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Motivation: Ising model
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@ (G,x): weighted graph embedded in a disk. by by
@ Ferromagnetic case: 0 < x. < 1 for all e € E(G).

@ Ising model: probability measure on spin Xo X2
configurations.

@ For a spin configuration o : V(G) — {£1}, . l b
4 1

1 x:
Prob(o) := Z H X{uv}s ! x4
{u,v}€E(G):

ouFoy X6

where Z is such that the total probability is 1. bs bg

@ Boundary correlation:
(gjoj) := Prob(op, = op;) — Prob(os, # o).




Phase transition
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Phase transition

1
Prob(o) = ? H X{u,v}-

{u,v}€E(G):
ouFoy
Usually:
@ G = large piece of a (e.g.
square) lattice;
@ x. = x for all e € E(G).
@ Get a phase transition at
critical temperature xit.

@ Square lattice: xeie = /2 — 1. X < Xerit X = Xcrit X > Xcrit

Picture credit: Dmitry Chelkak
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Square lattice
Xerit = \/5 -1

Xerit = tan(7/8)

Hexagonal lattice
Xerit = 2 — \/§
Xerit = tan(7/12)

Triangular lattice

_ 1
Xerit = %
Xerit = tan(7/6)



Square lattice
Xerit = \/5 -1

Xerit = tan(m/8)

Hexagonal lattice Triangular lattice
Xerit = 2 — \/§ Xerit = %

Xerit = tan(7/12) Xerit = tan(7/6)

o Xe = tan(0./2)
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are invariant under flips (star-triangle moves).
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[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.

@ Edge weights:

e . — x.=tan(0./2)

09,
N

o

@ Z-invariance: the boundary correlations (o;0;) 5
are invariant under flips (star-triangle moves).

@ Conclusion: (0ioj)g depends only on the
polygonal region R.

@ Formula for (oj0;j) g in terms of R?




A formula for regular polygons

Let Ry be a regular 2N-gon
and (0;0}) . be the corresponding
boundary correlations.
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A formula for regular polygons

Let Ry be a regular 2N-gon
and (0;0}) . be the corresponding
boundary correlations.

Theorem (G. (2020))

Forl1<i,j<Nandd:=|i—j

. we have

2 1 1 1
(0i0)) Ry = N (sin ((2d —1)7/2N)  sin((2d — 3)x/2N) +--- £ p (7r/2N)> +1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.
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Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

N ] 1 P SN e
(ioi) Ry = 3y (sin (Qd—1)7/2N) _sin(@d—3)r/2N) * Tsn(z2N) ) T
<0102>RN = % ' Sin(7‘['1/2N) -1
2 1 1
(U1U3>RN - N (sin(37r/2N) B sin(7r/2N)> +1,
2 1 1 !
<0104>RN = N (sin(57r/2/V) - Sin(37r/2N) + sin(ﬂ/2N)> - L




Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

1

2 1
(i) gy = N (sin ((2d — 1)7/2N)

sin ((2d — 3)7/2N

)_|_...:|:

1

sin (/2N)

)1

(0102) gy = = s — 1
P12/ =N sin(x/2N)
2 1 1

(0103)g, = N (sin(37r/2/V) - Si"(”/zN)> o

1

(0104) g, = N (sin(57r/2N) ~ sin(37/2N) i sin(/2N)

@ Q: Does <010d+1>RN —0forl <« d< N?

>_1.




Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d :=|i —j

, we have

2 1 L _
(oioj) Ry = N (sin (2d — 1) /2N)  sin ((2d — 3)7/2N) +- - (7r/2N)> F1.
2 1
(192080 = N " Gaieran)

2 1 1
(r103)R, = (sin(37T/2N) - sin(w/zN)> b
(r100)p, = (sin(57T/2N) " sin(3n/2N)  sin(r/2N)

@ Q: Does <010d+1>RN —0forl <« d< N?
@ A: Yes, by the Leibniz formula for 7:

1 1 1 1
7r:17

4 3+5 7+9

)-1
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Electrical networks

@ Treat each edge of G as a resistor.

@ Resistance R, = ratio of diagonals: ~~—t——=. Re=tan(0c)

@ Electrical response matrix A : RN — RV, voltages — currents.

@ Alis invariant under star-triangle moves = depends only on the region.

1
Theorem (G. (2021)) Re =

If R is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

sin(7/N)

N = N sin((2d = D)7 /2N) - sin((2d + 1)7/2N)"




Electrical networks

@ Treat each edge of G as a resistor.

@ Resistance R, = ratio of diagonals: ~~—t——=. Re=tan(0c)

@ Electrical response matrix A : RN — RV, voltages — currents.

@ Alis invariant under star-triangle moves = depends only on the region.

1
Theorem (G. (2021)) Re =

V3
If R is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have
A sin(7/N) 5 1 1
"N -sin((2d — 1)7/2N) - sin((2d + 1) /2N) A 1 1 5 1
@ Ising model case: x. = tan(6./2) and V3l 1 2

2 1 1 1
0ioiry = N <sin (2d = D)r/2N) ~ sin((2d = 3)r/2N) T sin (7r/2N)) Tl
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@ (G,wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.

Preprint, http:// math.mit.edu/"apost/papers/tpgrass.pdf, 2006.
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(G, wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

An almost perfect matching A uses all interior vertices and some
subset J(.A) of the boundary vertices (0(A) C [n] :={1,2,...,n}).

Boundary measurement map Measg(wt) = (AJ(G,Wt))Je([n]):
k

A (G,wt) = Z wt(A), where wt(A) ::HWt(e).

A:(A)=J ec A

A strand is a path in G that makes a sharp right turn at each black
vertex and a sharp left turn at each white vertex.

Strand permutation: fg € S,. (aka “loopless bounded affine
permutation”)
[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.

Preprint, http:// math.mit.edu/"apost/papers/tpgrass.pdf, 2006.
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wW =
0 1, otherwise.
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Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409-439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation
and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

@ Fix 8 = (01,0, ..

@ Each edge e belongs to exactly two strands terminating at b,
and bg for 1 < p < g < n. Set

sin(0 — 0,).
1, otherwise.

wio(e) = if e is not a boundary edge,

., 0p) such that 0y < b < --- <0, <6+

by by

by b3
(pq) :=sin(fq — 6,)
(23) - (24)
34)- (24 ,
214; ) E24§ by Ptolemy’s
(12) - (24) theorem
(24) - (24) |
(14) - (23) + (12) - (34)=(13) - (24)



® Fix 6 = (61,05, ..

@ Each edge e belongs to exactly two strands terminating at b,

Critical dimer model

by by

and bg for 1 < p < g < n. Set

th(e) — {im(eq - ep)a

by by

by bs

., 0p) such that 0; <6 < --- <0, <0+

if e is not a boundary edge,

otherwise.

@ This model is invariant under square moves:

by by

by b3

App = (23) - (24)
D3 = (34) - (24) ,

A; =(14)-(24) by Ptolemy’s

Agq = (12) - (24) theorem

Az = (24) - (24) l

Bor = (14) - (23) +(12) - (34)2(13) - (24)
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by by

@ This model is invariant under square moves:

by by by by

by b3 by b3

@ A graph G is reduced if it has the minimal number of faces
among all graphs with the same strand permutation.

= (23) - (24)

=(34) - (24) :

_ 214; ) E24) by Ptolemy’s

= (12)- (24) theorem

= (24) - (24) 1

= (14) - (23) + (12) - (34)=(13) - (24)



Critical dimer model

by by

@ This model is invariant under square moves:

@ A graph G is reduced if it has the minimal number of faces
among all graphs with the same strand permutation.

@ Any two reduced G, G’ with fg = f¢: are related by square

moves.

by

by

b3

by

by

= (23) - (24)

= (34)-(24) ,

— (14) - (24) by Ptolemy’s

= (12)- (24) theorem

= (24) - (24) 1

= (14) - (23) + (12) - (34)=(13) - (24)
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by by

@ This model is invariant under square moves:

by by by by

e
ba by by bs
@ A graph G is reduced if it has the minimal number of faces Ay =(23) - (24)
i . Doy = (34) - (24) :

among all graphs with the same strand permutation. Doy — (14) - (24) by Ptolemy’s

@ Any two reduced G, G’ with fg = fg' are related by square 214:83.88 theolrem
13 = :
moves. Dog = (14) - (23) + (12) - (34)Z(13) - (24)

@ Conclusion: for each reduced G with fg = f,
Measg(wtg) = Meass(0) depends only on f and 6.
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by by

@ This model is invariant under square moves:

by by by by

e
ba by by bs
@ A graph G is reduced if it has the minimal number of faces Ay =(23) - (24)
i . Doy = (34) - (24) :

among all graphs with the same strand permutation. Doy — (14) - (24) by Ptolemy’s

@ Any two reduced G, G’ with fg = fg' are related by square 214:83.88 theolrem
13 = :
moves. Dog = (14) - (23) + (12) - (34)Z(13) - (24)

@ Conclusion: for each reduced G with fg = f,
Measg(wtg) = Meas¢(0) depends only on f and 6.

@ Formula for Meas¢(8) in terms of f and 67




@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p. N
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@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p.

Jr:={p €[n] | by is to the left of b — b, }.

@ Consider a curve v¢ o(t) = (71(t), v2(t), - - ., va(t)):

v(t) :=¢ [[sin(t—6,)  forren],

pEJ,

h={2} L={3} hs={4 L={1}

~r,0(t) = (sin(t — 62),sin(t — 03),
e (_1)# n]|f(p)<p<r
where €, := (—1)#tpellif(p)sp<r}, sin(t — 04), —sin(t — 601))




@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p.

Jr:={p €[n] | by is to the left of b — b, }.

@ Consider a curve ¥¢ o(t) = (71(t), v2(t), - .., va(t)):

v(t) :=¢ [[sin(t—6,)  forren],

pEJ,

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),

— (_1\#{pEn]If(p)<p<r
where ¢, := (—1)#tpellif(p)<p<r}, sin(t — ), —sin(t — 6;))

Theorem (G. (2021))
Meass(0) = Span(vr,e) inside Gr(k, n).
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v(t) :=¢ [[sin(t—6,)  forren],

pEJ,
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Gr(k, n) := {k x n matrices of rank k}/(row operations).
Plucker coordinates A; = maximal k x k minors




@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p.

Jr:={p €[n] | by is to the left of b — b, }.

@ Consider a curve ¥¢ o(t) = (71(t), v2(t), - .., va(t)):

v(t) :=¢ [[sin(t—6,)  forren],

pEJ,

where €, := (fl)#{peln]lf(p)<p<r}_

Theorem (G. (2021))
Meass(0) = Span(vr,e) inside Gr(k, n).

Gr(k,n) :={W C C" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).
Plucker coordinates A; = maximal k x k minors

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),
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@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p.

Jr:={p €[n] | by is to the left of b — b, }.

@ Consider a curve ¥¢ o(t) = (71(t), v2(t), - .., va(t)):

v(t) :=¢ [[sin(t—6,)  forren],

pEJ,

h={2} L={3} hs={4 L={1}

~r,0(t) = (sin(t — 62),sin(t — 03),
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Theorem (G. (2021))
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Gr(k,n) :={W C C" | dim(W) = k}.
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Pliicker coordinates A; = maximal k x k minors Azy =sin(fy — 01) Ay =sin(02 — 01)
A13 = sin(04 — 92) A24 = sin(93 — 91)




@ Recall: f € S,. The reduced strand diagram of f is
obtained by drawing an arrow by — b, if f(s) = p.

Jr:={p €[n] | by is to the left of b — b, }.

@ Consider a curve ¥¢ o(t) = (71(t), v2(t), - .., va(t)):
v (t) == €, H sin(t — 6p) for r € [n],
pEJ,
where €, := (—1)#{pEllf(P)<p<r}
Theorem (G. (2021))
Meass(0) = Span(vr,e) inside Gr(k, n).
Agp = (23) - (24) (pq) :=sin(6q — 6,)
Doy = (34) - (24) ,
Azi — (14) - (24) by Ptolemy's
Ang = (12) - (24) theorem
Ay = (24) - (24) l
Doy = (14) - (23) + (12) - (34)=(13) - (24)

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),
sin(t — 64), —sin(t — 61))

Span(~yr,g) is the row span of

(f sin(62) —sin(f3) —sin(6s)  sin(6y) )
cos(f2)  cos(f3)  cos(Bs) —cos(6y)

Alg = sin(6‘3 — 92) A23 = sin(6‘4 — 93)
A34 = sin(04 — 91) A14 = sin(6’2 — 91)
A13 = sin(04 — 92) A24 = sin(93 — 91)



@ Gr(k,n):={W C C"|dim(W) = k} = {k x n matrices of rank k}/(row operations).

@ Pliicker coordinates A; = maximal k x k minors
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@ Gr(k,n):={W C C"|dim(W) = k} = {k x n matrices of rank k}/(row operations).
@ Pliicker coordinates A; = maximal k x k minors
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@ Gr(k,n):={W C C"|dim(W) = k} = {k x n matrices of rank k}/(row operations).
@ Pliicker coordinates A; = maximal k x k minors

@ Grxo(k,n) :={W € Gr(k,n) | Ay;(W) >0 for all J}.

@ Positroid cell: 2% := {Measg(wt) | wt : E(G) — R}  C Grso(k, n)
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Gr(k,n) :={W C C" | dim(W) = k} = {k x n matrices of rank k}/(row operations).
Pliicker coordinates A; = maximal k x k minors

Gr>o(k,n) :=={W € Gr(k,n) | Ay (W) > 0 for all J}.

Positroid cell: TZ° := {Measg(wt) | wt : E(G) — Rso}  C Grso(k, n)

For G reduced, I'IZ0 = I'If>0 depends only on the strand permutation f of G.
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Positroid variety M¢ = Zariski closure of M2°.
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Gr>o(k,n) :=={W € Gr(k,n) | Ay (W) > 0 for all J}.

Positroid cell: TZ° := {Measg(wt) | wt : E(G) — Rso}  C Grso(k, n)

For G reduced, I'IZ0 = I'If>0 depends only on the strand permutation f of G.

Positroid variety Mf = Zariski closure of M2°.

Open positroid variety [17: open subvariety of .
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@ For G reduced, I'IZO = I'If>0 depends only on the strand permutation f of G.

@ Positroid variety MMy = Zariski closure of M.

@ Open positroid variety 17: open subvariety of Il.
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@ Positroid cell: MZ°% := {Measg(wt) | wt : E(G) — Rso}  C Grso(k, n)

@ For G reduced, I'IZO = I'If>0 depends only on the strand permutation f of G.

@ Positroid variety MMy = Zariski closure of M.

@ Open positroid variety 17: open subvariety of Il.

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint,
http:// math.mit.edu/~apost/papers/tpgrass.pdf, 2006.

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry. Compos.
Math., 149(10):1710-1752, 2013.

@ Goal: for each f € S, introduce
> a critical cell Crit7% C M2°.
>> a critical variety Crity C INy.


http://math.mit.edu/~apost/papers/tpgrass.pdf

@ Gr(k,n):={W C C"|dim(W) = k} = {k x n matrices of rank k}/(row operations).
@ Pliicker coordinates A; = maximal k x k minors

@ Grxo(k,n) :={W € Gr(k,n) | Ay;(W) >0 for all J}.

@ Positroid cell: MZ°% := {Measg(wt) | wt : E(G) — Rso}  C Grso(k, n)

@ For G reduced, I'IZO = I'If>0 depends only on the strand permutation f of G.

@ Positroid variety MMy = Zariski closure of M.

@ Open positroid variety 17: open subvariety of Il.
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Math., 149(10):1710-1752, 2013.

@ Goal: for each f € S, introduce
> a critical cell Crit7% C M2°.
> a critical variety Crity C ly.
[> an open critical variety Crity C 2.
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@ Previously assumed:
0 <br<---<0,<0,+m.

(a) k=1

@ Q: for which 0 are all edge weights positive?




@ Previously assumed:
0 <br<---<0,<0,+m.

(a) k=1
@ Q: for which 0 are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — by if f(s) = p.




@ Previously assumed:
0 <br<---<0,<0,+m.

by by by
X )
(a) k=1 b) k=2

@ Q: for which @ are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — by if f(s) = p.

Definition

0 is called f-admissible if for all p < g such
that the arrows b} — b; and bf — b; Cross,
we have 0, < 0, < 0, + 7.




@ Previously assumed:
0 <br<---<0,<0,+m.

by by by by
X )
(a) k=1

@ Q: for which @ are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — by if f(s) = p.

bs

(b) k=2

Definition

0 is called f-admissible if for all p < g such
that the arrows b} — b; and bf — b; Cross,
we have 0, < 0, < 0, + 7.

Proposition
all edge weights > 0 <= 0 is f-admissible.




@ Previously assumed:
0 <br<---<0,<0,+m.

by by by
X )

by /\ bs by
(a) k=1 (b) k=2

@ Q: for which @ are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — b, if f(s) = p.

Definition

0 is called f-admissible if for all p < g such
that the arrows b — b, and b — b, cross,
we have 0, < 0, < 0, + 7.

Proposition
all edge weights > 0 <= 0 is f-admissible.

Define the critical cell
Crit7% := {Meas¢(0) | @ is f-admissible}.




@ Previously assumed:
0 <br<---<0,<0,+m.

by by by
X )
(a) k=1 b) k=2

@ Q: for which @ are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — b, if f(s) = p.

Definition

0 is called f-admissible if for all p < g such
that the arrows b — b, and b — b, cross,
we have 0, < 0, < 0, + 7.

Proposition
all edge weights > 0 <= 0 is f-admissible.

|

Define the critical cell
Crit7% := {Meas¢(0) | @ is f-admissible}.

Conjecture (Injectivity conjecture)

Crit7% = R” " where cr is the number of
connected components of the strand diagram.




@ Previously assumed:
0 <br<---<0,<0,+m.

by by by
X )
(a) k=1 b) k=2

@ Q: for which @ are all edge weights positive?

@ Recall: reduced strand diagram of f: draw
an arrow by — b, if f(s) = p.

Definition

0 is called f-admissible if for all p < g such
that the arrows b — b, and b — b, cross,
we have 0, < 0, < 0, + 7.

Proposition
all edge weights > 0 <= 0 is f-admissible.

|

Define the critical cell
Crit7% := {Meas¢(0) | @ is f-admissible}.

Conjecture (Injectivity conjecture)

Crit7% = RZ, where cf is the number of
connected components of the strand diagram.

This holds for the top cell. \

(top cell: fi.n € S, sending p — p+ k mod n for all p)




Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — b, cross, we have 6, < g < 0, + 7.




Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — b, cross, we have 6, < g < 0, + 7.

@ Make a change of variables: t, := exp(if,).




Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — b, cross, we have 6, < g < 0, + 7.

@ Make a change of variables: t, := exp(ifp).

0 sin(0y — 0) = [ta, 5] = 5:(ta/tp — /1),




Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — b, cross, we have 6, < g < 0, + 7.

@ Make a change of variables: t, := exp(ifp).

0 sin(ly — 0p) = [ta, 5] 1= 5:(ta/t — /1),

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows b} — b, and b — b, cross, we have t, # +tg.




Definition
0 is called f-admissible if for all p < g such that the arrows
b — b, and b — by cross, we have 0, < 0, < 0, + .

@ Make a change of variables: t, := exp(ifp).
. 1
® sin(0g — 0p) = [tq: tp] := E(tq/tp — tp/tq)-

Definition
t € (C*)" is called f-admissible if for all p < g such that the
arrows bf — b, and b — b, cross, we have t, # +tq.

| A,

Theorem
t is f-admissible = there is a well-defined element
Meas¢(t) € M.

\




Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — by cross, we have 0, < 0, < 0, + .

@ Make a change of variables: t, := exp(ifp).
. 1
® sin(0g — 0p) = [tq: tp] := E(tq/tp — tp/tq)-

Definition
t € (C*)" is called f-admissible if for all p < g such that the
arrows bf — b, and b — b, cross, we have t, # +tq.

| A,

Theorem
t is f-admissible —> there is a well-defined element
Meas(t) € ;.

by bs

[pa] = [tq, tol



Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — by cross, we have 0, < 0, < 0, + .

@ Make a change of variables: t, := exp(ifp).
. 1

@ sin(0, — 0,) = [tg, tp] := E(tq/tp — tp/tq).

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows bf — b, and b — b, cross, we have t, # +tq.

Theorem
t is f-admissible —> there is a well-defined element
Meas(t) € ;.

| A,

A =[23] - [24]
Doz = [34] - [24]
Asq = [14] - [24]
Ay = [12] - [24]
Az = [24] - [24] l

Noq = [14] - [23] + [12] - [34T=[23] - [24]

“Ptolemy’s theorem
over C”

[pq] == [tq, tp]



Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — by cross, we have 0, < 0, < 0, + .

@ Make a change of variables: t, := exp(ifp).
. 1

@ sin(0, — 0,) = [tg, tp] := E(tq/tp — tp/tq).

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows bf — b, and b — b, cross, we have t, # +tq.

| A,

Theorem
t is f-admissible —> there is a well-defined element
Meas(t) € ;.

@ Reason: Laurent phenomenon for critical varieties.

Ay = [23] - [24]
Doz = [34] - [24]
Asq = [14] - [24]
Ay = [12] - [24]
Az = [24] - [24] l

Noq = [14] - [23] + [12] - [34T=[23] - [24]

“Ptolemy’s theorem
over C”

[pa] = [tq, tol



Definition

0 is called f-admissible if for all p < g such that the arrows
b — b, and b — by cross, we have 0, < 0, < 0, + .

@ Make a change of variables: t, := exp(ifp).
. 1

@ sin(0, — 0,) = [tg, tp] := E(tq/tp — tp/tq).

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows bf — b, and b — b, cross, we have t, # +tq.

| A,

Theorem
t is f-admissible —> there is a well-defined element
Meas(t) € ;.

@ Reason: Laurent phenomenon for critical varieties.

@ Define the open critical variety
Crity := {Meas¢(t) | t € (C*)" is f-admissible}.

Ay = [23] - [24]
Doz = [34] - [24]
Asq = [14] - [24]
Ay = [12] - [24]
Az = [24] - [24] l

Noq = [14] - [23] + [12] - [34T=[23] - [24]

“Ptolemy’s theorem
over C”

[pa] = [tq, tol



@ Make a change of variables: t, := exp(ifp).
. 1

@ sin(0, — 0p) = [tg, tp] := E(tq/tp — tp/tq).

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows b — b, and bf — b, cross, we have t, # +tq.

Theorem

t is f-admissible = there is a well-defined element
Meas(t) € ;.

@ Reason: Laurent phenomenon for critical varieties.

| A

\

@ Define the open critical variety
Crity := {Meas¢(t) | t € (C*)" is f-admissible}.

@ Critical variety Crit; = Zariski closure of Crit7% (or of Crit?).

Ay = [23] - [24]
Doz = [34] - [24]
Asq = [14] - [24]
Ayg = [12] - [24]
Ay = [24] - [24] |

Doq = [14] - [23] + [12] - [34T=[23] - [24]

“Ptolemy’s theorem
over C”

[pal = [tq, tol



@ Make a change of variables: t, := exp(ifp).
. 1

@ sin(0, — 0p) = [tg, tp] := E(tq/tp — tp/tq).

Definition

t € (C*)" is called f-admissible if for all p < g such that the
arrows b — b, and bf — b, cross, we have t, # +tq.

Theorem

t is f-admissible = there is a well-defined element
Meas(t) € ;.

@ Reason: Laurent phenomenon for critical varieties.

| A

@ Define the open critical variety
Crity := {Meas¢(t) | t € (C*)" is f-admissible}.

@ Critical variety Crit; = Zariski closure of Crit7% (or of Crit?).

@ Problem: show that Crit; is an open subvariety of Crits and
describe them by polynomial equations.

A = %23% . %24%

Aoz = [34] - [24 . ,

Azj = [14] - [24] Ptole;:\/zrsébeorem
A = [12] - [24]

A3 = [24] - [24] |

Doq = [14] - [23] + [12] - [34]=[13] - [24]

[pal = [tq, tol



Applications: Ising model and electrical networks

@ Let n=2N and consider a fixed-point-free involution 7 : [2N] — [2N].


https://arxiv.org/abs/1707.02010

Applications: Ising model and electrical networks

@ Let n=2N and consider a fixed-point-free involution 7 : [2N] — [2N].
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@ If 0, = rm/nfor all 1 < r < n, we get Measy, (0) = Xék’").
@ This yields the above formulas for regular polygons in the Ising and electrical cases.
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Thanks!
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