Higher secondary polytopes and regular plabic graphs

Pavel Galashin

UCLA

Southern California Discrete Mathematics Symposium 2020 January 25, 2020

Joint with Alex Postnikov and Lauren Williams (arXiv:1909.05435)

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020 1 / 47

Simplex

Simplex

Simplex

Upside-down simplex

Upside-down simplex

What goes in the middle?

Simplex

Hypersimplex

Upside-down simplex

What goes in the middle?

Pavel Galashin (UCLA)

Higher secondary polytopes

 $\Delta_{1,n} + \cdots + \Delta_{n-1,n} = \operatorname{\mathsf{Perm}}_n := \operatorname{conv}\{(w_1, w_2, \ldots, w_n) \mid w \in S_n\}.$

Associahedron

Associahedron

Associahedron

Upside-down associahedron

Associahedron

Upside-down associahedron

What goes in the middle?

What goes in the middle?

Minkowski sum of higher associahedra

Minkowski sum of higher associahedra

Minkowski sum of higher associahedra

Fiber zonotope (Billera–Sturmfels (1992))

Pavel Galashin (UCLA)

Higher secondary polytopes

6 / 47

•
$$\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope of Gelfand–Kapranov–Zelevinsky (1994).

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope of Gelfand–Kapranov–Zelevinsky (1994).
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

If $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^0$ consists of *n* points then $\widehat{\Sigma}_{\mathcal{A},k} = \Delta_{k,n}$ for $k = 1, \dots, n-1$.

If $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^0$ consists of *n* points then $\widehat{\Sigma}_{\mathcal{A},k} = \Delta_{k,n}$ for $k = 1, \ldots, n-1$.

- dim(Σ_{A,k}) = n − d for all k = 1, 2, ..., n − d.
 Σ_{A,1} is the secondary polytope.
 Σ_{A,1} + ··· + Σ_{A,n−d} is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all k = 1, 2, ..., n-d.

If $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^0$ consists of *n* points then $\widehat{\Sigma}_{\mathcal{A},k} = \Delta_{k,n}$ for $k = 1, \ldots, n-1$.

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope. (Simplex)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

If $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^0$ consists of *n* points then $\widehat{\Sigma}_{\mathcal{A},k} = \Delta_{k,n}$ for $k = 1, \ldots, n-1$.

dim(Σ_{A,k}) = n - d for all k = 1, 2, ..., n - d.
Σ_{A,1} is the secondary polytope. (Simplex)
Σ_{A,1} + ··· + Σ_{A,n-d} is the fiber zonotope. (Permutohedron)
Duality: Σ_{A,k} = -Σ_{A,n-d-k+1} for all k = 1, 2, ..., n - d.

If $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^0$ consists of *n* points then $\widehat{\Sigma}_{\mathcal{A},k} = \Delta_{k,n}$ for $k = 1, \ldots, n-1$.

dim(Σ_{A,k}) = n - d for all k = 1, 2, ..., n - d.
Σ_{A,1} is the secondary polytope. (Simplex)
Σ_{A,1} + ··· + Σ_{A,n-d} is the fiber zonotope. (Permutohedron)
Duality: Σ_{A,k} = -Σ_{A,n-d-k+1} for all k = 1, 2, ..., n - d.
dim(Σ_{A,k}) = n − d for all k = 1, 2, ..., n − d.
Σ̂_{A,1} is the secondary polytope.
Σ̂_{A,1} + ··· + Σ̂_{A,n−d} is the fiber zonotope.
Duality: Σ̂_{A,k} = −Σ̂_{A,n−d−k+1} for all k = 1, 2, ..., n − d.

Assume that $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

Assume that $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\widehat{\Sigma}_{\mathcal{A},1}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Assume that $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\Sigma_{\mathcal{A},1}$ is the secondary polytope. (Associahedron)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Assume that $\mathcal{A} \subseteq \mathbb{R}^{d-1} = \mathbb{R}^2$ consists of the vertices of a convex *n*-gon.

- dim $(\widehat{\Sigma}_{\mathcal{A},k}) = n d$ for all $k = 1, 2, \dots, n d$.
- $\Sigma_{\mathcal{A},1}$ is the secondary polytope. (Associahedron)
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope.
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

Combinatorial objects

\longrightarrow Polytope

Combinatorial objects

k-element sets

Polytope Hypersimplex $\Delta_{k,n}$

 \longrightarrow

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S_n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

A *plabic graph* is a planar bipartite graph embedded in a disk, with n boundary vertices of degree 1.

- turns "maximally right" at each black vertex
- turns "maximally left" at each white vertex

Definition (Postnikov (2006))

Definition (Postnikov (2006))

A plabic graph is a (k, n)-plabic graph if

• the strand that starts at i ends at i + k modulo n for all i;

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k) + 1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k) + 1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k)+1 faces.

Definition (Postnikov (2006))

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k) + 1 faces.

Definition (Postnikov (2006))

A plabic graph is a (k, n)-plabic graph if

- the strand that starts at i ends at i + k modulo n for all i;
- it has k(n-k) + 1 faces.

a (2, 5)-plabic graph

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

• the vertices of $P_{k,n}$ correspond to (k, n)-plabic graphs;

Any two (k, n)-plabic graphs are connected by a sequence of square moves:

Problem

Find a polytope $P_{k,n}$ such that:

- the vertices of $P_{k,n}$ correspond to (k, n)-plabic graphs;
- the edges of $P_{k,n}$ correspond to square moves between them.

Example: k = 2

(2, *n*)-plabic graphs square moves

 $\stackrel{\longleftrightarrow}{\longleftrightarrow}$

triangulations of a convex *n*-gon flips of triangulations

(2, *n*)-plabic graphs square moves

 $\stackrel{\longleftrightarrow}{\longleftrightarrow}$

triangulations of a convex *n*-gon flips of triangulations

Thus $P_{2,n}$ is the usual associahedron.

There are 34 (k, n)-plabic graphs for k = 3 and n = 6. Connecting them by square moves, we get the following picture:

There are 34 (k, n)-plabic graphs for k = 3 and n = 6. Connecting them by square moves, we get the following picture:

There are 34 (k, n)-plabic graphs for k = 3 and n = 6. Connecting them by square moves, we get the following picture:

There are 34 (k, n)-plabic graphs for k = 3 and n = 6. Connecting them by square moves, we get the following picture:

the polytope $P_{3,6}$ doesn't exist!

Pavel Galashin (UCLA)

Higher secondary polytopes

Combinatorial objects	\longrightarrow	Polytope
<i>k</i> -element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
Triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
$Regular$ triangulations of $\mathcal{A}\subseteq \mathbb{R}^{d-1}$		Secondary polytope
Zonotopal tilings		Fiber zonotope
Plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

\longrightarrow	Polytope
	Hypersimplex $\Delta_{k,n}$
	Permutohedron Perm _n
	Associahedron
	Secondary polytope
	Fiber zonotope
	Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$
	\rightarrow

Combinatorial objects	\longrightarrow	Polytope
k-element sets		Hypersimplex $\Delta_{k,n}$
Permutations in S _n		Permutohedron Perm _n
Triangulations of a convex <i>n</i> -gon		Associahedron
$ extsf{Regular}$ triangulations of $\mathcal{A} \subseteq \mathbb{R}^{d-1}$		Secondary polytope
Regular zonotopal tilings		Fiber zonotope
Regular(?) plabic graphs		Higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$

Plabic graphs and zonotopal tilings VS (2)

Trivalent plabic graphs

A *trivalent* (k, n)-plabic graph is obtained from a bipartite one by "uncontracting" vertices until each interior vertex has degree 3.

Trivalent plabic graphs

A *trivalent* (k, n)-plabic graph is obtained from a bipartite one by "uncontracting" vertices until each interior vertex has degree 3.

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by moves:

Pavel Galashin (UCLA)

Each (k, n)-plabic graph has k(n - k) + 1 faces.

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Pavel Galashin (UCLA)

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

Each (k, n)-plabic graph has k(n - k) + 1 faces. Label each face of a (k, n)-plabic graph by a k-element set:

include j in the face label iff the face is to the left of the strand $i \rightarrow j$.

3

• Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;

- Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;

- Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \boldsymbol{v}_1] + [0, \boldsymbol{v}_2] + \cdots + [0, \boldsymbol{v}_n] \subseteq \mathbb{R}^d;$

22 / 47

- Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \boldsymbol{v}_1] + [0, \boldsymbol{v}_2] + \cdots + [0, \boldsymbol{v}_n] \subseteq \mathbb{R}^d;$

• Tile:
$$\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}},$$

where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d

22 / 47
Zonotopal tilings

- Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \boldsymbol{v}_1] + [0, \boldsymbol{v}_2] + \cdots + [0, \boldsymbol{v}_n] \subseteq \mathbb{R}^d$;

• Tile:
$$\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}},$$
where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d ;

• Fine zonotopal tiling: a polyhedral subdivision of $\mathcal{Z}_{\mathcal{V}}$ into tiles $\Pi_{A,B}$.

Zonotopal tilings

- Point configuration: $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \subseteq \mathbb{R}^{d-1}$;
- Vector configuration: $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \subseteq \mathbb{R}^d$, where $\mathbf{v}_i = (\mathbf{a}_i, 1)$;
- Zonotope: $\mathcal{Z}_{\mathcal{V}} := [0, \boldsymbol{v}_1] + [0, \boldsymbol{v}_2] + \cdots + [0, \boldsymbol{v}_n] \subseteq \mathbb{R}^d;$

• Tile:
$$\Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}},$$
where $A \cap B = \emptyset$ and $\{\mathbf{v}_b\}_{b \in B}$ is a basis of \mathbb{R}^d ;

• Fine zonotopal tiling: a polyhedral subdivision of $\mathcal{Z}_{\mathcal{V}}$ into tiles $\Pi_{A,B}$.

3D cyclic zonotopes

Pavel Galashin (UCLA)

From now on, assume that $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon.

From now on, assume that $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon.

From now on, assume that $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon.

Sections of tiles

Sections of tiles

Sections of tiles

Fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}} \longrightarrow$

a subdivision of $\mathcal{Z}_{\mathcal{V}} \cap \{z = k\}$ into black and white triangles

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Pavel Galashin (UCLA)

planar

dual

Theorem (G. (2017))

trivalent (k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020

Theorem (G. (2017))

trivalent (k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020

Theorem (G. (2017))

trivalent (k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

dual

horizontal sections at level k of fine zonotopal tilings of Z_V

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Theorem (G. (2017))

trivalent(k, n)-plabic graphs

horizontal sections at level k of fine zonotopal tilings of Z_V

Pavel Galashin (UCLA)

 $n = d \implies \mathcal{Z}_{\mathcal{V}}$ admits one fine zonotopal tiling

$$n = d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling
 $n = d + 1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

$$n = d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling
 $n = d + 1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.

$$n = d \implies \mathcal{Z}_{\mathcal{V}}$$
 admits one fine zonotopal tiling
 $n = d + 1 \implies \mathcal{Z}_{\mathcal{V}}$ admits two fine zonotopal tilings

A flip consists of replacing a shifted copy of one tiling with the other one.

Example for d = 2:

Q: How many fine zonotopal tilings?

Q: How many fine zonotopal tilings? A: Two.

Q: How many fine zonotopal tilings? A: Two. (because n = d + 1)

Sections of flips: d = 3, n = 4

Pavel Galashin (UCLA)

Sections of flips: d = 3, n = 4

Pavel Galashin (UCLA)

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Recall: $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon, and $\mathcal{V} \subseteq \mathbb{R}^3$ is the lift of \mathcal{A} .

Theorem (Ziegler (1993))

Any two fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$ are connected by a sequence of flips.

Moves and flips

Theorem (Postnikov (2006))

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

Recall: $\mathcal{A} \subseteq \mathbb{R}^2$ consists of vertices of a convex *n*-gon, and $\mathcal{V} \subseteq \mathbb{R}^3$ is the lift of \mathcal{A} .

Theorem (Ziegler (1993))

Any two fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$ are connected by a sequence of flips.

Theorem (G. (2017))

Moves (M1)–(M3)of (k, n)-plabic graphs

horizontal sections of flips of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Pavel Galashin (UCLA)

30 / 47

Moves = sections of flips

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular \mathcal{A} -triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i, h_i) \mid i = 1, \dots, n\} \subseteq \mathbb{R}^d$ onto $\operatorname{conv}\mathcal{A}$.

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular \mathcal{A} -triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i, h_i) \mid i = 1, \dots, n\} \subseteq \mathbb{R}^d$ onto $\operatorname{conv}\mathcal{A}$. not an *A*-regular triangulation

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular \mathcal{A} -triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i, h_i) \mid i = 1, \dots, n\} \subseteq \mathbb{R}^d$ onto $\operatorname{conv}\mathcal{A}$.

Definition

A regular fine zonotopal tiling of $Z_{\mathcal{V}}$ is obtained by projecting the upper boundary of $Z_{\widetilde{\mathcal{V}}} := [0, \widetilde{\boldsymbol{v}}_1] + \dots + [0, \widetilde{\boldsymbol{v}}_n]$ (where $\widetilde{\boldsymbol{v}}_i = (\boldsymbol{v}_i, h_i) \in \mathbb{R}^{d+1}$) onto $Z_{\mathcal{V}}$.

Let $\mathcal{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be a point configuration in \mathbb{R}^{d-1} . Choose a height vector $\mathbf{h} = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Definition

A regular \mathcal{A} -triangulation is obtained by projecting the upper boundary of $\operatorname{conv}\{(\boldsymbol{a}_i, h_i) \mid i = 1, \dots, n\} \subseteq \mathbb{R}^d$ onto $\operatorname{conv}\mathcal{A}$.

not an A-regular triangulation

Definition

A regular fine zonotopal tiling of $Z_{\mathcal{V}}$ is obtained by projecting the upper boundary of $Z_{\widetilde{\mathcal{V}}} := [0, \tilde{\mathbf{v}}_1] + \dots + [0, \tilde{\mathbf{v}}_n]$ (where $\tilde{\mathbf{v}}_i = (\mathbf{v}_i, h_i) \in \mathbb{R}^{d+1}$) onto $Z_{\mathcal{V}}$.

33 / 47

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} oldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\mathrm{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} oldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\mathrm{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} oldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\mathrm{vert}^{\mathsf{GKZ}}(au) := \sum_{\Delta_B \in au} \mathrm{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} oldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Example

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (u_1, u_2, u_3, u_4, u_5, u_6)$$

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) := \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Definition (Gelfand-Kapranov-Zelevinsky (1994))

The secondary polytope $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ of \mathcal{A} is defined as the convex hull

 $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}} := \operatorname{conv}\{\operatorname{vert}^{\mathsf{GKZ}}(\tau) \mid \tau \text{ is an } \mathcal{A}\text{-triangulation}\}.$

Given an $\mathcal A\text{-triangulation}\ \tau,$ define a vector

$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) := \sum_{\Delta_B \in \tau} \operatorname{Vol}^{d-1}(\Delta_B) \cdot \sum_{b \in B} \boldsymbol{e}_b \quad \in \mathbb{R}^n.$$

Definition (Gelfand-Kapranov-Zelevinsky (1994))

The secondary polytope $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ of \mathcal{A} is defined as the convex hull

 $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}} := \operatorname{conv}\{\operatorname{vert}^{\mathsf{GKZ}}(\tau) \mid \tau \text{ is an } \mathcal{A}\text{-triangulation}\}.$

Proposition (Gelfand–Kapranov–Zelevinsky (1994))

The vertices of $\Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ correspond precisely to regular \mathcal{A} -triangulations.

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall:

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \cdots + [0, \mathbf{v}_n],$

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \prod_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}_k}(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n.$$

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Example (d = 2, n = 4)

 \sim

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Example (d = 2, n = 4)

 \sim

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Example (d = 2, n = 4)

Pavel Galashin (UCLA)

Higher secondary polytopes

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Example (d = 2, n = 4)

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Definition (G.–Postnikov–Williams (2019))

For k = 1, ..., n - d, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A}, k}$ of \mathcal{A} is defined by

$$\widehat{\boldsymbol{\Sigma}}_{\mathcal{A},\boldsymbol{k}} := \operatorname{conv} \left\{ \widehat{\operatorname{vert}}_{\boldsymbol{k}}(\mathcal{T}) \; \middle| \; \mathcal{T} \text{ is a regular fine zonotopal tiling of } \mathcal{Z}_{\mathcal{V}} \right\}.$$

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Definition (G.–Postnikov–Williams (2019))

For k = 1, ..., n - d, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A},k}$ of \mathcal{A} is defined by

$$\widehat{\Sigma}_{\mathcal{A},k} := \operatorname{conv} \left\{ \widehat{\operatorname{vert}}_k(\mathcal{T}) \; \middle| \; \mathcal{T} \text{ is a regular fine zonotopal tiling of } \mathcal{Z}_\mathcal{V} \right\}.$$

Consider a point configuration $\mathcal{A} \subseteq \mathbb{R}^{d-1}$ and its lift $\mathcal{V} \subseteq \mathbb{R}^d$. Recall: $\mathcal{Z}_{\mathcal{V}} := [0, \mathbf{v}_1] + \dots + [0, \mathbf{v}_n], \qquad \Pi_{A,B} := \sum_{a \in A} \mathbf{v}_a + \sum_{b \in B} [0, \mathbf{v}_b] \subseteq \mathcal{Z}_{\mathcal{V}}.$

Given a fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}}$ and $k \in \{1, \ldots, n-d\}$, define

$$\widehat{\operatorname{vert}}_k(\mathcal{T}) := \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \ |A| = k}} \operatorname{Vol}^d(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_a \quad \in \mathbb{R}^n$$

Definition (G.–Postnikov–Williams (2019))

For $k = 1, \ldots, n - d$, the higher secondary polytope $\widehat{\Sigma}_{\mathcal{A},k}$ of \mathcal{A} is defined by

$$\widehat{\Sigma}_{\mathcal{A},k} := \operatorname{conv}\left\{ \widehat{\operatorname{vert}}_k(\mathcal{T}) \; \middle| \; \mathcal{T} \; ext{is a regular fine zonotopal tiling of } \mathcal{Z}_\mathcal{V}
ight\}.$$

Conjecture

The word regular can be omitted from the above definition.

Theorem (G.–Postnikov–Williams (2019))

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

Theorem (G.–Postnikov–Williams (2019))

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

Theorem (G.–Postnikov–Williams (2019))

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

- $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).

Theorem (G.–Postnikov–Williams (2019))

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

- $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.
Properties of higher secondary polytopes

Theorem (G.–Postnikov–Williams (2019))

• dim
$$(\widehat{\Sigma}_{\mathcal{A},k}) = n - d$$
 for all $k = 1, 2, \dots, n - d$.

- $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.
- $\widehat{\Sigma}_{\mathcal{A},1} + \cdots + \widehat{\Sigma}_{\mathcal{A},n-d}$ is the fiber zonotope of Billera–Sturmfels (1992).
- Duality: $\widehat{\Sigma}_{\mathcal{A},k} = -\widehat{\Sigma}_{\mathcal{A},n-d-k+1}$ for all $k = 1, 2, \dots, n-d$.

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

fine zonotopal tiling $\mathcal T$ of $\mathcal Z_{\mathcal V}$

• $\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$ is the secondary polytope.

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\mathsf{\Pi}_{A,B} \in \mathcal{T} \\ |A| = 1}} \operatorname{Vol}^{d}(\mathsf{\Pi}_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\mathsf{\Pi}_{A,B} \in \mathcal{T} \\ |A| = 0}} \operatorname{Vol}^{d}(\mathsf{\Pi}_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, u_3, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, u_3, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{2}, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{2}, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, v_3, v_4, v_5)$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{2}, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, 3, v_4, v_5)$$

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

Example

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{2}, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, 3, v_4, v_5)$$

Claim: up to shift and dilation,

$$3 = 3$$

37 / 47

•
$$\widehat{\Sigma}_{\mathcal{A},1} = \Sigma_{\mathcal{A}}^{\mathsf{GKZ}}$$
 is the secondary polytope.

fine zonotopal tiling \mathcal{T} of $\mathcal{Z}_{\mathcal{V}} \twoheadrightarrow \mathcal{A}$ -triangulation $\tau := \mathcal{T} \cap \{y_d = 1\}$

$$\widehat{\operatorname{vert}}_{1}(\mathcal{T}) = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=1}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{a \in A} \boldsymbol{e}_{a} \quad \text{these formulas are different!}$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = \sum_{\Delta_{B} \in \tau} \operatorname{Vol}^{d-1}(\Delta_{B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b} = \sum_{\substack{\Pi_{A,B} \in \mathcal{T} \\ |A|=0}} \operatorname{Vol}^{d}(\Pi_{A,B}) \cdot \sum_{b \in B} \boldsymbol{e}_{b}$$

Example

$$\widehat{\operatorname{vert}}_1(\mathcal{T}) = (u_1, u_2, \frac{3}{2}, u_4, u_5)$$
$$\operatorname{vert}^{\mathsf{GKZ}}(\tau) = (v_1, v_2, 3, v_4, v_5)$$

Claim: up to shift and dilation, $\widehat{\operatorname{vert}}_1(\tau) = \operatorname{vert}^{\mathsf{GKZ}}(\mathcal{T}).$

37 / 47

Theorem (G. (2017))

trivalent (k, n)-plabic graphs

horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Theorem (G. (2017))

trivalent	(k, n))-plabic	graphs
-----------	--------	----------	--------

horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

dual planar

horizontal sections of flips

Theorem (G. (2017))

trivalent	(k, 1	n)-pla	bic	graphs	5
-----------	-------	--------	-----	--------	---

olanar

dual

horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves (M1)–(M3)

horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is \mathcal{A} -regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G. (2017))

trivalent	(k, 1	n)-pla	bic	graphs	5
-----------	-------	--------	-----	--------	---

planar

dual

horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves (M1)–(M3)

horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is \mathcal{A} -regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G.–Postnikov–Williams (2019))

• vertices and edges of $\widehat{\Sigma}_{\mathcal{A},k}$

 $\longleftrightarrow \begin{array}{l} \mathcal{A}\text{-regular bipartite } (k+1,n)\text{-plabic graphs} \\ \text{and square moves between them} \end{array}$

38 / 47

Theorem (G. (2017))

trivalent	(k, n))-plabic	graphs
-----------	--------	----------	--------

horizontal sections of fine zonotopal tilings of $\mathcal{Z}_{\mathcal{V}}$

Moves (M1)–(M3)

planar dual horizontal sections of flips

Definition

We say that a bipartite/trivalent (k, n)-plabic graph is \mathcal{A} -regular if it arises from a regular fine zonotopal tiling of $\mathcal{Z}_{\mathcal{V}}$.

Theorem (G.–Postnikov–Williams (2019))

Pavel Galashin (UCLA)

Pavel Galashin (UCLA)

Does there exist a plabic graph that's not A-regular for all A?

Does there exist a plabic graph that's not A-regular for all A?

Pavel Galashin (UCLA)

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph is not A-regular for all A.

Does there exist a plabic graph that's not A-regular for all A?

Claim: This plabic graph is not \mathcal{A} -regular for all \mathcal{A} .

Proof: $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$

Does there exist a plabic graph that's not \mathcal{A} -regular for all \mathcal{A} ?

Claim: This plabic graph is not A-regular for all A.

Proof:

 $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$ Thus every vertex of $\widehat{\Sigma}_{\mathcal{A},k}$ has degree at least n - d.

Does there exist a plabic graph that's not \mathcal{A} -regular for all \mathcal{A} ?

Claim: This plabic graph is not A-regular for all A.

Proof:

 $\dim(\widehat{\Sigma}_{\mathcal{A},k}) = n - d = 5.$ Thus every vertex of $\widehat{\Sigma}_{\mathcal{A},k}$ has degree at least n - d. This plabic graph admits only 4 square moves. \Box

47

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n - 10 for all n > 12.

42 / 47

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n - 10 for all n > 12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$?

42 / 47

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n - 10 for all n > 12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$?

Conjecture (M. Farber (2014))

• For n = 2k, the diameter of the "middle" higher associahedron $\widehat{\Sigma}_{\mathcal{A},k-1} = -\widehat{\Sigma}_{\mathcal{A},k-1}$ equals $\frac{1}{2}k(k-1)^2$.

Confirming a conjecture of Sleator-Tarjan-Thurston (1980), Pournin showed

Theorem (Pournin (2014))

The diameter of the associahedron $\widehat{\Sigma}_{A,1}$ equals 2n - 10 for all n > 12.

Question

What is the diameter of the higher associahedron $\widehat{\Sigma}_{\mathcal{A},k}$?

Conjecture (M. Farber (2014))

For n = 2k, the diameter of the "middle" higher associahedron Σ̂_{A,k-1} = -Σ̂_{A,k-1} equals ½k(k − 1)².
More generally, the square move distance between any bipartite (k,2k)-plabic graph and its "opposite" plabic graph equals ½k(k − 1)².

Diameter of the higher associahedron for k = 3, n = 6

Diameter of the higher associahedron for k = 3, n = 6

The distance between any two antipodal points equals $\frac{1}{2}k(k-1)^2 = 6$.

Pavel Galashin (UCLA)

Case d = 2?

Case d = 2?

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020 44

Case d = 2?

Question

What happens for d = 2?

Pavel Galashin (UCLA)

Photo Credit: Mark Ablowitz, Colorado.

Pavel Galashin (UCLA)

Higher secondary polytopes

SoCalDM20, 01/25/2020 45 / 47

Pavel Galashin (UCLA)

