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Total positivity



The totally nonnegative (TNN) Grassmannian

Gr(k , n) := {W ⊆ Rn | dim(W ) = k}.

Gr(k , n) := {k × n matrices of rank k}/(row operations).

Example:

RowSpan

(
1 1 0 −1
0 2 1 1

)
∈ Gr(2, 4)

∆13 = 1 ∆12 = 2 ∆14 = 1
∆24 = 3 ∆34 = 1 ∆23 = 1.

Plücker coordinates: for I ⊆ [n] := {1, 2, . . . , n} of size k ,

∆I := k × k minor with column set I .

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr>0(k , n) := {W ∈ Gr(k , n) | ∆I (W ) > 0 for all I}.
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Topology of Gr>0(k, n)

Theorem (Postnikov (2006))

Each boundary cell (some ∆I > 0 and the rest ∆J = 0) is an open ball.

Conjecture (Postnikov (2006))

The closure of each boundary cell is homeomorphic to a closed ball.

Lusztig (1998): Gr>0(k , n) is contractible.
Williams (2007): the face closure poset is shellable (i.e., a “combinatorial ball”).
Postnikov–Speyer–Williams (2009): Gr>0(k , n) is a CW complex.
Rietsch–Williams (2010): the closure of each cell is contractible.

Theorem (G.–Karp–Lam)

2017: Gr>0(k , n) is homeomorphic to a closed ball.

2019: The closure of each cell is homeomorphic to a ball.

Theorem (Smale (1960), Freedman (1982), Perelman (2003))

Let C be a compact contractible topological manifold whose boundary is
homeomorphic to a sphere. Then C is homeomorphic to a closed ball.
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Theorem (G.–Karp–Lam (2017))

Gr>0(k , n) is homeomorphic to a k(n − k)-dimensional closed ball.

Our proof involves a flow that contracts the whole Gr>0(k , n) to the
unique cyclically symmetric point X0 ∈ Gr>0(k , n).

Cyclic shift S : Gr(k , n)→ Gr(k , n), [w1|w2| . . . |wn] 7→ [(−1)k−1wn|w1| . . . |wn−1].

This map preserves Gr>0(k , n).

Example: For Gr>0(2, 4), we have

X0 = RowSpan

(
1 0 −1 −

√
2

1
√

2 1 0

)
S7−→ RowSpan

(√
2 1 0 −1

0 1
√

2 1

)

= X0 ∈ Gr>0(2, 4)

S7−→
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Ising model



(G , x): weighted planar graph embedded in a disk.

Ferromagnetic case: 0 < xe < 1 for all e ∈ E (G ).

Ising model: probability measure on spin
configurations.

For a spin configuration σ : V (G )→ {±1},

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v},

where Z is such that the total probability is 1.

Boundary correlation:
〈σiσj〉 := Prob(σbi = σbj )− Prob(σbi 6= σbj ).

Griffiths (1967): 〈σiσj〉 > 0.

Kelly–Sherman (1968): 〈σiσk〉 > 〈σiσj〉 · 〈σjσk〉.
Q1: How to describe correlations by inequalities?
Q2: How to reconstruct the edge weights

from boundary correlations?

b1

b2b3

b4

b5 b6

x1

x2
x3

x4

x5

x6

x7

x8

x9
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(G , x): weighted graph embedded in a disk with 0 < xe < 1 for all e ∈ E (G ).

Prob(σ) :=
1

Z

∏
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σu 6=σv

x{u,v}, 〈σiσj〉 := Prob(σbi = σbj )− Prob(σbi 6= σbj ).

Definition
Boundary correlation matrix M(G , x) = (mij)

n
i ,j=1, mij := 〈σiσj〉.

Xn := {M(G , x) | (G , x) as above, with n boundary vertices}.
X n := closure of Xn inside the space of n × n matrices.

Example (n = 2)
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Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

Gr>0(k , n) := {W ∈ Gr(k , n) | ∆I (W ) > 0 for all I}.

Definition (Huang–Wen (2013))

The totally nonnegative orthogonal Grassmannian:
OG>0(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) > 0 for all I}.
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Definition
Xn := {M(G , x) | (G , x) is a planar Ising network with n boundary vertices}.
X n := closure of Xn inside the space of n × n matrices.

We define a simple doubling map φ : X n ↪→ Gr(n, 2n):
1 m12 m13 m14

m12 1 m23 m24

m13 m23 1 m34

m14 m24 m34 1

 7→ RowSpan


1 1 m12 −m12 −m13 m13 m14 −m14

−m12 m12 1 1 m23 −m23 −m24 m24

m13 −m13 −m23 m23 1 1 m34 −m34

−m14 m14 m24 −m24 −m34 m34 1 1



Question: What’s the image?

Example (n = 2)

x
b2 b1

X 2 =

{(
1 m
m 1

)∣∣∣∣m ∈ [0, 1]

}
.(

1 m
m 1

)
7→
(

1 1 m −m
−m m 1 1

)

∆12 = 2m ∆13 = 1 + m2 ∆14 = 1−m2

∆34 = 2m ∆24 = 1 + m2 ∆23 = 1−m2
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Ising model: origin

Suggested by by W. Lenz to his student E. Ising in 1920.

Ising (1925): not a good model for ferromagnetism

Q: how does |~F | depend on T ◦?

T ◦
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Curie point (P. Curie, 1895)
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Ising model: origin
Suggested by by W. Lenz to his student E. Ising in 1920.

Ising (1925): not a good model for ferromagnetism (Reason: no phase transition in 1D)

~F

Q: how does |~F | depend on T ◦?

T ◦

|~F |

T ◦

|~F |

Curie point (P. Curie, 1895)



Phase transition

Prob(σ) :=
1

Z

∏
{u,v}∈E(G):

σu 6=σv

x{u,v}.

Usually:
G = large piece of a (e.g.
square) lattice;

xe = x for all e ∈ E (G ).

Get a phase transition at
critical temperature xcrit.

Kramers–Wannier (1941):
Square lattice: xcrit =

√
2− 1.

x < xcrit x = xcrit x > xcrit

Picture credit: Dmitry Chelkak
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xcrit = tan(π/8) xcrit = tan(π/12) xcrit = tan(π/6)

2θe

e xe = tan(θe/2)
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Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: MR := (〈σiσj〉R)ni,j=1 depends only
on the polygonal region R.

Formula for MR in terms of R?

←→
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A formula for regular polygons

Let Rn be a regular 2n-gon
and 〈σiσj〉Rn

be the corresponding
boundary correlations.

b1

b2

b3
b4

b5

b6

Theorem (G. (2020))

For 1 6 i , j 6 n and d := |i − j |, we have

〈σiσj〉Rn
=

2

n

(
1

sin ((2d − 1)π/2n)
− 1

sin ((2d − 3)π/2n)
+ · · · ± 1

sin (π/2n)

)
∓ 1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.

https://arxiv.org/abs/2010.13345
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Theorem (G. (2020))

If Rn is a regular 2n-gon then for 1 6 i , j 6 n and d := |i − j |, we have
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=
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n

(
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− 1

sin ((2d − 3)π/2n)
+ · · · ± 1

sin (π/2n)

)
∓ 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4

(2d−1)π − 4
(2d−3)π + · · ·∓ 4

3π ± 4
π ∓ 1

〈σ1σ2〉Rn
=

2

n
· 1

sin(π/2n)
− 1,

〈σ1σ3〉Rn
=

2

n

( 1

sin(3π/2n)
− 1

sin(π/2n)

)
+ 1,

〈σ1σ4〉Rn
=

2

n

( 1

sin(5π/2n)
− 1

sin(3π/2n)
+

1

sin(π/2n)

)
− 1.

Q: Does 〈σ1σd+1〉Rn
→ 0 for 1� d � n?

A: Yes, by the Leibniz formula for π:
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .
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Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math., 189(3):515–580, 2012.

[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
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Critical Z -invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and

Z-invariant lattice models in statistical mechanics. Proc.

Roy. Soc. London Ser. A, 404(1826):1–33, 1986.

Choose a rhombus tiling of a polygonal region R.

G consists of diagonals connecting black vertices.

Edge weights:

2θe

e −→ xe = tan(θe/2)

Z -invariance: the boundary correlations 〈σiσj〉R
are invariant under flips (star-triangle moves).

Conclusion: MR := (〈σiσj〉R)ni,j=1 depends only
on the shape of the polygonal region R.

Formula for MR in terms of R?

b1

b2
b3

b4

b5
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b9

←→



Shape of a polygonal region R

Given a 2n-gon R , denote its sides by v1, v2, . . . , v2n ∈ C.

Let θ = (θ1, θ2, . . . , θ2n) be given by vr = exp(2iθr ).
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The formula

Given a 2n-gon R , denote its sides by v1, v2, . . . , v2n ∈ C.
Let θ = (θ1, θ2, . . . , θ2n) be given by vr = exp(2iθr ).

Given this data, we define a certain curve γθ : R→ R2n.

Example
When R is convex, we have

γθ(t) =
( n∏

j=2

sin(t − θj),
n+1∏
j=3

sin(t − θj), · · · ,±
n−2∏
j=2n

sin(t − θj),∓
n−1∏
j=1

sin(t − θj)
)
.

For non-convex R , the r -th coordinate is ±
∏

j∈Jr sin(t − θj), where |Jr | = n − 1.

Theorem (G. (2021))

φ(MR) = Span(γθ) inside OG>0(n, 2n).

Here φ : X n
∼−→ OG>0(n, 2n) is the doubling map, MR := (〈σiσj〉R)ni ,j=1 is the critical

boundary correlation matrix, and Span(γθ) is the linear span of all points on γθ.
The inverse of φ is easily computed using linear algebra.

Similar Gr(n + 1, 2n) formula for electrical resistor networks.

If R is regular then Span(γθ) = X0 ∈ Gr>0(n, 2n) is the cyclically symmetric point.

Thank you!
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