavel Galashin Totally positive spaces 04/26/2019 15 / 24



Ising model: boundary correlations

Let by,..., b, be the boundary vertices.
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Xn:={M(G,J) | (G,J) is a planar Ising network with n boundary vertices}

X, := closure of X, inside the space of n x n matrices.

We define a simple doubling map ¢ : X, — Gr(n,2n):
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Definition (Huang—Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OGxo(n,2n) := {W € Grzo(n,2n) | A)(W) = Appp (W) for all 1}
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A14:17m2 A23:17m2

Definition (Huang—Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OGxo(n,2n) := {W € Grzo(n,2n) | A(W) = Appp (W) for all 1}

Theorem (G.—Pylyavskyy (2018))

e We have a homeomorphism ¢ : X, = OGso(n,2n).
@ Both spaces are homeomorphic to closed ('2’) -dimensional balls.
e Kramers—Wannier's duality (1941) — cyclic shift.

@ Ising model at criticality — unique cyclically symmetric point.
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Matchings for n = 3

SRR RS KGR

WEAR = ENE/

Theorem (Hersh—Kenyon(2018))

The matchings poset is thin and shellable.

Conjecture (G.—Pylyavskyy (2018))
X =2 0Gso(n,2n) is a regular CW complex.
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Electrical networks

Let R: E — R+ be an assignment of resistances to the edges of G.

Definition

Electrical response matrix A(G, R) : R” — R", sending voltages to currents.
current flowing through b;
/\,'J' = . .
when the voltage is 1 at b; and zero at other vertices

E,: compactification of
the space of n x n electrical
response matrices [Lam (2014)]

Theorem (G.—Karp—Lam (2017))

E, is homeomorphic to an (3)-dimensional closed ball
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Ising networks vs. Electrical networks

: space of n x n boundary correlation matrices of planar Ising networks
: compactification of the space of n x n electrical response matrices

Stratification: X, = |_| X, E,= |_| E.
TE€Match(2n) TEMatch(2n)

e Each of the spaces is homeomorphic to an (Z)—dimensional closed ball.

e Conjecture: X, and E, are regular CW complexes.

e TNN embeddings: X, C Grso(n,2n) E, C Grso(n—1,2n)

Curtis—Ingerman—Morrow (1998), Colin de Verdiére—Gitler—Vertigan (1996):

e Two planar electrical networks give the same matrix A(G, R)

iz

<= they are related by Y-A moves.
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e Conjecture: X, and E, are regular CW complexes.

e TNN embeddings: X, C Grso(n,2n) E, C Grso(n—1,2n)

Curtis—Ingerman—Morrow (1998), Colin de Verdiére—Gitler—Vertigan (1996):

e Two planar electrical networks give the same matrix A(G, R)

<= they are related by Y-A moves.
e G.—P. (2018): Same result applies to planar Ising networks.
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Ising networks vs. Electrical networks

: space of n x n boundary correlation matrices of planar Ising networks
: compactification of the space of n x n electrical response matrices

e Stratification: X, = |_| P E,= |_| E,
TE€Match(2n) TEMatch(2n)

e Each of the spaces is homeomorphic to an (Z)—dimensional closed ball.

e Conjecture: X, and E, are regular CW complexes.

e TNN embeddings: X, C Grso(n,2n) E, C Grso(n—1,2n)

Curtis—Ingerman—Morrow (1998), Colin de Verdiére—Gitler—Vertigan (1996):

e Two planar electrical networks give the same matrix A(G, R)

iz

<= they are related by Y-A moves.
e G.—P. (2018): Same result applies to planar Ising networks.

Problem
Construct a stratification-preserving homeomorphism between X, and E,,.
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Connections

1N —4SYM [AHBCT16] ['5- Aol 2) linear projection [AHT14]

4. Grso(k,n)

Theorem 4.1.3 Eq. (24.1), cf. [Lam18]

-~ Remark 4.4.2—> |

=6 ABJV RSUNFY OGso(n,2n) Theorem 4.13 y 7 7 (Ising) Question 482 6. E, (Electrical)
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