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Motivation: Ising model



(G , x): weighted graph embedded in a disk.

Ferromagnetic case: 0 < xe < 1 for all e ∈ E (G ).

Ising model: probability measure on spin
configurations.

For a spin configuration σ : V (G )→ {±1},

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v},

where Z is such that the total probability is 1.

Boundary correlation:
〈σiσj〉 := Prob(σbi = σbj )− Prob(σbi 6= σbj ).
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Phase transition

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v}.

Usually:
G = large piece of a (e.g.
square) lattice;

xe = x for all e ∈ E (G ).

Get a phase transition at
critical temperature xcrit.

Square lattice: xcrit =
√

2− 1.

x < xcrit x = xcrit x > xcrit

Picture credit: Dmitry Chelkak
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Square lattice Hexagonal lattice Triangular lattice

xcrit =
√

2− 1 xcrit = 2−
√

3 xcrit = 1√
3

xcrit = tan(π/8) xcrit = tan(π/12) xcrit = tan(π/6)

2θe

e xe = tan(θe/2)
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Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

←→
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A formula for regular polygons

Let RN be a regular 2N-gon
and 〈σiσj〉RN

be the corresponding
boundary correlations.
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Theorem (G. (2020))

For 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

https://arxiv.org/abs/2010.13345
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+

1

sin(π/2N)

)
− 1.

Q: Does 〈σ1σd+1〉RN
→ 0 for 1� d � N?

A: Yes, by the Leibniz formula for π:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .
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Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)

[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

Main result: an explicit matrix formula for any polygonal region R (manifestly in terms of R)
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

https://arxiv.org/abs/2010.13345


Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.
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If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)
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Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .



Critical varieties



(G ,wt) – a weighted planar bipartite graph, with n black boundary
vertices b1, b2, . . . , bn of degree 1.

An almost perfect matching A uses all interior vertices and some
subset ∂(A) of the boundary vertices (∂(A) ⊆ [n] := {1, 2, . . . , n}).

Boundary measurement map MeasG (wt) = (∆J(G ,wt))
J∈([n]

k ):

∆J(G ,wt) :=
∑

A:∂(A)=J

wt(A), where wt(A) :=
∏
e∈A

wt(e).

A strand is a path in G that makes a sharp right turn at each black
vertex and a sharp left turn at each white vertex.

Strand permutation: fG ∈ Sn. (aka “loopless bounded affine
permutation”)

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.

Preprint, http:// math.mit.edu/~apost/papers/tpgrass.pdf, 2006.

b1 b2

b3b4

a

b

c d

e

f
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Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409–439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation

and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721–754, 2015.

Fix θ = (θ1, θ2, . . . , θn) such that θ1 < θ2 < · · · < θn < θ1 + π.

Each edge e belongs to exactly two strands terminating at bp
and bq for 1 6 p < q 6 n. Set

wtθ(e) :=

{
sin(θq − θp), if e is not a boundary edge,

1, otherwise.

This model is invariant under square moves:

b1 b2

b3b4

(24)

(12)

(14) (23)

(34)

(24)

↔

b1 b2

b3b4

(13)

(13)

(34)

(23) (14)

(12)

A graph G is reduced if it has the minimal number of faces
among all graphs with the same strand permutation.

Any two reduced G ,G ′ with fG = fG ′ are related by square
moves.

Conclusion: for each reduced G with fG = f ,
MeasG (wtθ) = Measf (θ) depends only on f and θ.

Formula for Measf (θ) in terms of f and θ?

b1 b2

b3b4

(24)

(12)

(14) (23)

(34)

(24)

(pq) := sin(θq − θp)

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

by Ptolemy’s
theorem
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Recall: f ∈ Sn. The reduced strand diagram of f is
obtained by drawing an arrow b+

s → b−p if f (s) = p.

Jr := {p ∈ [n] | br is to the left of b+
s → b−p }.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

Gr(k, n) := {W ⊆ Cn | dim(W ) = k}.

Gr(k, n) := {k × n matrices of rank k}/(row operations).
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Gr(k , n) := {W ⊆ Cn | dim(W ) = k} = {k × n matrices of rank k}/(row operations).

Plücker coordinates ∆J = maximal k × k minors

Gr>0(k, n) := {W ∈ Gr(k, n) | ∆J(W ) > 0 for all J}.
Positroid cell: Π>0

G := {MeasG (wt) | wt : E (G )→ R>0} ⊆ Gr>0(k, n)

For G reduced, Π>0
G = Π>0

f depends only on the strand permutation f of G .

Positroid variety Πf = Zariski closure of Π>0
f .

Open positroid variety Π◦f : open subvariety of Πf .
[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint,

http:// math.mit.edu/~apost/papers/tpgrass.pdf, 2006.

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos.

Math., 149(10):1710–1752, 2013.

Goal: for each f ∈ Sn, introduce

B a critical cell Crit>0
f ⊆ Π>0

f .
B a critical variety Critf ⊆ Πf .
B an open critical variety Crit◦f ⊆ Π◦f .

http://math.mit.edu/~apost/papers/tpgrass.pdf


Gr(k , n) := {W ⊆ Cn | dim(W ) = k} = {k × n matrices of rank k}/(row operations).
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Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4
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b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Previously assumed:
θ1 < θ2 < · · · < θn < θ1 + π.

b1 b2

b3b4

b1 b2

b3b4

(34)

(24)

(23)

b1 b2

b3b4

(14)

(12)

(23)

(34)

(a) k = 1 (b) k = 2 (c) k = 3

Q: for which θ are all edge weights positive?

Recall: reduced strand diagram of f : draw
an arrow b+

s → b−p if f (s) = p.

Definition
θ is called f -admissible if for all p < q such
that the arrows b+

s → b−p and b+
t → b−q cross,

we have θp < θq < θp + π.

b1 b2

b3b4

→

b1 b2

b3b4

Proposition
all edge weights > 0 ⇐⇒ θ is f -admissible.

Define the critical cell

Crit>0
f := {Measf (θ) | θ is f -admissible}.

Conjecture (Injectivity conjecture)

Crit>0
f
∼= Rn−cf

>0 where cf is the number of
connected components of the strand diagram.

Theorem
This holds for the top cell.

(top cell: fk,n ∈ Sn sending p 7→ p + k mod n for all p)



Definition
θ is called f -admissible if for all p < q such that the arrows
b+
s → b−p and b+

t → b−q cross, we have θp < θq < θp + π.

Make a change of variables: tp := exp(iθp).

sin(θq − θp) = [[tq, tp]] :=
1

2i
(tq/tp − tp/tq).

Definition
t ∈ (C∗)n is called f -admissible if for all p < q such that the
arrows b+

s → b−p and b+
t → b−q cross, we have tp 6= ±tq.

Theorem
t is f -admissible =⇒ there is a well-defined element

Measf (t) ∈ Π◦f .

Reason: Laurent phenomenon for critical varieties.

Define the open critical variety

Crit◦f := {Measf (t) | t ∈ (C∗)n is f -admissible}.

Critical variety Critf = Zariski closure of Crit>0
f (or of Crit◦f ).

Problem: show that Crit◦f is an open subvariety of Critf and
describe them by polynomial equations.

b1 b2

b3b4

b1 b2

b3b4

[[24]]

[[12]]

[[14]] [[23]]

[[34]]

[[24]]

b1 b2

b3b4

[[13]]

[[13]]

[[34]]

[[23]] [[14]]

[[12]]

[[pq]] := [[tq, tp]]
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Applications: Ising model and electrical networks

Let n = 2N and consider a fixed-point-free involution τ : [2N]→ [2N].

Call θ τ -isotropic if θq = θp + π/2 for p < q such that τ(p) = q.

For k = N, f = τ , this recovers the critical Ising model.

[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

For k = N + 1 and f (p) = τ(p + 1), this recovers critical electrical networks.

[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. Adv. Math.,

338:549–600, 2018.

For each k, n, Gr>0(k, n) contains a unique cyclically symmetric point X
(k,n)
0 .

[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball.

arXiv:1707.02010, 2017.

[Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc.,

51(5):900–916, 2019.

If θr = rπ/n for all 1 6 r 6 n, we get Measfk,n(θ) = X
(k,n)
0 .

This yields the above formulas for regular polygons in the Ising and electrical cases.

https://arxiv.org/abs/1707.02010
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Thanks!

Critical varieties
Shift by 1,

zonotopal tilings

Crit>0
f , polytopescohomology of Critf ,Crit◦f

Peterson variety

Six-vertex model Chow quotient


