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where f is essentially a permutation.

There exists a (partial) shift map Grso(k, n) --» Gr>o(k — 1, n) which
@ is compatible with the BCFW triangulation of the m = 4 amplituhedron
@ explains the T-duality for the m = 2 amplituhedron [Parisi-Sherman-Bennett-Williams '21]

@ gives a stratification-preserving homeomorphism between the spaces of
Ising and electrical networks [Lam '14, G~Pylyavskyy '18]

o Takes M7° to N2°, where f4(i) = f(i — 1) for all i.

o Takes the critical part of N7° to the critical part of NZ?.
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Critical Ising model and
critical electrical networks

are special cases of the
critical dimer model,
iIntroduced by Kenyon in 2002.
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Poset associahedra

FIGURE 1. A poset associahedron.
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FIGURE 1. A poset associahedron.



