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Ising model



(G , x): weighted graph embedded in a disk.

Ferromagnetic case: 0 < xe < 1 for all e ∈ E (G ).

Ising model: probability measure on spin
configurations.

For a spin configuration σ : V (G )→ {±1},

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v},

where Z is such that the total probability is 1.

Boundary correlation:
〈σiσj〉 := Prob(σbi = σbj )− Prob(σbi 6= σbj ).

Griffiths (1967): 〈σiσj〉 > 0.

Kelly–Sherman (1968): 〈σiσk〉 > 〈σiσj〉 · 〈σjσk〉.
Q1: How to describe correlations by inequalities?
Q2: How to reconstruct the edge weights

from boundary correlations?
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(G , x): weighted graph embedded in a disk with 0 < xe < 1 for all e ∈ E (G ).

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v}, 〈σiσj〉 := Prob(σbi = σbj )− Prob(σbi 6= σbj ).

Definition
Boundary correlation matrix M(G , x) = (mij)

n
i ,j=1, mij := 〈σiσj〉.

Xn := {M(G , x) | (G , x) as above, with n boundary vertices}.
X n := closure of Xn inside the space of n × n matrices.

Example (n = 2)

x
b2 b1

M(G , x) =

(
1 m
m 1

)
m := m12 = 1−x

1+x

X2 =

{(
1 m
m 1

)∣∣∣∣m ∈ [0, 1)

}
.

X 2 =

{(
1 m
m 1

)∣∣∣∣m ∈ [0, 1]

}
.
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Total positivity



The totally nonnegative (TNN) Grassmannian

Gr(k , n) := {W ⊆ Rn | dim(W ) = k}.

Gr(k , n) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊆ [n] := {1, 2, . . . , n} of size k ,

∆I := k × k minor with column set I .

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr>0(k , n) := {W ∈ Gr(k , n) | ∆I (W ) > 0 for all I}.
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Plücker coordinates: for I ⊆ [n] := {1, 2, . . . , n} of size k ,

∆I := k × k minor with column set I .

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr>0(k , n) := {W ∈ Gr(k , n) | ∆I (W ) > 0 for all I}.



The totally nonnegative (TNN) Grassmannian

Gr(k , n) := {W ⊆ Rn | dim(W ) = k}.
Gr(k , n) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.
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The totally nonnegative orthogonal Grassmannian

Gr>0(k , n) ←→ amplituhedron ←→ N = 4 supersymmetric
Yang–Mills theory

OG>0(n, 2n) ←→ ? ←→ N = 6 supersymmetric
Chern-Simons matter theory

Recall: Gr>0(k , n) := {W ∈ Gr(k , n) | ∆I (W ) > 0 for all I}.

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OG>0(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) > 0 for all I}.

dim(Gr>0(n, 2n)) = n2 dim(OG>0(n, 2n)) =

(
n

2

)
=

n(n − 1)

2
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Definition
Xn := {M(G , x) | (G , x) is a planar Ising network with n boundary vertices}.
X n := closure of Xn inside the space of n × n matrices.

We define a simple doubling map φ : X n ↪→ Gr(n, 2n):
1 m12 m13 m14

m12 1 m23 m24

m13 m23 1 m34

m14 m24 m34 1

 7→ RowSpan


1 1 m12 −m12 −m13 m13 m14 −m14

−m12 m12 1 1 m23 −m23 −m24 m24

m13 −m13 −m23 m23 1 1 m34 −m34

−m14 m14 m24 −m24 −m34 m34 1 1



Question: What’s the image?

Example (n = 2)

x
b2 b1

X 2 =

{(
1 m
m 1

)∣∣∣∣m ∈ [0, 1]

}
.(

1 m
m 1

)
7→
(

1 1 m −m
−m m 1 1

)

∆12 = 2m ∆13 = 1 + m2 ∆14 = 1−m2

∆34 = 2m ∆24 = 1 + m2 ∆23 = 1−m2
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We have a homeomorphism φ : X n
∼−→ OG>0(n, 2n).

Both spaces are homeomorphic to closed
(
n
2

)
-dimensional balls.

Kramers–Wannier’s duality (1941) → cyclic shift.
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Critical Ising model



Phase transition

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v}.

Usually:
G = large piece of a (e.g.
square) lattice;

xe = x for all e ∈ E (G ).

Get a phase transition at
critical temperature xcrit.

Square lattice: xcrit =
√

2− 1.

x < xcrit x = xcrit x > xcrit

Picture credit: Dmitry Chelkak
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Square lattice Hexagonal lattice Triangular lattice

xcrit =
√

2− 1 xcrit = 2−
√

3 xcrit = 1√
3

xcrit = tan(π/8) xcrit = tan(π/12) xcrit = tan(π/6)

2θe

e xe = tan(θe/2)
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Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

b1

b2
b3

b4

b5

b6

b7

b8

b9

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

b1

b2
b3

b4

b5

b6

b7

b8

b9

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

b1

b2
b3

b4

b5

b6

b7

b8

b9

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

b1

b2
b3

b4

b5

b6

b7

b8

b9

←→



Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: 〈σiσj〉R depends only on the
polygonal region R.

Formula for 〈σiσj〉R in terms of R?

b1

b2
b3

b4

b5

b6

b7

b8

b9

←→



A formula for regular polygons

Let RN be a regular 2N-gon
and 〈σiσj〉RN

be the corresponding
boundary correlations.

b1

b2

b3

b4

b5

b6

Theorem (G. (2020))

For 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

https://arxiv.org/abs/2010.13345


A formula for regular polygons

Let RN be a regular 2N-gon
and 〈σiσj〉RN

be the corresponding
boundary correlations.

b1

b2

b3

b4

b5

b6

Theorem (G. (2020))

For 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

https://arxiv.org/abs/2010.13345


Theorem (G. (2020))

If RN is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓1.

〈σ1σ2〉RN
=

2
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sin(π/2N)
− 1,

〈σ1σ3〉RN
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N

(
1

sin(3π/2N)
− 1

sin(π/2N)

)
+ 1,

〈σ1σ4〉RN
=

2

N

(
1

sin(5π/2N)
− 1

sin(3π/2N)
+

1

sin(π/2N)

)
− 1.

Q: Does 〈σ1σd+1〉RN
→ 0 for 1� d � N?

A: Yes, by the Leibniz formula for π:
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .
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Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
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Electrical networks

Treat each edge of G as a resistor.

Resistance Re = ratio of diagonals:
2θe

e Re = tan(θe)

Electrical response matrix Λ : RN → RN , voltages 7→ currents.

Λ is invariant under star-triangle moves =⇒ depends only on the region.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 6 i , j 6 N and d := |i − j |, we have

Λi ,j =
sin(π/N)

N · sin((2d − 1)π/2N) · sin((2d + 1)π/2N)
.

Ising model case: xe = tan(θe/2) and

〈σiσj〉RN
=

2

N

(
1

sin ((2d − 1)π/2N)
− 1

sin ((2d − 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

b1

b2

b3

Re =
1√
3

Λ =
1√
3

−2 1 1
1 −2 1
1 1 −2

 .
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Critical dimer model



(G ,wt) – a weighted planar bipartite graph, with n black boundary
vertices b1, b2, . . . , bn of degree 1.

An almost perfect matching A uses all interior vertices and some
subset ∂(A) of the boundary vertices (∂(A) ⊆ [n] := {1, 2, . . . , n}).

Boundary measurement map MeasG (wt) = (∆J(G ,wt))
J∈([n]

k ):

∆J(G ,wt) :=
∑

A:∂(A)=J

wt(A), where wt(A) :=
∏
e∈A

wt(e).

A strand is a path in G that makes a sharp right turn at each black
vertex and a sharp left turn at each white vertex.

Strand permutation: fG ∈ Sn. (aka “loopless bounded affine
permutation”)

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.

Preprint, arXiv:math/0609764, 2006.

b1 b2

b3b4

a
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c d

e
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g
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https://arxiv.org/abs/math/0609764
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Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409–439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation

and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721–754, 2015.

Fix θ = (θ1, θ2, . . . , θn) such that θ1 < θ2 < · · · < θn < θ1 + π.

Each edge e belongs to exactly two strands terminating at bp
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Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))
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sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)

∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Strand: turn right/left at each black/white vertex.

Strand permutation: f ∈ Sn.

Jr := {j ∈ [n] | br is to the left of strand bi → bj}.

Consider a curve γf ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)):

γr (t) := εr
∏
p∈Jr

sin(t − θp) for r ∈ [n],

where εr := (−1)#{p∈[n]|f (p)6p<r}.

Theorem (G. (2021))

Measf (θ) = Span(γf ,θ) inside Gr(k , n).

∆12 = (23) · (24)
∆23 = (34) · (24)
∆34 = (14) · (24)
∆14 = (12) · (24)
∆13 = (24) · (24)
∆24 = (14) · (23) + (12) · (34)=(13) · (24)

(pq) := sin(θq − θp)

by Ptolemy’s
theorem

b1 b2

b3b4

→

b1 b2

b3b4

J1 = {2} J2 = {3} J3 = {4} J4 = {1}

γf ,θ(t) = (sin(t − θ2), sin(t − θ3),

sin(t − θ4),− sin(t − θ1))

Span(γf ,θ) is the row span of(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
∆12 = sin(θ3 − θ2) ∆23 = sin(θ4 − θ3)
∆34 = sin(θ4 − θ1) ∆14 = sin(θ2 − θ1)
∆13 = sin(θ4 − θ2) ∆24 = sin(θ3 − θ1)



Applications: Ising model and electrical networks

Let n = 2N and consider a fixed-point-free involution τ : [2N]→ [2N].

Call θ τ -isotropic if θq = θp + π/2 for p < q such that τ(p) = q.

For k = N, f = τ , this recovers the critical Ising model.

[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.

For k = N + 1 and f (p) = τ(p + 1), this recovers critical electrical networks.

[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. Adv. Math.,

338:549–600, 2018.

For each k, n, Gr>0(k, n) contains a unique cyclically symmetric point X
(k,n)
0 .

[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball.

arXiv:1707.02010, 2017.

[Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc.,

51(5):900–916, 2019.

If θr = rπ/n for all 1 6 r 6 n, we get Measfk,n(θ) = X
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