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Theorem (G.—Karp—Lam (2017))
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@ OGxo(n,2n) = {W € Gr(n,2n) | A(W) = Apam (W) =0 for all /}.

@ X, = (closure of the) space of n x n planar Ising boundary correlation matrices

Example (n = 2)

N )

(1 m)|_><1 1 m —m) Ap=2m A;iz3=14+m* Ayu=1—m?

-m m 1 1 N3s=2m DAoppy=14+m* Apz=1-—m?

Theorem (G.—Pylyavskyy (2018))

o We have a homeomorphism ¢ : X, = OGsq(n, 2n).
e Both spaces are homeomorphic to closed (3)-dimensional balls.
o Kramers—Wannier’s duality (1941) — cyclic shift.
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Ising model: origin

@ Suggested by by W. Lenz to his student E. Ising in 1920.
@ Ising (1925): not a good model for ferromagnetism (Reason: no phase transition in 1D)
Q: how does |F| depend on T°?
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1
Prob(o) = ? H X{u,v}-

{u,v}€E(G):
ouFoy
Usually:
@ G = large piece of a (e.g.
square) lattice;
@ x. = x for all e € E(G).
@ Get a phase transition at
critical temperature xit.

X < Xerit X = Xerit X > Xerit

@ Kramers—-Wannier (1941):

Square lattice: xerie = v/2 1. Picture credit: Dmitry Chelkak




Square lattice Hexagonal lattice Triangular lattice
Xerit = \/§ - 1 Xerit = 2 — \/§ Xerit = \/L§



Square lattice Hexagonal lattice Triangular Iattice
Xerit = \/§ -1 Xerit = 2 — \/§ Xerit T
Xerit = tan(7/8) Xerit = tan(7/12) Xerit = tan(7/6)



Square lattice
Xerit = \/5 -1

Xerit = tan(7/8)

Hexagonal lattice
Xerit = 2 — \/§
Xerit = tan(7/12)

Triangular lattice

_ 1
Xerit = %
Xerit = tan(7/6)



Square lattice
Xerit = \/5 -1

Xerit = tan(m/8)

Hexagonal lattice Triangular lattice
Xerit = 2 — \/§ Xerit = %

Xerit = tan(7/12) Xerit = tan(7/6)

o Xe = tan(0./2)
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[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.

@ Edge weights:

e . — x.=tan(0./2)

09,
N
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@ Z-invariance: the boundary correlations (o;0;) 5
are invariant under flips (star-triangle moves).

@ Conclusion: Mg := ((0i0})g)7;—; depends only
on the polygonal region R.

@ Formula for Mg in terms of R?
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and (0;0;) be the corresponding
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Let R, be a regular 2n-gon
and (0;0;) be the corresponding
boundary correlations.

Theorem (G. (2020))

. we have

Forl1<i,j<nandd:=|i—j

2 1 L 1
(0i0)j)g, = (sm((2d “Dejon) " an(@d 3 Tt sin(7r/2n)> =

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.


https://arxiv.org/abs/2010.13345
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Theorem (G. (2020))
If R, is a regular 2n-gon then for 1 < i,j < n and d := |i — j|, we have

2 1 1 4
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Theorem (G. (2020))

If R, is a regular 2n-gon then for 1 < i,j < n and d := |i — j|, we have
2 1 1 1
i0j)r == | = — = 000 95 e L.
oioi)r, = <sm (2d = )n/2n) _ sin((2d = 3)z/2n) sin (W/zn)> +
4 4 4 4
@d-DOr (@3 T Fm i Fl
2 1
e =0 Gtz
2 1 1
(0103)g, = ;<sin(37r/2n) a sin(7r/2n)) +1,

2 1 1 1
(0104)r, = E<sin(57r/2n) " sin(3r/2n) sin(7r/2n)> - L

@ Q: Does <010d+1>Rn —0forl<d<n?

@ A: Yes, by the Leibniz formula for 7:
T 1 1 . 1 1 n 1 B
4 3 5 7 9 '
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Theorem (G. (2020))

If R, is a regular 2n-gon then for 1 < i,j < n and d := |i — j|, we have

2 1 1 4
oioilr, = (sin (2d— D)r/2n)  sin((2d—3)w/2n) s (ﬂ/2n)> i

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of
fermionic observables. Invent. Math., 189(3):515-580, 2012.
[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.



Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.

@ Edge weights:

e . — x.=tan(h./2)

09,
N

o

@ Z-invariance: the boundary correlations (o;0;) 5
are invariant under flips (star-triangle moves).

@ Conclusion: Mg := ((0i0})g)7;—; depends only
on the shape of the polygonal region R.

@ Formula for Mg in terms of R?
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Given a 2n-gon R, denote its sides by vy, vo, ..., v, € C.
Let @ = (61,02, ...,02,) be given by v, = exp(2i0,).
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Given a 2n-gon R, denote its sides by vy, vo, ..., v, € C.
Let @ = (01,02, ...,02,) be given by v, = exp(2i6,).
Given this data, we define a certain curve 79 : R — R2",

For non-convex R, the r-th coordinate is £ ][], sin(t — 0;), where [J;| = n— 1.

Theorem (G. (2021))

¢(Mg) = Span(~yg) inside OGxq(n,2n).

Here ¢ : X, — OGxo(n, 2n) is the doubling map, Mg := ({0j0))g)],_; is the critical
boundary correlation matrix, and Span(~yg) is the linear span of all points on ~g.
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