Critical varieties in the Grassmannian

Pavel Galashin (UCLA)

Yale University, Clusters and Geometry Seminar March 19, 2021

arXiv:2102.13339

Motivation: Ising model

• (G, \mathbf{x}) : weighted graph embedded in a disk.

- (G, \mathbf{x}) : weighted graph embedded in a disk.
- Ferromagnetic case: $0 < x_e < 1$ for all $e \in E(G)$.

- (G, \mathbf{x}) : weighted graph embedded in a disk.
- Ferromagnetic case: $0 < x_e < 1$ for all $e \in E(G)$.
- Ising model: probability measure on spin configurations.

- (G, \mathbf{x}) : weighted graph embedded in a disk.
- Ferromagnetic case: $0 < x_e < 1$ for all $e \in E(G)$.
- Ising model: probability measure on spin configurations.
- For a spin configuration $\sigma: V(G) \rightarrow \{\pm 1\}$,

$$\mathsf{Prob}(\sigma) := \frac{1}{Z} \prod_{\substack{\{u,v\} \in E(G):\\\sigma_u \neq \sigma_v}} x_{\{u,v\}},$$

where Z is such that the total probability is 1.

- (G, \mathbf{x}) : weighted graph embedded in a disk.
- Ferromagnetic case: $0 < x_e < 1$ for all $e \in E(G)$.
- Ising model: probability measure on spin configurations.
- For a spin configuration $\sigma: V(G) \rightarrow \{\pm 1\}$,

$$\mathsf{Prob}(\sigma) := \frac{1}{Z} \prod_{\substack{\{u,v\} \in E(G):\\\sigma_u \neq \sigma_v}} x_{\{u,v\}},$$

where Z is such that the total probability is 1.

• Boundary correlation:

$$\langle \sigma_i \sigma_j \rangle := \mathsf{Prob}(\sigma_{b_i} = \sigma_{b_j}) - \mathsf{Prob}(\sigma_{b_i} \neq \sigma_{b_j}).$$

Phase transition

$$\mathsf{Prob}(\sigma) := \frac{1}{Z} \prod_{\substack{\{u,v\} \in E(G): \\ \sigma_u \neq \sigma_v}} x_{\{u,v\}}.$$

Usually:

- G = large piece of a (e.g. square) lattice;
- $x_e = x$ for all $e \in E(G)$.

Phase transition

$$\mathsf{Prob}(\sigma) := \frac{1}{Z} \prod_{\substack{\{u,v\} \in E(G): \\ \sigma_u \neq \sigma_v}} x_{\{u,v\}}.$$

Usually:

- G = large piece of a (e.g. square) lattice;
- $x_e = x$ for all $e \in E(G)$.
- Get a phase transition at critical temperature x_{crit}.

Picture credit: Dmitry Chelkak

Phase transition

$$\mathsf{Prob}(\sigma) := \frac{1}{Z} \prod_{\substack{\{u,v\} \in E(G): \\ \sigma_u \neq \sigma_v}} x_{\{u,v\}}.$$

Usually:

- G = large piece of a (e.g. square) lattice;
- $x_e = x$ for all $e \in E(G)$.
- Get a phase transition at critical temperature *x*_{crit}.

• Square lattice: $x_{crit} = \sqrt{2} - 1$.

Picture credit: Dmitry Chelkak

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

• Choose a rhombus tiling of a polygonal region R.

- [Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.
 - Choose a rhombus tiling of a polygonal region *R*.
 - G consists of diagonals connecting black vertices.

- [Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.
 - Choose a rhombus tiling of a polygonal region *R*.
 - G consists of diagonals connecting black vertices.
 - Edge weights:

$$\xrightarrow{e} \longrightarrow x_e = \tan(\theta_e/2)$$

- [Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.
 - Choose a rhombus tiling of a polygonal region R.
 - G consists of diagonals connecting black vertices.
 - Edge weights:

$$\xrightarrow{e} \qquad \longrightarrow \qquad x_e = \tan(\theta_e/2)$$

• Z-invariance: the boundary correlations $\langle \sigma_i \sigma_j \rangle_R$ are invariant under flips (star-triangle moves).

- [Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.
 - Choose a rhombus tiling of a polygonal region R.
 - G consists of diagonals connecting black vertices.
 - Edge weights:

$$\xrightarrow{e} \qquad \longrightarrow \qquad x_e = \tan(\theta_e/2)$$

- Z-invariance: the boundary correlations $\langle \sigma_i \sigma_j \rangle_R$ are invariant under flips (star-triangle moves).
- Conclusion: $\langle \sigma_i \sigma_j \rangle_R$ depends only on the polygonal region *R*.

- [Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1–33, 1986.
 - Choose a rhombus tiling of a polygonal region R.
 - G consists of diagonals connecting black vertices.
 - Edge weights:

$$\xrightarrow{e} \qquad \longrightarrow \qquad x_e = \tan(\theta_e/2)$$

- Z-invariance: the boundary correlations $\langle \sigma_i \sigma_j \rangle_R$ are invariant under flips (star-triangle moves).
- Conclusion: $\langle \sigma_i \sigma_j \rangle_R$ depends only on the polygonal region *R*.
- Formula for $\langle \sigma_i \sigma_j \rangle_R$ in terms of *R*?

A formula for regular polygons

Let R_N be a regular 2*N*-gon and $\langle \sigma_i \sigma_j \rangle_{R_N}$ be the corresponding boundary correlations.

A formula for regular polygons

Let R_N be a regular 2*N*-gon and $\langle \sigma_i \sigma_j \rangle_{R_N}$ be the corresponding boundary correlations.

Theorem (G. (2020))
For
$$1 \leq i, j \leq N$$
 and $d := |i - j|$, we have
 $\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d - 1)\pi/2N\right)} - \frac{1}{\sin\left((2d - 3)\pi/2N\right)} + \dots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \cdots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \cdots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$\left\langle \sigma_{1}\sigma_{2}
ight
angle _{R_{N}}=rac{2}{N}\cdotrac{1}{\sin(\pi/2N)}-1,$$

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \cdots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$egin{aligned} &\langle \sigma_1 \sigma_2
angle_{\mathcal{R}_{\mathcal{N}}} = rac{2}{\mathcal{N}} \cdot rac{1}{\sin(\pi/2\mathcal{N})} - 1, \ &\langle \sigma_1 \sigma_3
angle_{\mathcal{R}_{\mathcal{N}}} = rac{2}{\mathcal{N}} \left(rac{1}{\sin(3\pi/2\mathcal{N})} - rac{1}{\sin(\pi/2\mathcal{N})}
ight) + 1, \end{aligned}$$

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \dots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$\begin{split} \langle \sigma_1 \sigma_2 \rangle_{R_N} &= \frac{1}{N} \cdot \frac{1}{\sin(\pi/2N)} - 1, \\ \langle \sigma_1 \sigma_3 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(3\pi/2N)} - \frac{1}{\sin(\pi/2N)} \right) + 1, \\ \langle \sigma_1 \sigma_4 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(5\pi/2N)} - \frac{1}{\sin(3\pi/2N)} + \frac{1}{\sin(\pi/2N)} \right) - 1. \end{split}$$

If R_N is a regular 2N-gon then for $1 \leq i, j \leq N$ and d := |i - j|, we have

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \cdots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$\begin{split} \langle \sigma_1 \sigma_2 \rangle_{R_N} &= \frac{2}{N} \cdot \frac{1}{\sin(\pi/2N)} - 1, \\ \langle \sigma_1 \sigma_3 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(3\pi/2N)} - \frac{1}{\sin(\pi/2N)} \right) + 1, \\ \langle \sigma_1 \sigma_4 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(5\pi/2N)} - \frac{1}{\sin(3\pi/2N)} + \frac{1}{\sin(\pi/2N)} \right) - 1. \end{split}$$

• Q: Does $\langle \sigma_1 \sigma_{d+1} \rangle_{R_N} \to 0$ for $1 \ll d \ll N$?

If R_N is a regular 2N-gon then for $1 \leq i, j \leq N$ and d := |i - j|, we have

$$\frac{\langle \sigma_i \sigma_j \rangle_{R_N}}{2} = \frac{2}{N} \left(\frac{1}{\sin\left((2d-1)\pi/2N\right)} - \frac{1}{\sin\left((2d-3)\pi/2N\right)} + \dots \pm \frac{1}{\sin\left(\pi/2N\right)} \right) \mp 1.$$

$$\begin{split} \langle \sigma_1 \sigma_2 \rangle_{R_N} &= \frac{2}{N} \cdot \frac{1}{\sin(\pi/2N)} - 1, \\ \langle \sigma_1 \sigma_3 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(3\pi/2N)} - \frac{1}{\sin(\pi/2N)} \right) + 1, \\ \langle \sigma_1 \sigma_4 \rangle_{R_N} &= \frac{2}{N} \left(\frac{1}{\sin(5\pi/2N)} - \frac{1}{\sin(3\pi/2N)} + \frac{1}{\sin(\pi/2N)} \right) - 1. \end{split}$$

• Q: Does
$$\langle \sigma_1 \sigma_{d+1} \rangle_{R_N} \to 0$$
 for $1 \ll d \ll N$?

• A: Yes, by the Leibniz formula for π :

$$rac{\pi}{4} = 1 - rac{1}{3} + rac{1}{5} - rac{1}{7} + rac{1}{9} - \cdots$$

• Choose a domain $\Omega \subseteq \mathbb{C}$;

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.
 - Works for more general rhombic lattices.

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.
 - Works for more general rhombic lattices.

Drawbacks (for us):

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.
 - Works for more general rhombic lattices.

• Doesn't quite extend to boundary correlations.

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.
 - Works for more general rhombic lattices.

- Doesn't quite extend to boundary correlations.
- Angles of rhombi must be uniformly bounded away from 0 and π .

- Choose a domain $\Omega \subseteq \mathbb{C}$;
- Let G be a piece of fine square lattice intersected with Ω
- [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Invent. Math.*, 189(3):515–580, 2012.
 - Convergence of fermionic observables to a conformally invariant limit in the interior of the region.
 - Works for more general rhombic lattices.

- Doesn't quite extend to boundary correlations.
- Angles of rhombi must be uniformly bounded away from 0 and π .

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

• Only treats the square lattice.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

- Only treats the square lattice.
- Only applies to points belonging to the vertical and horizontal parts of the boundary.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

- Only treats the square lattice.
- Only applies to points belonging to the vertical and horizontal parts of the boundary.

Theorem (G. (2020))

When regular polygons approach the circle, the boundary correlations converge to the limit predicted by conformal field theory.

- [Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
 - Works for boundary correlations.

- Only treats the square lattice.
- Only applies to points belonging to the vertical and horizontal parts of the boundary.

Theorem (G. (2020))

When regular polygons approach the circle, the boundary correlations converge to the limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Theorem (G. (2020))

When regular polygons approach the circle, the boundary correlations converge to the limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Theorem (G. (2020))

When regular polygons approach the circle, the boundary correlations converge to the limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

• Main result: an explicit matrix formula for any polygonal region *R* (manifestly in terms of *R*)

Theorem (G. (2020))

When regular polygons approach the circle, the boundary correlations converge to the limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

• Main result: an explicit matrix formula for any polygonal region *R* (manifestly in terms of *R*)

• Based on:

[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.

• Treat each edge of G as a resistor.

- Treat each edge of G as a resistor.
- Resistance R_e = ratio of diagonals:

$$R_e = \tan(\theta_e)$$

$$b_{2}$$

$$b_{3}$$

$$c_{e} = \frac{1}{\sqrt{3}}$$

- Treat each edge of G as a resistor.
- Resistance R_e = ratio of diagonals:

$$R_e = \tan(\theta_e)$$

• Electrical response matrix $\Lambda : \mathbb{R}^N \to \mathbb{R}^N$, voltages \mapsto currents.

- Treat each edge of G as a resistor.
- Resistance R_e = ratio of diagonals:

$$R_e = \tan(\theta_e)$$

- Electrical response matrix $\Lambda : \mathbb{R}^N \to \mathbb{R}^N$, voltages \mapsto currents.
- Λ is invariant under star-triangle moves \implies depends only on the region.

$$b_{2} \\ b_{3} \\ R_{e} = \frac{1}{\sqrt{3}} \\ R_{e} = \frac{1}{\sqrt{3}} \\ A = \frac{1}{\sqrt{3}} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

- Treat each edge of G as a resistor.
- Resistance R_e = ratio of diagonals:

$$R_e = \tan(\theta_e)$$

- Electrical response matrix $\Lambda : \mathbb{R}^N \to \mathbb{R}^N$, voltages \mapsto currents.
- Λ is invariant under star-triangle moves \implies depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for $1 \leqslant i, j \leqslant N$ and d := |i - j|, we have

$$\Lambda_{i,j} = rac{\sin(\pi/N)}{N \cdot \sin((2d-1)\pi/2N) \cdot \sin((2d+1)\pi/2N)}.$$

$$b_{2} = \frac{b_{2}}{b_{3}} = \frac{1}{\sqrt{3}} \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}$$

- Treat each edge of G as a resistor.
- Resistance R_e = ratio of diagonals:

$$R_e = \tan(\theta_e)$$

- Electrical response matrix $\Lambda : \mathbb{R}^N \to \mathbb{R}^N$, voltages \mapsto currents.
- Λ is invariant under star-triangle moves \implies depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for $1 \leq i, j \leq N$ and d := |i - j|, we have

$$\Lambda_{i,j} = \frac{\sin(\pi/N)}{N \cdot \sin((2d-1)\pi/2N) \cdot \sin((2d+1)\pi/2N)}$$

• Ising model case: $x_e = tan(\theta_e/2)$ and

$$\langle \sigma_i \sigma_j \rangle_{R_N} = \frac{2}{N} \left(\frac{1}{\sin((2d-1)\pi/2N)} - \frac{1}{\sin((2d-3)\pi/2N)} + \cdots \pm \frac{1}{\sin(\pi/2N)} \right) \mp 1.$$

$$b_{2} \\ b_{3} \\ R_{e} = \frac{1}{\sqrt{3}} \\ R_{e} = \frac{1}{\sqrt{3}} \\ \left(\begin{array}{ccc} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{array} \right) \\ \end{array}$$

Critical varieties

• (G, wt) – a weighted planar bipartite graph, with n black boundary vertices $b_1, b_2, ..., b_n$ of degree 1.

- (G, wt) a weighted planar bipartite graph, with n black boundary vertices $b_1, b_2, ..., b_n$ of degree 1.
- An almost perfect matching A uses all interior vertices and some subset ∂(A) of the boundary vertices (∂(A) ⊆ [n] := {1, 2, ..., n}).

- (G, wt) a weighted planar bipartite graph, with n black boundary vertices b₁, b₂,..., b_n of degree 1.
- An almost perfect matching A uses all interior vertices and some subset ∂(A) of the boundary vertices (∂(A) ⊆ [n] := {1, 2, ..., n}).
- Boundary measurement map $Meas_G(wt) = (\Delta_J(G, wt))_{J \in \binom{[n]}{L}}$:

$$\Delta_J(G, \operatorname{wt}) := \sum_{\mathcal{A}: \partial(\mathcal{A}) = J} \operatorname{wt}(\mathcal{A}), \quad \operatorname{where} \quad \operatorname{wt}(\mathcal{A}) := \prod_{e \in \mathcal{A}} \operatorname{wt}(e).$$

- (G, wt) a weighted planar bipartite graph, with n black boundary vertices b₁, b₂,..., b_n of degree 1.
- An almost perfect matching A uses all interior vertices and some subset ∂(A) of the boundary vertices (∂(A) ⊆ [n] := {1, 2, ..., n}).
- Boundary measurement map $Meas_G(wt) = (\Delta_J(G,wt))_{J \in \binom{[n]}{L}}$:

$$\Delta_J(G, {\operatorname{wt}}) := \sum_{\mathcal{A}: \partial(\mathcal{A}) = J} {\operatorname{wt}}(\mathcal{A}), \quad {\operatorname{where}} \quad {\operatorname{wt}}(\mathcal{A}) := \prod_{e \in \mathcal{A}} {\operatorname{wt}}(e).$$

- A strand is a path in G that makes a sharp right turn at each black vertex and a sharp left turn at each white vertex.
- Strand permutation: f_G ∈ S_n. (aka "loopless bounded affine permutation")

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. *Invent. Math.*, 150(2):409–439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. *Proc. Lond. Math. Soc.* (3), 110(3):721–754, 2015.

- [Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. *Invent. Math.*, 150(2):409–439, 2002.
- [OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. *Proc. Lond. Math. Soc.* (3), 110(3):721–754, 2015.
 - Fix $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ such that $\theta_1 < \theta_2 < \dots < \theta_n < \theta_1 + \pi$.

- [Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. *Invent. Math.*, 150(2):409–439, 2002.
- [OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. *Proc. Lond. Math. Soc. (3)*, 110(3):721–754, 2015.
 - Fix $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ such that $\theta_1 < \theta_2 < \dots < \theta_n < \theta_1 + \pi$.
 - Each edge e belongs to exactly two strands terminating at b_p and b_q for 1 ≤ p < q ≤ n. Set

$$\mathsf{wt}_{\theta}(e) := \begin{cases} \sin(\theta_q - \theta_p), & \text{if } e \text{ is not a boundary edge,} \\ 1, & \text{otherwise.} \end{cases}$$

- [Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. *Invent. Math.*, 150(2):409–439, 2002.
- [OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. *Proc. Lond. Math. Soc. (3)*, 110(3):721–754, 2015.

• Fix
$$\theta = (\theta_1, \theta_2, \dots, \theta_n)$$
 such that $\theta_1 < \theta_2 < \dots < \theta_n < \theta_1 + \pi$.

 Each edge e belongs to exactly two strands terminating at b_p and b_q for 1 ≤ p < q ≤ n. Set

$$\mathsf{wt}_{\theta}(e) := egin{cases} \mathsf{sin}(heta_q - heta_p), & ext{if } e ext{ is not a boundary edge} \ 1, & ext{otherwise.} \end{cases}$$

- Fix $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ such that $\theta_1 < \theta_2 < \dots < \theta_n < \theta_1 + \pi$.
- Each edge e belongs to exactly two strands terminating at b_p and b_q for 1 ≤ p < q ≤ n. Set

$$\mathsf{vt}_{oldsymbol{ heta}}(e) := egin{cases} \mathsf{sin}(heta_q - heta_p), & ext{if } e ext{ is not a boundary edge} \ 1, & ext{otherwise.} \end{cases}$$

• This model is invariant under square moves:

• A graph G is reduced if it has the minimal number of faces among all graphs with the same strand permutation.

- A graph G is reduced if it has the minimal number of faces among all graphs with the same strand permutation.
- Any two reduced G, G' with $f_G = f_{G'}$ are related by square moves.

- A graph G is reduced if it has the minimal number of faces among all graphs with the same strand permutation.
- Any two reduced G, G' with $f_G = f_{G'}$ are related by square moves.
- Conclusion: for each reduced G with $f_G = f$, $Meas_G(wt_{\theta}) = Meas_f(\theta)$ depends only on f and θ .

- A graph G is reduced if it has the minimal number of faces among all graphs with the same strand permutation.
- Any two reduced G, G' with $f_G = f_{G'}$ are related by square moves.
- Conclusion: for each reduced G with f_G = f, Meas_G(wt_θ) = Meas_f(θ) depends only on f and θ.
- Formula for $Meas_f(\theta)$ in terms of f and θ ?

b_1 (14) (14) (12) (23) (24) b_4 b_3
$(pq):= \sin(heta_q - heta_p)$
$\Delta_{12} = (23) \cdot (24)$ $\Delta_{23} = (34) \cdot (24)$ $\Delta_{34} = (14) \cdot (24)$ $\Delta_{14} = (12) \cdot (24)$ $\Delta_{13} = (24) \cdot (24)$ $\Delta_{24} = (14) \cdot (23) + (12) \cdot (34) = (13) \cdot (24)$

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.

 $J_r := \{p \in [n] \mid b_r \text{ is to the left of } b_s^+ \to b_p^-\}.$

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.

• Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

where $\epsilon_r := (-1)^{\#\{p \in [n] | f(p) \leq p < r\}}$.

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.

• Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

where $\epsilon_r := (-1)^{\#\{p \in [n] | f(p) \leq p < r\}}$.

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(\gamma_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.

• Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

where $\epsilon_r := (-1)^{\#\{p \in [n] | f(p) \leq p < r\}}$.

Theorem (G. (2021))

 $\mathsf{Meas}_f(\theta) = \mathsf{Span}(\gamma_{f,\theta}) \quad inside \ \mathsf{Gr}(k,n).$

 $\operatorname{Gr}(k, n) := \{ W \subseteq \mathbb{R}^n \mid \dim(W) = k \}.$

- Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.
- Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(oldsymbol{\gamma}_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

 $Gr(k, n) := \{ W \subseteq \mathbb{R}^n \mid \dim(W) = k \}.$ $Gr(k, n) := \{ k \times n \text{ matrices of rank } k \}/(\text{row operations}).$

- Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.
- Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(oldsymbol{\gamma}_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

 $\begin{array}{l} \mathsf{Gr}(k,n) := \{ W \subseteq \mathbb{R}^n \mid \dim(W) = k \}. \\ \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \\ \mathsf{Plücker coordinates } \Delta_J = \max k \times k \text{ minors} \end{array}$

- Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.
- Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(oldsymbol{\gamma}_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

 $\begin{array}{l} \mathsf{Gr}(k,n) := \{ W \subseteq \mathbb{R}^n \mid \dim(W) = k \}. \\ \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \\ \mathsf{Plücker coordinates } \Delta_J = \max k \times k \text{ minors} \end{array}$

 $\begin{array}{c} \mathsf{Span}(\boldsymbol{\gamma}_{f,\boldsymbol{\theta}}) \text{ is the row span of} \\ (-\sin(\theta_2) & -\sin(\theta_3) & -\sin(\theta_4) & \sin(\theta_1) \\ \cos(\theta_2) & \cos(\theta_3) & \cos(\theta_4) & -\cos(\theta_1) \end{array} \right)$

- Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.
- Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(oldsymbol{\gamma}_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

 $\begin{array}{l} \mathsf{Gr}(k,n) := \{ W \subseteq \mathbb{R}^n \mid \dim(W) = k \}. \\ \mathsf{Gr}(k,n) := \{ k \times n \text{ matrices of rank } k \} / (\text{row operations}). \\ \mathsf{Plücker coordinates } \Delta_J = \max k \times k \text{ minors} \end{array}$

$$\begin{array}{ll} \Delta_{12}=\sin(\theta_3-\theta_2) & \Delta_{23}=\sin(\theta_4-\theta_3)\\ \Delta_{34}=\sin(\theta_4-\theta_1) & \Delta_{14}=\sin(\theta_2-\theta_1)\\ \Delta_{13}=\sin(\theta_4-\theta_2) & \Delta_{24}=\sin(\theta_3-\theta_1) \end{array}$$

Recall: f ∈ S_n. The reduced strand diagram of f is obtained by drawing an arrow b⁺_s → b⁻_p if f(s) = p.
 J_r := {p ∈ [n] | b_r is to the left of b⁺_s → b⁻_p}.

• Consider a curve $\gamma_{f,\theta}(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t))$:

$$\gamma_r(t) := \epsilon_r \prod_{p \in J_r} \sin(t - \theta_p) \quad \text{for } r \in [n],$$

where $\epsilon_r := (-1)^{\#\{p \in [n] | f(p) \leq p < r\}}$.

Theorem (G. (2021))

 $\mathsf{Meas}_f(oldsymbol{ heta}) = \mathsf{Span}(oldsymbol{\gamma}_{f,oldsymbol{ heta}}) \quad \textit{inside } \mathsf{Gr}(k,n).$

$$\begin{array}{ll} \Delta_{12} = (23) \cdot (24) & (pq) := \sin(\theta_q - \theta_p) \\ \Delta_{23} = (34) \cdot (24) & \text{by Ptolemy's} \\ \Delta_{34} = (14) \cdot (24) & \text{theorem} \\ \Delta_{14} = (12) \cdot (24) & \text{theorem} \\ \Delta_{13} = (24) \cdot (24) & \downarrow \\ \Delta_{24} = (14) \cdot (23) + (12) \cdot (34) = (13) \cdot (24) \end{array}$$

$$J_{1} = \{2\} \quad J_{2} = \{3\} \quad J_{3} = \{4\} \quad J_{4} = \{1\}$$

$$\gamma_{f,\theta}(t) = (\sin(t - \theta_{2}), \sin(t - \theta_{3}), \\ \sin(t - \theta_{4}), -\sin(t - \theta_{1}))$$

$$Span(\gamma_{f,\theta}) \text{ is the row span of} \\ \begin{pmatrix} -\sin(\theta_{2}) & -\sin(\theta_{3}) & -\sin(\theta_{4}) & \sin(\theta_{1}) \\ \cos(\theta_{2}) & \cos(\theta_{3}) & \cos(\theta_{4}) & -\cos(\theta_{1}) \end{pmatrix}$$

$$\Delta_{12} = \sin(\theta_{3} - \theta_{2}) \quad \Delta_{23} = \sin(\theta_{4} - \theta_{3}) \\ \Delta_{34} = \sin(\theta_{4} - \theta_{1}) \quad \Delta_{14} = \sin(\theta_{2} - \theta_{1}) \\ \Delta_{13} = \sin(\theta_{4} - \theta_{2}) \quad \Delta_{24} = \sin(\theta_{3} - \theta_{1})$$

- $\operatorname{Gr}_{\geq 0}(k, n) := \{ W \in \operatorname{Gr}(k, n) \mid \Delta_J(W) \ge 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \ge 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $\operatorname{Gr}_{\geq 0}(k, n)$.

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \ge 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\operatorname{wt}) \mid \operatorname{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geq 0}(k, n)$

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \ge 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501, 2019.

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501, 2019.

• For each $f \in S_n$, we introduce

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \to \mathbb{R}_{>0}$, Meas_G(wt) lands inside $\operatorname{Gr}_{\geqslant 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501, 2019.

For each f ∈ S_n, we introduce
 ▷ a critical cell Crit^{>0}_f ⊆ Π^{>0}_f;

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \to \mathbb{R}_{>0}$, Meas_G(wt) lands inside $\operatorname{Gr}_{\geqslant 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501, 2019.

For each f ∈ S_n, we introduce
 ▷ a critical cell Crit^{>0}_f ⊆ Π^{>0}_f;
 ▷ a critical variety Crit_f ⊆ Π_f;

- $\operatorname{Gr}_{\geq 0}(k,n) := \{ W \in \operatorname{Gr}(k,n) \mid \Delta_J(W) \geq 0 \text{ for all } J \}.$
- Positroid cell: set some $\Delta_J > 0$ and the rest $\Delta_J = 0$.
- For wt : $E(G) \rightarrow \mathbb{R}_{>0}$, Meas_G(wt) lands inside $Gr_{\geq 0}(k, n)$.
- Positroid cell: $\Pi_G^{>0} := \{ \operatorname{Meas}_G(\mathsf{wt}) \mid \mathsf{wt} : E(G) \to \mathbb{R}_{>0} \} \subseteq \operatorname{Gr}_{\geqslant 0}(k, n)$
- For G reduced, $\Pi_G^{>0} = \Pi_f^{>0}$ depends only on the strand permutation f of G.
- Positroid variety $\Pi_f = \text{Zariski closure of } \Pi_f^{>0}$.
- Open positroid variety Π_f° : a certain open subvariety of Π_f .

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501, 2019.

• Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \to [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.

 $\tau(1) = 7$, etc.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. *Duke Math. J.*, 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.
- [Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. *Adv. Math.*, 338:549–600, 2018.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.
- [Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. *Adv. Math.*, 338:549–600, 2018.
 - For each k, n, $Gr_{\geq 0}(k, n)$ contains a unique cyclically symmetric point $X_0^{(k,n)}$.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.

[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. *Adv. Math.*, 338:549–600, 2018.

• For each k, n, $\operatorname{Gr}_{\geq 0}(k, n)$ contains a unique cyclically symmetric point $X_0^{(k,n)}$.

[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010, 2017.

[Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc., 51(5):900–916, 2019.

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.

[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. *Adv. Math.*, 338:549–600, 2018.

• For each k, n, $\operatorname{Gr}_{\geq 0}(k, n)$ contains a unique cyclically symmetric point $X_0^{(k,n)}$.

[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010, 2017.

[Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc., 51(5):900–916, 2019.

• If
$$\theta_r = r\pi/n$$
 for all $1 \leqslant r \leqslant n$, we get $\operatorname{Meas}_{f_{k,n}}(\theta) = X_0^{(k,n)}$

- Let n = 2N and consider a fixed-point-free involution $\tau : [2N] \rightarrow [2N]$.
- Call θ τ -isotropic if $\theta_q = \theta_p + \pi/2$ for p < q such that $\tau(p) = q$.
- For k = N, $f = \tau$, this recovers the critical Ising model.
- [GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J., 169(10):1877–1942, 2020.
 - For k = N + 1 and $f(p) = \tau(p + 1)$, this recovers critical electrical networks.

[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. *Adv. Math.*, 338:549–600, 2018.

• For each k, n, $\operatorname{Gr}_{\geq 0}(k, n)$ contains a unique cyclically symmetric point $X_0^{(k,n)}$.

[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010, 2017.

[Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc., 51(5):900–916, 2019.

- If $\theta_r = r\pi/n$ for all $1 \leqslant r \leqslant n$, we get $\operatorname{Meas}_{f_{k,n}}(\boldsymbol{\theta}) = X_0^{(k,n)}$.
- This yields the above formulas for regular polygons in the Ising and electrical cases.

Thanks!

