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The shift map: desired properties

Gr(k , n) := {V ✓ Cn | dimV = k};

Gr>0(k , n) := {V 2 Gr(k , n) | �I (V ) > 0 8I}; Gr>0(k , n) =

G

f

⇧
>0
f ,

where f is essentially a permutation.

Vague Conjecture

There exists a (partial) shift map Gr>0(k , n) 99K Gr>0(k � 1, n) which

is compatible with the BCFW triangulation of the m = 4 amplituhedron

explains the T-duality for the m = 2 amplituhedron [Parisi–Sherman-Bennett–Williams ’21]

gives a stratification-preserving homeomorphism between the spaces of
Ising and electrical networks [Lam ’14, G.–Pylyavskyy ’18]

Takes ⇧>0
f to ⇧

>0
f # , where f #(i) = f (i � 1) for all i .

Takes the critical part of ⇧>0
f to the critical part of ⇧>0

f # .
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Shift map?

Face posets coincide:
Matchings of 2n elements, ordered by “uncrossing”
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Shift map?

Face posets coincide:
Matchings of 2n elements, ordered by “uncrossing”

3d cell (interior)
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Critical Ising model and 
critical electrical networks
are special cases of the 
critical dimer model,
introduced by Kenyon in 2002.



Dimer model

Input: weighted bipartite graph 
(G,wt) embedded in a disk, with n 
black degree 1 boundary vertices
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Dimer model

Each G parametrizes a positroid cell 

where f is the strand permutation of G.
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Each G parametrizes a positroid cell 

where f is the strand permutation of G.
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A strand in G is a path that
 - makes a sharp right turn at each black vertex
 - makes a sharp left turn at each white vertex

Each G parametrizes a positroid cell 

where f is the strand permutation of G.
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A strand in G is a path that
 - makes a sharp right turn at each black vertex
 - makes a sharp left turn at each white vertex

Strand permutation of G sends 3 to 5, 4 to 1, ...

G is called reduced if it has minimal number of faces among all graphs with the same strand permutation.

Any two reduced graphs with the same strand permutation are 
related by these moves:
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A strand in G is a path that
 - makes a sharp right turn at each black vertex
 - makes a sharp left turn at each white vertex

Strand permutation of G sends 3 to 5, 4 to 1, ...

G is called reduced if it has minimal number of faces among all graphs with the same strand permutation.

Any two reduced graphs with the same strand permutation are 
related by these moves:

Any non-reduced graph can be transformed into
a reduced one using these additional moves:
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of the Grassmannian obtained by 
fixing G and letting v’s vary.

Critical edge weights are invariant
under square moves, so the critical
cell depends only on f, not on G.
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Any two reduced graphs with the same strand permutation are 
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Any two reduced graphs with the same strand permutation are 
related by these moves:

For critical weights, Meas is
invariant under these moves.

Thus Meas depends only on f and
on 

linear span of all points on a curve
critical edge weights
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Q: what happens when points start to collide?
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Q: what happens for lower cells?

Problem #1: have to allow some v’s to pass through each other.
Problem #2: the limit usually depends on “infinitesimal ratios”

Result depends on a:b:c
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Q: what happens for lower cells?

Problem #1: have to allow some v’s to pass through each other.
Problem #2: the limit usually depends on “infinitesimal ratios”

theorem ( G.

ki) For any fesn,
there is a

polytope Cycf (
" affine poset cyclohedronly and

a natural surjective map Cycf→ Crit
.

a. Top cell f -- fkn ⇒ Cycf = usual cyclohedron

theorem ( G .

'
21) For top cell f -- fkn

,
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Critz? ,n= Dan
RHS does not depend on k !

closure of Crite?n inside Grzfkm)
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Suppose P is a connected 
poset (=partially ordered set)

P-configuration space:

Q: how to compactify the P-configuration space?

Option #1: order polytope
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P-configuration space:

Q: how to compactify the P-configuration space?

Option #1: order polytope

Option #2: poset associahedron
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Definition. A P-tube is a convex connected subset of P.

Definition. A collection of P-tubes is acyclic if assigning equal values to the 
elements inside each tube does not lead to a “contradiction.”
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Q: how to compactify the P-configuration space?

Option #1: order polytope

Option #2: poset associahedron

Definition. A P-tube is a convex connected subset of P.

Definition. A collection of P-tubes is acyclic if assigning equal values to the 
elements inside each tube does not lead to a “contradiction.”

is convex if

not acyclic! not acyclic! Proposition. The faces of the order polytope
are in bijection with acyclic collections of 
disjoint P-tubes whose union is P.a=c, b=d, but

   a<d, b<c!
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Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
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is important!

AID

E . P -- aix!
i i

f (P) = I I

④④ 4*0
bad ! Y-



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra

AID

Ey .
P -- chain -- i! ⇒ Afp) - usual associahedroh



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra

AID

Ey .
P -- chain -- Fi ⇒ Afp) = usual associahedroh

EI .

f- claw
-

-

z ⇒Afp) = permutohedron



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1
 - faces = products of smaller poset associahedra and affine poset cyclohedra

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1
 - faces = products of smaller poset associahedra and affine poset cyclohedra
 - P = affine chain => Cyc(P) = usual cyclohedron

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1
 - faces = products of smaller poset associahedra and affine poset cyclohedra
 - P = affine chain => Cyc(P) = usual cyclohedron
 - P = affine claw => Cyc(P) = type B permutohedron

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1
 - faces = products of smaller poset associahedra and affine poset cyclohedra
 - P = affine chain => Cyc(P) = usual cyclohedron
 - P = affine claw => Cyc(P) = type B permutohedron

 - poset associahedron = compactification of the space of points on a line

AID



Definition. A P-tubing is an acyclic collection of P-tubes, such that any two tubes 
are either nested or disjoint.

Theorem. (G. ‘21) There exists a convex polytope
(“poset associahedron”) whose faces correspond to
P-tubings, ordered by reverse inclusion.

 - dimension = |P|-2
 - vertices = maximal P-tubings
 - facets = P-tubes
 - faces = products of smaller poset associahedra
 - P = chain => A(P) = usual associahedron
 - P = claw => A(P) = permutohedron

Similarly, one can define affine posets and affine poset cyclohedra. 

 - dimension = |P|-1
 - faces = products of smaller poset associahedra and affine poset cyclohedra
 - P = affine chain => Cyc(P) = usual cyclohedron
 - P = affine claw => Cyc(P) = type B permutohedron
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 - affine poset cyclohedron = compactifiaction of the space of points on a circle
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