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History

Grothendieck polynomials and their variations are K-theory
analogues of Schubert and Schur polynomials.

m Grothendieck polynomials (Lascoux-Schiitzenberger '82):
polynomial representatives of structure sheaves of Schubert
varieties in the K-theory of flag manifolds

m stable Grothendieck polynomials (Fomin-Kirillov '96):
symmetric power series representatives of structure sheaves of
Schubert varieties in the K-theory of the Grassmannian

m dual stable Grothendieck polynomials (Lam-Pylyavskyy '07):
symmetric functions which are the continuous dual basis to
the stable Grothendieck polynomials with respect to the Hall
inner product



What is a dual stable Grothendieck polynomial?

Reverse plane partitions

A reverse plane partition (rpp) is a filling of a skew diagram \/pu
with positive integers such that entries are weakly increasing along
rows and columns.
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What is a dual stable Grothendieck polynomial?

Irredundant content

We define the irredundant content of an rpp T to be the sequence
c(T)=(c1,c2,c3,...) where ¢; is the number of columns of T
which contain an i.
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o(T)=(3,3,2,1,0,0,...)

E I O




What is a dual stable Grothendieck polynomial?

Dual stable Grothendieck polynomials

For each skew shape \/pu, define

Bu= Y«

T is an rpp
of shape \/u

Where X(C17C27C37~-') — X](_:IX§2X§3 e



What is a dual stable Grothendieck polynomial?

Dual stable Grothendieck polynomials

For each skew shape \/pu, define

Bu= Y«

T is an rpp
of shape \/u

Where X(C17C27C37~-') — X](_:IX§2X§3 e

The gy, are called dual stable Grothendieck polynomials.
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What is a dual stable Grothendieck polynomial?

Dual stable Grothendiecks are symmetric

Theorem (Lam-Pylyavskyy '07)

For every A/, the power series gy /u IS symmetric in the x;.

Their proof uses Fomin-Greene operators—fundamentally
combinatorial, but the combinatorics are mysterious.

Our result: A bijective proof of this theorem.

m Bijection is a generalization of the Bender-Knuth involutions
for semistandard tableaux.
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Schur functions

A semistandard Young tableau (SSYT) is a filling of a skew
diagram A/u with positive integers such that entries are weakly
increasing along rows and strictly increasing down columns.

For each skew shape \/pu, define the Schur function

S)\/N = Z XC(T).

T is a SSYT
of shape A\/u

The Bender-Knuth involutions are a way to prove the sy, are
symmetric.
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Bender-Knuth involutions

Suffices to show that s/, is symmetric in the variables x; and x;11
for all J.

Let SSYT(\/u) be the set of all SSYT's of shape A/ .

For each i, we define an involution B; : SSYT(A/u) — SSYT (/1)
such that ¢(B;T) = sic(T), where s; is the permutation (i 7 + 1).



11|1|1|1|1
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Generalized Bender-Knuth involutions

To prove gy, is symmetric, suffices to show it is symmetric in the
variables x; and x;;1 for all /.

Let RPP(\/u) be the set of all RPP’s of shape \/p.

For each i, we define an involution B; : RPP(A\/u) — RPP(A/p)
such that ¢(B;T) = sic(T), where s; is the permutation (i i + 1).
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Three types of columns

Restricting an rpp to cells with entries 1 or
112 2, we have three types of columns:

m I-pure: Contains 1's and no 2's.

m mixed: Contains both 1's and 2's.

S m 2-pure: Contains 2's and no 1's.
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Defintion of B;

Let T € RPP(A\/u). Construct Bi(T) from T as follows.

Change all 1-pure columns to 2-pure columns and all 2-pure
columns to 1-pure columns (of the same size).

“Resolve descents” one at a time until none remain.

A ‘“descent” is a pair of adjacent columns which contain a 2
immediately to the left of a 1.
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A lemma

Let S be the set of all intermediate tableaux that can be achieved
during the above algorithm.

For T, T' € S, write T = T’ if T’ is obtained from T by
resolving a descent in columns u, u+ 1.

Write T = T’ if T/ can be obtained from T through a sequence
of descent resolutions.

Lemma

IfT, T, and T, € S such that T = T, and T = T,, then there
exists T' € S such that T, = T' and T, = T'.




Generalized BK involutions

Proof of lemma

IfFT, T,, and T, € S such that T = T, and T - T,, then there
exists T' € S such that T, > T' and T, = T.




Generalized BK involutions

Proof of lemma

IfFT, T,, and T, € S such that T = T, and T - T,, then there
exists T' € S such that T, > T' and T, = T.

Proof: If |u — v| > 2, then the result is easy.



Generalized BK involutions

Proof of lemma

IfFT, T,, and T, € S such that T = T, and T - T,, then there
exists T' € S such that T, > T' and T, = T.

Proof: If |u — v| > 2, then the result is easy.

Assume u=v — 1. Columns u, u+ 1, u+ 2 must look like:




i
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Resolving descents: End result is unique

Proposition

For each T € S, there is a unique T' € RPP(\/u) such that
TS T.

Proof: Let £: S — N be a function such that if T; = T», then
K(Tl) < E( Tg).

We use backward induction on ¢(T). Suppose T ¢ RPP(\/pu).
Suppose T = T, and T =5 T,.

By induction, there are unique T}, T, € RPP(A\/u) such that
T, 5T, T,5 T,

By the Lemma, we must have T, = T).

Since this holds for any u, v, the Proposition is proved.
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Newman's Lemma

Note about the above proof: We are implicitly basing our
argument on Newman's lemma (or the diamond lemma): A
terminating rewriting system is confluent if it locally confluent.
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Defintion of B;

Let T € RPP(A\/u). Construct Bi(T) from T as follows.

Change all 1-pure columns to 2-pure columns and all 2-pure
columns to 1-pure columns (of the same length).
“Resolve descents” one at a time until none remain.
m How do we know that this process will terminate?
m Look at positions of 1-pure and 2-pure columns.
m How do we know the end result is unique?
m We do.

Easy to check that By : RPP(\/u) — RPP(A\/u) is an involution.

Thus, gy, is symmetric.
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Generalized Bender-Knuth involutions

The B; are the unique extensions of the Bender-Knuth involutions
(to rpp) that satisfies a certain “locality” condition (see the last
section of our paper).

The B; also give some additional structure to RPP(\/u) beyond
the above symmetry: they preserve some of the behavior between
adjacent rows of an rpp.
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The statistic ceq

For T € RPP(\/p), define ceq(T) = (g1, g2, g3, . .. ) where gq; is
the number of vertically adjacent pairs of cells in rows i, i+ 1 of T
with equal entries.
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Refined dual stable Grothendieck polynomials

For each skew shape \/pu, define

g_}\/u — Z tceq( T)Xc( T)
TERPP(\/1)

where t(91,92,63,.) — tl e e

If t =1, then g)‘/ﬂ = 8x\/u-
If t =0, then &)/, = Sx/p-

From the previous proof, g/, is symmetric in x.
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An example and a conjecture

Example: If A/p is a single column with n cells, then

&/p=en(ti, to, o th1, X1, X2, ... ).

Conjecture (Grinberg):

))f()\)

g)\//ul = det (e)\i—ﬂj—i+j(tﬂj+1’ s by—1, X1, X, . ij=1



Thank you!
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