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@ (G,x): weighted planar graph embedded in a disk.
@ 0<x.<1forall ec E(G)
@ Spin configuration: o : V(G) — {£1},

Prob(a)cx H X{uv}s
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@ Boundary correlation matrix: M = (mj)?,_;:
mj; := Prob(o; = 0;) — Prob(o; # 0;).
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(G,x): weighted planar graph embedded in a disk.
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Spin configuration: o : V(G) — {£1},
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Boundary correlation matrix: M = (my)7;_;:
mj; := Prob(o; = 0;) — Prob(o; # 0;).

Star-triangle moves (preserve boundary correlations).
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(G,x): weighted planar graph embedded in a disk.
0<x.<1forall ec E(G)
Spin configuration: o : V(G) — {£1},

Prob(a)cx H X{u7v}7

ouF#oy

Boundary correlation matrix: M = (my)7;_;:
mj; := Prob(o; = 0;) — Prob(o; # 0;).

Star-triangle moves (preserve boundary correlations).
A— (abc+1)(a+bc) .
- (b+ac)(c+ab) ’
o (abc+1)(b+ac) .
B = \/ (a+bc)(c+ab) !
C = (abc+1)(c+ab)
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@ G = large piece of a (e.g.
square) lattice;

@ x. = x for all e € E(G).
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red=+ spin blue=— spin
Usually:

@ G = large piece of a (e.g.
square) lattice;

@ x. = x for all e € E(G).

@ Get a phase transition at
critical temperature Xqit.

X < Xerit X = Xerit X > Xerit

Picture credit: Dmitry Chelkak




Phase transition

PI’Ob(O‘) X H X{u,v}-
O'u?'éa'v
Usually:
@ G = large piece of a (e.g.
square) lattice;
@ x. = x for all e € E(G).

@ Get a phase transition at
critical temperature x.it.

@ Square lattice: x. i = v/2 — 1.

red=+ spin blue=— spin

X < Xerit X = Xerit X > Xerit

Picture credit: Dmitry Chelkak
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Xerit = \/5 -1
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Hexagonal lattice
Xerit = 2 — \/§
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Triangular lattice
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Square lattice
Xerit = \/5 -1

Xerit = tan(m/8)

Hexagonal lattice Triangular lattice
Xerit = 2 — \/§ Xerit = %

Xerit = tan(7/12) Xerit = tan(7/6)

o Xe = tan(0./2)
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[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.

@ Edge weights:

e . — x.=tan(0./2)

09,
N

@ Z-invariance: these edge weights are invariant
under star-triangle moves.

@ Conclusion: boundary correlation matrix Mg
depends only on the shape of the region R.

@ Formula for Mg in terms of R?
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Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d :=|i — j|, we have

2 1 = 1
i =N (sin ((2d —1)w/2N)  sin((2d — 3)7/2N) T W) o

@ Similar story for electrical networks:

@ Treat each edge of G as a resistor.

@ Electrical response matrix A: RV — RN, sending boundary voltages — boundary currents.

Theorem (G. (2021))

If R is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

sin(mw/N)
N -sin((2d — 1)7/2N) - sin((2d + 1)7/2N)

Nj =
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Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.
@ Edge weights:

- . — xe=tan(0./2)

09,
N

@ Z-invariance: these edge weights are invariant
under flips (star-triangle moves).

@ Conclusion: boundary correlation matrix Mg
depends only on the shape of the region R.

@ Formula for Mg in terms of R?
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@ Fix n points (vi,va,...,v,) € C" clockwise on the unit circle.

@ A strand is a path in G that makes a sharp right turn at each
black vertex and a sharp left turn at each white vertex.

@ Each edge e belongs to two strands terminating at p and q. Set

|vg — vp|, if eis not a boundary edge,

wt(e) := 1

, otherwise.
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Critical dimer model

@ Each edge e belongs to two strands terminating at p and g. Set

t(e) |vg — vp|, if eis not a boundary edge,
wt(e) :=
1, otherwise.

@ These edge weights are invariant under square moves:

Main Result (G. (2021))

An explicit Gr(k, n) formula for the boundary
measurements of the critical dimer model.

|Pq| = |Vq — VY
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