Plabic graphs and zonotopal tilings

Pavel Galashin

MIT

galashin@mit.edu

FPSAC 2018, Dartmouth College, July 19, 2018
Main result

Theorem (G. (2017))

\[(k, n)\text{-plabic graphs} \xrightleftharpoons[dual]{planar} \text{horizontal sections at level } k \text{ of fine zonotopal tilings of } \mathbb{Z}(n, 3)\]
Main result

Theorem (G. (2017))

\((k, n)\)-plabic graphs \leftrightarrow planar dual

horizontal sections at level \(k\) of
fine zonotopal tilings of \(\mathcal{Z}(n, 3)\)

\(\mathcal{Z}(n, 3)\) for \(n = 5\)
Main result

Theorem (G. (2017))

(k, n)-plabic graphs \leftrightarrow planar dual \Rightarrow horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

- Level 0: \emptyset
- Level 1: $1, 2, 3, 4, 5$
- Level 2: $12, 13, 14, 15, 23, 24, 34$
- Level 3: $123, 124, 125, 134, 135, 145, 234, 235, 245, 345$
- Level 4: $1234, 1235, 1245, 1345, 1455, 2345$
- Level 5: 12345
Main result

Theorem (G. (2017))

\((k, n)\)-plabic graphs \(\xleftrightarrow{\text{planar dual}}\) horizontal sections at level \(k\) of fine zonotopal tilings of \(\mathcal{Z}(n, 3)\)

level = 5

level = 4

level = 3

level = 2

level = 1

level = 0

\(\mathcal{Z}(n, 3)\) for \(n = 5\)
Main result

Theorem (G. (2017))

\((k, n)\)-plabic graphs \(\leftrightarrow\) dual planar

horizontal sections at level \(k\) of fine zonotopal tilings of \(\mathcal{Z}(n, 3)\)

\(\mathcal{Z}(n, 3)\) for \(n = 5\)
Main result

Theorem (G. (2017))

\((k, n)\)-plabic graphs \(\leftrightarrow\) planar dual horizontal sections at level \(k\) of fine zonotopal tilings of \(\mathcal{Z}(n, 3)\)

\(\mathcal{Z}(n, 3)\) for \(n = 5\)
Main result

Theorem (G. (2017))

\((k, n)\)-plabic graphs \(\leftrightarrow\) planar dual \(\leftrightarrow\) horizontal sections at level \(k\) of fine zonotopal tilings of \(\mathcal{Z}(n, 3)\)

\(\mathcal{Z}(n, 3)\) for \(n = 5\)
Main result

Theorem (G. (2017))

$$(k, n)$$-plabic graphs $\xleftrightarrow{\text{planar}} \text{dual} \quad \text{horizontal sections at level } k \text{ of fine zonotopal tilings of } \mathcal{Z}(n, 3)$$

a (2, 5)-plabic graph

$\mathcal{Z}(n, 3)$ for $n = 5$
Part 1: Zonotopal tilings
Zonotopes

Definition (Minkowski sum)

\[A, B \subset \mathbb{R}^d, \quad A + B := \{ a + b \mid a \in A, b \in B \}. \]
Definition (Minkowski sum)

\[A, B \subset \mathbb{R}^d, \quad A + B := \{ a + b \mid a \in A, b \in B \}. \]

Definition

Vector configuration:

\[\mathbf{V} = (v_1, v_2, \ldots, v_n), \quad \text{where} \quad v_i \in \mathbb{R}^d. \]
Zonotopes

Definition (Minkowski sum)

\[A, B \subset \mathbb{R}^d, \quad A + B := \{ a + b \mid a \in A, b \in B \}. \]

Definition

Vector configuration:

\[\mathbf{V} = (v_1, v_2, \ldots, v_n), \quad \text{where } v_i \in \mathbb{R}^d. \]

Zonotope:

\[\mathcal{Z}_\mathbf{V} := [0, v_1] + [0, v_2] + \cdots + [0, v_n] \subset \mathbb{R}^d. \]
Two-dimensional zonotopes

\[V = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \]

\[Z_V = \begin{pmatrix} 0 \\ v_1 \\ v_2 \end{pmatrix} \]

\[Z_V = \begin{pmatrix} 0 \\ v_1 \\ v_2 \end{pmatrix} \begin{pmatrix} v_3 \\ v_4 \end{pmatrix} \]
Two-dimensional zonotopes

$V = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$Z_V = \begin{pmatrix} 0 \\ \cdot \cdot \cdot \end{pmatrix}$

$V = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

$Z_V = \begin{pmatrix} 0 \\ \cdot \cdot \cdot \end{pmatrix}$
Two-dimensional zonotopes

\[\mathbf{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \quad \mapsto \quad \mathcal{Z}_\mathbf{V} = \begin{pmatrix} 0 \\ v_1 \\ v_2 \end{pmatrix} \]

\[\mathbf{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \quad \mapsto \quad \mathcal{Z}_\mathbf{V} = \begin{pmatrix} 0 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix} \]
Two-dimensional zonotopes

\[\mathbf{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \quad \mapsto \quad \mathbb{Z}_\mathbf{V} = \begin{pmatrix} \mathbf{v} \end{pmatrix} \]

\[\mathbf{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \quad \mapsto \quad \mathbb{Z}_\mathbf{V} = \begin{pmatrix} \mathbf{v} \end{pmatrix} \]

\[\mathbf{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \quad \mapsto \quad \mathbb{Z}_\mathbf{V} = \begin{pmatrix} \mathbf{v} \end{pmatrix} \]
Cyclic zonotopes

Definition

Cyclic vector configuration: \(C(n, d) := (v_1, v_2, \ldots, v_n) \), where

\[v_i = (1, r_i, r_i^2, \ldots, r_i^{d-1}) \] for some \(0 < r_1 < r_2 < \cdots < r_n \in \mathbb{R} \).
Cyclic zonotopes

Definition

Cyclic vector configuration: \(\mathbf{C}(n, d) := (v_1, v_2, \ldots, v_n) \), where

\[
v_i = (1, r_i, r_i^2, \ldots, r_i^{d-1}) \quad \text{for some } 0 < r_1 < r_2 < \cdots < r_n \in \mathbb{R}.
\]

\[
\mathbf{C}(4, 2) = (v_1, v_2, v_3, v_4)
\]

\[
\mathbf{C}(6, 3) = (v_1, v_2, v_3, v_4, v_5, v_6)
\]
Cyclic zonotopes

Definition

Cyclic vector configuration: $C(n, d) := (v_1, v_2, \ldots, v_n)$, where

$$v_i = (1, r_i, r_i^2, \ldots, r_i^{d-1}) \quad \text{for some } 0 < r_1 < r_2 < \cdots < r_n \in \mathbb{R}.$$
Cyclic zonotopes

Definition

Cyclic vector configuration: $C(n, d) := (v_1, v_2, \ldots, v_n)$, where

\[v_i = (1, r_i, r_i^2, \ldots, r_i^{d-1}) \text{ for some } 0 < r_1 < r_2 < \cdots < r_n \in \mathbb{R}. \]

Cyclic zonotope: $Z(n, d) := ZC(n, d)$.

\[C(4, 2) = \]

\[C(6, 3) = \]
A *zonotopal tiling* of \mathbb{Z}_V is a polyhedral subdivision Δ of \mathbb{Z}_V into smaller zonotopes.
A **zonotopal tiling** of \mathbb{Z}_V is a polyhedral subdivision Δ of \mathbb{Z}_V into smaller zonotopes.

A zonotopal tiling is **fine** if all pieces are parallelotopes.
A **zonotopal tiling** of \mathcal{Z}_V is a polyhedral subdivision Δ of \mathcal{Z}_V into smaller zonotopes.

A zonotopal tiling is **fine** if all pieces are parallelotopes.

A piece $\mathcal{Z}_{V'}$ is a **parallelotope** if the vectors in V' form a basis of \mathbb{R}^d.

![Diagram of zonotopal tiling](image-url)
A **zonotopal tiling** of \mathcal{Z}_V is a polyhedral subdivision Δ of \mathcal{Z}_V into smaller zonotopes.

A zonotopal tiling is **fine** if all pieces are parallelotopes. A piece $\mathcal{Z}_{V'}$ is a **parallelotope** if the vectors in V' form a basis of \mathbb{R}^d.

Definition

![Diagram](image)
A **zonotopal tiling** of \mathcal{Z}_V is a polyhedral subdivision Δ of \mathcal{Z}_V into smaller zonotopes.

A zonotopal tiling is **fine** if all pieces are parallelotopes.

A piece $\mathcal{Z}_{V'}$ is a **parallelotope** if the vectors in V' form a basis of \mathbb{R}^d.

Definition
Vertices of zonotopal tilings

Fact

*Number of vertices in a fine zonotopal tiling of \mathbb{Z}_V equals the number $\text{Ind}(V)$ of linearly independent subsets of V.***
Vertices of zonotopal tilings

Fact

Number of vertices in a fine zonotopal tiling of \mathbb{Z}_V equals the number $\text{Ind}(V)$ of linearly independent subsets of V.

\[
\text{Ind}(C(n, d)) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}.
\]
Number of vertices in a fine zonotopal tiling of \mathbb{Z}^n equals the number $\text{Ind}(\mathcal{V})$ of linearly independent subsets of \mathcal{V}.

\[
\text{Ind}(\mathcal{C}(n, d)) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}.
\]
Vertices of zonotopal tilings

Fact

Number of vertices in a fine zonotopal tiling of \mathbb{Z}_V equals the number $\text{Ind}(V)$ of linearly independent subsets of V.

\[
\text{Ind}(\mathcal{C}(n, d)) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}.
\]

\[V = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \]

\[\Delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 1 \end{pmatrix} \]

\[
\text{Ind}(V) = \binom{4}{0} + \binom{4}{1} + \binom{4}{2} = 11, \quad |\text{Vert}(\Delta)| = 11.
\]
Question

Which collections of subsets of $[n]$ can appear as $\text{Vert}(\Delta)$, where Δ is a fine zonotopal tiling of $\mathbb{Z}(n,2)$?
Question

Which collections of subsets of $[n]$ can appear as $\text{Vert}(\Delta)$, where Δ is a fine zonotopal tiling of $\mathbb{Z}(n, 2)$?

Definition (Leclerc–Zelevinsky (1998))

$S, T \subset [n]$ are strongly separated if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).
Question

Which collections of subsets of $[n]$ can appear as $\text{Vert}(\Delta)$, where Δ is a fine zonotopal tiling of $\mathcal{Z}(n, 2)$?

Definition (Leclerc–Zelevinsky (1998))

$S, T \subset [n]$ are strongly separated if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).

Strongly separated:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
S \setminus T & & & & & T \setminus S & & & \\
\end{array}
\]
Question

Which collections of subsets of $[n]$ can appear as $\text{Vert}(\Delta)$, where Δ is a fine zonotopal tiling of $\mathbb{Z}(n, 2)$?

Definition (Leclerc–Zelevinsky (1998))

$S, T \subseteq [n]$ are strongly separated if there is no $i < j < k$ such that $i, k \in S \setminus T$ and $j \in T \setminus S$ (or vice versa).

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
S \setminus T & & & & & & & & T \setminus S
\end{array}
\]

$\mathcal{D} \subset 2^{[n]}$ is a strongly separated collection if all $S, T \in \mathcal{D}$ are strongly separated.
Proposition (Leclerc–Zelevinsky (1998))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathbb{Z}^2(\mathbb{n}, 2)$,
- and maximal by inclusion strongly separated collections $D \subset 2^{\{n\}}$.

Corollary (Leclerc–Zelevinsky (1998))

Purity phenomenon: every maximal by inclusion strongly separated collection $D \subset 2^{\{n\}}$ is also maximal by size:

$|D| = \binom{n}{0} + \binom{n}{1} + \binom{n}{2}$.
Proposition (Leclerc–Zelevinsky (1998))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:
- fine zonotopal tilings Δ of $\mathbb{Z}(n,2)$, and
- maximal by inclusion strongly separated collections $\mathcal{D} \subset 2^{[n]}$.
Proposition (Leclerc–Zelevinsky (1998))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathbb{Z}(n,2)$, and
- maximal by inclusion strongly separated collections $\mathcal{D} \subset 2^{[n]}$.

Corollary (Leclerc–Zelevinsky (1998))

Purity phenomenon: every maximal by inclusion strongly separated collection $\mathcal{D} \subset 2^{[n]}$ is also maximal by size:

$$|\mathcal{D}| = \binom{n}{0} + \binom{n}{1} + \binom{n}{2}.$$
3D zonotopes

$\mathbf{C}(6, 3)$
3D zonotopes

\[\mathbf{C}(6, 3) \]

\[\mathbb{Z}(3, 3) \]
3D zonotopes: $\mathcal{Z}(4, 3)$
3D zonotopes: $\mathcal{Z}(4, 3)$

$\mathcal{Z}(4, 3)$

Q: How many fine zonotopal tilings?
Chord separation

Definition (Leclerc–Zelevinsky (1998))

$S, T \subseteq [n]$ are strongly separated if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).

When $|S| = |T|$, both definitions are due to Leclerc–Zelevinsky.
Definition (Leclerc–Zelevinsky (1998))

$S, T \subseteq [n]$ are **strongly separated** if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).

Strongly separated:

\[
\begin{array}{c|c|c}
1 & 2 & 3 \\
\hline
4 & 5 & 6 \\
\hline
7 & 8 & 9 \\
\end{array}
\]

$S \setminus T$ | $T \setminus S$
Chord separation

Definition (Leclerc–Zelevinsky (1998))

$S, T \subset [n]$ are *strongly separated* if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).

Definition (G. (2017))

$S, T \subset [n]$ are *chord separated* if there is no $i < j < k < \ell$ such that

$$i, k \in S \setminus T \text{ and } j, \ell \in T \setminus S$$

(or vice versa).

Strongly separated:

```
  1  2  3  4  5
S \ T
  6  7  8  9
T \ S
```
Chord separation

Definition (Leclerc–Zelevinsky (1998))

$S, T \subset [n]$ are **strongly separated** if there is no $i < j < k$ such that

$$i, k \in S \setminus T \text{ and } j \in T \setminus S$$

(or vice versa).

Definition (G. (2017))

$S, T \subset [n]$ are **chord separated** if there is no $i < j < k < \ell$ such that

$$i, k \in S \setminus T \text{ and } j, \ell \in T \setminus S$$

(or vice versa).

Strongly separated:

```
1 2 3 4 5
S \ T
6 7 8 9
T \ S
```

Chord separated:

```
S \ T

1 2 3

5

6

7 8 9

T \ S
```
Chord separation

Definition (Leclerc–Zelevinsky (1998))

$S, T \subset [n]$ are *strongly separated* if there is no $i < j < k$ such that

$$i, k \in S \setminus T \quad \text{and} \quad j \in T \setminus S$$

(or vice versa).

Definition (G. (2017))

$S, T \subset [n]$ are *chord separated* if there is no $i < j < k < \ell$ such that

$$i, k \in S \setminus T \quad \text{and} \quad j, \ell \in T \setminus S$$

(or vice versa).

When $|S| = |T|$, both definitions are due to Leclerc–Zelevinsky.
Strongly separated:

Chord separated:

Proposition (Leclerc–Zelevinsky (1998))

The map \(\Delta \mapsto \text{Vert}(\Delta) \) is a bijection between:

- fine zonotopal tilings \(\Delta \) of \(\mathbb{Z}(n, 2) \), and
- maximal by inclusion strongly separated collections \(D \subset 2^{[n]} \).

Theorem (G. (2017))

The map \(\Delta \mapsto \text{Vert}(\Delta) \) is a bijection between:

- fine zonotopal tilings \(\Delta \) of \(\mathbb{Z}(n, 3) \), and
- maximal by inclusion chord separated collections \(D \subset 2^{[n]} \).
Proposition (Leclerc–Zelevinsky (1998))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathcal{Z}(n,2)$, and
- maximal by inclusion strongly separated collections $\mathcal{D} \subset 2^n$.
Proposition (Leclerc–Zelevinsky (1998))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathcal{Z}(n,2)$, and
- maximal by inclusion strongly separated collections $D \subset 2^{[n]}$.

Theorem (G. (2017))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathcal{Z}(n,3)$, and
- maximal by inclusion chord separated collections $D \subset 2^{[n]}$.

Chord separation

Strongly separated:

1 2 3 4 5 6 7 8 9

$S \setminus T$

Chord separated:

1 2 4 5 7 9

$S \setminus T$

$T \setminus S$
Example for $n = 4$

Chord separation: no $i < j < k < \ell$ such that $i, k \in S \setminus T$, $j, \ell \in T \setminus S$ or vice versa.
Example for $n = 4$

Chord separation: no $i < j < k < \ell$ such that $i, k \in S \setminus T$, $j, \ell \in T \setminus S$ or vice versa.

The only two subsets of $\{1, 2, 3, 4\}$ that are *not* chord separated:
Example for $n = 4$

Chord separation: no $i < j < k < \ell$ such that $i, k \in S \setminus T$, $j, \ell \in T \setminus S$ or vice versa.

The only two subsets of \{1, 2, 3, 4\} that are *not* chord separated: \{1, 3\} and \{2, 4\}.
Example for \(n = 4 \)

Chord separation: no \(i < j < k < \ell \) such that \(i, k \in S \setminus T, \ j, \ell \in T \setminus S \) or vice versa. The only two subsets of \(\{1, 2, 3, 4\} \) that are *not* chord separated: \(\{1, 3\} \) and \(\{2, 4\} \). There are exactly *two* maximal by inclusion chord separated collections \(D \subset 2^{[n]} \).
Example for $n = 4$

Chord separation: no $i < j < k < \ell$ such that $i, k \in S \setminus T$, $j, \ell \in T \setminus S$ or vice versa.

The only two subsets of $\{1, 2, 3, 4\}$ that are *not* chord separated: $\{1, 3\}$ and $\{2, 4\}$.

There are exactly two maximal by inclusion chord separated collections $\mathcal{D} \subset 2^n$.

Q: How many fine zonotopal tilings?
Chord separation: no $i < j < k < \ell$ such that $i, k \in S \setminus T$, $j, \ell \in T \setminus S$ or vice versa.

The only two subsets of $\{1, 2, 3, 4\}$ that are not chord separated: $\{1, 3\}$ and $\{2, 4\}$.

There are exactly two maximal by inclusion chord separated collections $\mathcal{D} \subset 2^{[n]}$.

Q: How many fine zonotopal tilings?
A: Two.
Fine zonotopal tilings of $\mathcal{Z}(4, 3)$
Fine zonotopal tilings of $\mathbb{Z}(4,3)$
Part 2: Plabic graphs
A *plabic graph* is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.
A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A strand in a plabic graph is a path that

- turns right at each black vertex
- turns left at each white vertex
A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A strand in a plabic graph is a path that
- turns right at each black vertex
- turns left at each white vertex
Definition (Postnikov (2007))

A **plabic graph** is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A **strand** in a plabic graph is a path that

- turns right at each black vertex
- turns left at each white vertex
A **plabic graph** is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A **strand** in a plabic graph is a path that

- turns right at each black vertex
- turns left at each white vertex
Definition (Postnikov (2007))

A **plabic graph** is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A **strand** in a plabic graph is a path that
- turns right at each black vertex
- turns left at each white vertex
Definition (Postnikov (2007))

A *plabic graph* is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices all trivalent and colored black and white.

A *strand* in a plabic graph is a path that
- turns right at each black vertex
- turns left at each white vertex
Definition (Postnikov (2007))

A plabic graph is *reduced* if it contains:

- No closed strands
- No strand intersects itself
- No "bad double crossings" ("Good double crossings" are OK!)
Definition (Postnikov (2007))

A plabic graph is *reduced* if it contains:

- No closed strands
- No strand intersects itself
- No “bad double crossings”

“Good double crossings” are OK!

A \((k, n)\)-plabic graph is a reduced plabic graph such that:

the strand that starts at \(i\) ends at \(i + k \mod n\) for all \(i\).
Definition (Postnikov (2007))

A plabic graph is *reduced* if it contains:

1. **No closed strands**
2. **No strand intersects itself**

A \((k, n)\)-plabic graph is a reduced plabic graph such that:

- The strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
\((k, n)\)-plabic graphs

Definition (Postnikov (2007))

A plabic graph is \emph{reduced} if it contains:

- \emph{No} closed strands
- \emph{No} strand intersects itself
- \emph{No} “bad double crossings”
A plabic graph is \textit{reduced} if it contains:

- No closed strands
- No strand intersects itself
- No "bad double crossings"
- "Good double crossings" are OK!
A plabic graph is *reduced* if it contains:

- No closed strands
- No strand intersects itself
- No “bad double crossings”
- “Good double crossings” are OK!

A \((k, n)\)-plabic graph is a reduced plabic graph such that:

- the strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
A \((k, n)\)-plabic graph is a reduced plabic graph such that:

- the strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
(k, n)-plabic graphs

Definition (Postnikov (2007))

A \((k, n)\)-plabic graph is a reduced plabic graph such that:
- the strand that starts at \(i\) ends at \(i + k \mod n\) for all \(i\).
Definition (Postnikov (2007))

A \((k, n)\)-plabic graph is a reduced plabic graph such that:

- the strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
(k, n)-plabic graphs

Definition (Postnikov (2007))

A \((k, n)\)-plabic graph is a reduced plabic graph such that:
- the strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
Definition (Postnikov (2007))

A \((k, n)\)-plabic graph is a reduced plabic graph such that:
- the strand that starts at \(i\) ends at \(i + k\) modulo \(n\) for all \(i\).
A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i + k$ modulo n for all i.

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \]
Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Face labels

Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces. Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:
Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

\[
\text{include } j \text{ in this set iff the face is to the left of the strand } i \rightarrow j.
\]
Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.

Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

include \(j\) in this set iff the face is to the left of the strand \(i \rightarrow j\).
Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

include \(j\) in this set iff the face is to the left of the strand \(i \rightarrow j\).
Face labels

Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

include \(j\) in this set iff the face is to the left of the strand \(i \rightarrow j\).
Face labels

Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

include \(j\) in this set iff the face is to the left of the strand \(i \rightarrow j\).
Face labels

Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

include \(j\) in this set iff the face is to the left of the strand \(i \rightarrow j\).
Postnikov (2007): each (k, n)-plabic graph has $k(n - k) + 1$ faces.
Scott (2005): label each face of a (k, n)-plabic graph by a k-element set:

include j in this set iff the face is to the left of the strand $i \to j$.
Face labels

Postnikov (2007): each \((k, n)\)-plabic graph has \(k(n - k) + 1\) faces.
Scott (2005): label each face of a \((k, n)\)-plabic graph by a \(k\)-element set:

- include \(j\) in this set iff the face is to the left of the strand \(i \to j\).
Conjecture (Leclecrc–Zelevinsky (1998), Scott (2005))

Every maximal by inclusion chord separated collection \(D \subset \binom{[n]}{k} \) has size

\[
k(n - k) + 1.
\]
Conjecture (Leclerc–Zelevinsky (1998), Scott (2005))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset \binom{[n]}{k}$ has size $k(n - k) + 1$.

Conjecture (Leclecrc–Zelevinsky (1998), Scott (2005))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset \binom{[n]}{k}$ has size $k(n - k) + 1$.

Theorem (Oh–Postnikov–Speyer (2011))

The map $G \mapsto \text{Faces}(G)$ is a bijection* between:

- (k, n)-plabic graphs, and
- maximal by inclusion chord separated collections $\mathcal{D} \subset \binom{[n]}{k}$.
Corollary (Oh–Postnikov–Speyer (2011))

Every maximal by inclusion chord separated collection \(\mathcal{D} \subset \binom{[n]}{k} \) has size

\[k(n - k) + 1. \]
Corollary (Oh–Postnikov–Speyer (2011))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset \binom{[n]}{k}$ has size

$$k(n - k) + 1.$$

Theorem (G. (2017))

The map $\Delta \mapsto \text{Vert}(\Delta)$ is a bijection between:

- fine zonotopal tilings Δ of $\mathcal{Z}(n, 3)$, and
- maximal by inclusion chord separated collections $\mathcal{D} \subset 2^{[n]}$.
Contradiction?

Corollary (Oh–Postnikov–Speyer (2011))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset \binom{[n]}{k}$ *has size*

$$k(n - k) + 1.$$

Theorem (G. (2017))

The map $\Delta \mapsto \text{Vert}(\Delta)$ *is a bijection between:*

- *fine zonotopal tilings* Δ *of* $\mathbb{Z}(n, 3)$, *and*
- *maximal by inclusion chord separated collections* $\mathcal{D} \subset 2^{[n]}$.

Corollary (G. (2017))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset 2^{[n]}$ *has size*

$$\text{Ind}(\mathcal{C}(n, 3)) = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3}.$$
Corollary (Oh–Postnikov–Speyer (2011))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset \binom{[n]}{k}$ has size

$$k(n - k) + 1.$$

Luckily for us,

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} = \sum_{k=0}^{n} (k(n - k) + 1).$$

Corollary (G. (2017))

Every maximal by inclusion chord separated collection $\mathcal{D} \subset 2^{[n]}$ has size

$$\text{Ind}(\mathcal{C}(n, 3)) = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3}.$$
Part 3: Putting it all together

level = 0
∅

level = 1
1
2
3
4
5

level = 2
12
34
5

level = 3
12
34
5

level = 4
12
34
5

level = 5
12345
Sections of tiles

\[z = |S| + 1 \]

\[z = |S| + 2 \]

\[z = |S| + 3 \]
Sections of tiles

\[z = |S| + 3 \]

\[z = |S| + 2 \]

\[z = |S| + 1 \]

\[z = |S| \]
Example: $n = 4$
Example: \(n = 4 \)
Theorem (Postnikov (2007))

Any two \((k, n)\)-plabic graphs are connected by a sequence of moves:

\((M1) \) \hspace{1cm} (M2) \hspace{1cm} (M3)
Moves and flips

Theorem (Postnikov (2007))

Any two \((k, n)\)-plabic graphs are connected by a sequence of moves:

- **(M1)**
- **(M2)**
- **(M3)**

A flip of a fine zonotopal tiling of \(\mathcal{Z}(n, 3)\) consists of replacing one tiling of \(\mathcal{Z}(4, 3)\) with another.
Moves and flips

Theorem (Postnikov (2007))

Any two (k, n)-plabic graphs *are connected by a sequence of moves:*

A *flip* of a fine zonotopal tiling of $\mathcal{Z}(n, 3)$ consists of replacing one tiling of $\mathcal{Z}(4, 3)$ with another.

Theorem (Ziegler (1993))

Any two fine zonotopal tilings of $\mathcal{Z}(n, 3)$ are connected by a sequence of flips.
Moves = sections of flips

\[
\begin{align*}
S &= \text{sections of flips} \\
S_{ab} &\quad S_{bc} &\quad S_{cd} &\quad S_{d} \\
S_{ab} &\quad S_{bc} &\quad S_{c} &\quad S_{d} \\
S_{ab} &\quad S_{b} &\quad S_{c} &\quad S_{d} \\
\end{align*}
\]
Pseudoplane arrangements

S \subset S c \subset S b \subset S a \subset S b c \subset S a c \subset S a b \subset S a b c

∅ 1 2 3 4 5 1 2 5 1 4 5 2 3 4 3 4 5 1 2 3 4 5

Plabic graphs and zonotopal tilings

FPSAC 2018, 07/19/2018
Pseudoplane arrangements

\[S_{ab}C \]
\[S_{ab} \]
\[S_{bC} \]
\[S_{aC} \]
\[S_{b} \]
\[S_{c} \]
\[S_{a} \]
\[S \]
Pseudoplane arrangements
Main result

Theorem (G. (2017))

\[(k, n)\text{-plabic graphs} \xleftrightarrow{\text{planar dual}} \text{horizontal sections at } z = k \text{ of fine zonotopal tilings of } \mathbb{Z}(n, 3)\]
Main result

Theorem (G. (2017))

\[(k, n)\text{-plabic graphs} \xleftrightarrow{\text{planar \, dual}} \text{horizontal sections at } z = k \text{ of fine zonotopal tilings of } \mathcal{Z}(n,3) \]

Purity \(\implies\) every \((k, n)\)-plabic graph arises this way
Main result

Theorem (G. (2017))

$$(k, n)$$-plabic graphs $\xleftarrow{\text{planar}}^{\text{dual}} \xrightarrow{\text{horizontal sections at } z = k} \text{fine zonotopal tilings of } \mathcal{Z}(n, 3)$$

Purity \implies every (k, n)-plabic graph arises this way
Moves = horizontal sections of flips
Main result

Theorem (G. (2017))

\[(k, n)\text{-plabic graphs} \leftrightarrow \text{planar dual} \quad \text{horizontal sections at } z = k \text{ of fine zonotopal tilings of } \mathcal{Z}(n, 3)\]

Purity \implies every (k, n)-plabic graph arises this way

Moves = horizontal sections of flips

Strands = horizontal sections of pseudoplanes.
Pavel Galashin.
Plabic graphs and zonotopal tilings.

Pavel Galashin and Alexander Postnikov.
Purity and separation for oriented matroids

Alexander Postnikov.
Total positivity, Grassmannians, and networks.

Suho Oh, Alexander Postnikov, and David E. Speyer.
Weak separation and plabic graphs.

Bernard Leclerc and Andrei Zelevinsky.
Quasicommuting families of quantum Plücker coordinates.

Günter M. Ziegler.
Higher Bruhat orders and cyclic hyperplane arrangements.
Thank you!
Pavel Galashin.
Plabic graphs and zonotopal tilings.

Pavel Galashin and Alexander Postnikov.
Purity and separation for oriented matroids

Alexander Postnikov.
Total positivity, Grassmannians, and networks.

Suho Oh, Alexander Postnikov, and David E. Speyer.
Weak separation and plabic graphs.

Bernard Leclerc and Andrei Zelevinsky.
Quasicommuting families of quantum Plücker coordinates.

Günter M. Ziegler.
Higher Bruhat orders and cyclic hyperplane arrangements.