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Abstract. The T-system is a certain discrete dynamical system associated with a quiver.

Keller showed in 2013 that the T-system is periodic when the quiver is a product of

two finite Dynkin diagrams. We prove that the T-system is periodic if and only if the

quiver is a finite ⊠ finite quiver. Such quivers have been classified by Stembridge in

the context of Kazhdan-Lusztig theory. We show that if the T-system is linearizable

then the quiver is necessarily an affine ⊠ finite quiver. We classify such quivers and

conjecture that the T-system is linearizable for each of them. For affine ⊠ finite quivers

of type Â ⊗ A, that is, for the octahedron recurrence on a cylinder, we give an explicit

formula for the linear recurrence coefficients in terms of the partition functions of

domino tilings of a cylinder. Next, we show that if the T-system grows slower than a

double exponential function then the quiver is an affine ⊠ affine quiver, and classify

them as well. Additionally, we prove that the cube recurrence introduced by Propp is

periodic inside a triangle and linearizable on a cylinder.

Résumé. The T-system is a certain discrete dynamical system associated with a quiver.

Keller showed in 2013 that the T-system is periodic when the quiver is a product of

two finite Dynkin diagrams. We prove that the T-system is periodic if and only if the

quiver is a finite ⊠ finite quiver. Such quivers have been classified by Stembridge in

the context of Kazhdan-Lusztig theory. We show that if the T-system is linearizable

then the quiver is necessarily an affine ⊠ finite quiver. We classify such quivers and

conjecture that the T-system is linearizable for each of them. For affine ⊠ finite quivers

of type Â ⊗ A, that is, for the octahedron recurrence on a cylinder, we give an explicit

formula for the linear recurrence coefficients in terms of the partition functions of

domino tilings of a cylinder. Next, we show that if the T-system grows slower than a

double exponential function then the quiver is an affine ⊠ affine quiver, and classify

them as well. Additionally, we prove that the cube recurrence introduced by Propp is

periodic inside a triangle and linearizable on a cylinder.
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1 Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky in [3] and since then

have been a popular subject of research. An important class of cluster algebras are those

associated with quivers which are directed graphs without loops and directed 2-cycles.

One can define an operation on quivers called mutation: given a quiver Q with vertex set

Vert(Q) and its vertex v ∈ Vert(Q), µv(Q) is another quiver on the same set of vertices

as Q but with edges modified according to a certain combinatorial rule.

We say that a quiver Q is bipartite if the underlying graph is bipartite. In other words,

Q is bipartite if there is a map ǫ : Vert(Q) → {0, 1}, v 7→ ǫv such that for any arrow

u → v in Q we have ǫu 6= ǫv. It is clear from the definition of a mutation that if there

are no arrows between u and v then the operations µu and µv commute. Thus if Q is

bipartite, one can define two operations µ0 and µ1 on Q as products µ0 = ∏ǫu=0 µu and

µ1 = ∏ǫv=1 µv.

Let us say that Qop is the same quiver as Q but with all edges reversed. Then we

call a bipartite quiver Q recurrent if µ0(Q) = µ1(Q) = Qop. In other words, a bipartite

quiver Q is recurrent if mutating all vertices of the same color reverses the arrows of Q
but does not introduce any new arrows. We restate this definition in an elementary way

in Section 3. The notion of recurrent quivers is necessary to define the T-system which

we do now. For a quiver Q let x = {xv}v∈Vert(Q) be a family of indeterminates and let

Q(x) be the field of rational functions in these variables. Then given a bipartite recurrent

quiver Q, the T-system associated with Q is a family of rational functions Tv(t) ∈ Q(x)
for each v ∈ Vert(Q) and t ∈ Z satisfying the following recurrence relation for all

v ∈ Vert(Q) and all t ∈ Z:

Tv(t + 1)Tv(t − 1) = ∏
u→v

Tu(t) + ∏
v→w

Tw(t). (1.1)

One immediately observes that the parity of t + ǫv is the same in each term of (1.1)

so the T-system splits into two independent parts. Thus we restrict the elements Tv(t)
of the T-system to only the values of t for which t ≡ ǫv (mod 2). The initial conditions

for the T-system are given by Tv(ǫv) = xv, v ∈ Vert(Q). It is clear that these initial

conditions together with (1.1) determine Tv(t) for all v ∈ Vert(Q) and t ≡ ǫv (mod 2).
During the past two decades, various special cases of T-systems have been studied

extensively, the most popular one being the octahedron recurrence. More generally, given

two ADE Dynkin diagrams Λ and Λ′, one can define their tensor product Λ ⊗ Λ′ which

is a bipartite recurrent quiver, see Figure 1 (a) for an example. For these quivers, the

associated T system turns out to be periodic, that is, for every ADE Dynkin diagrams

Λ and Λ′ there is an integer N such that the T-system associated with Λ ⊗ Λ′ satisfies

Tv(t) = Tv(t + 2N) for all v ∈ Vert(Q) and t ≡ ǫv (mod 2). This result has been recently

shown by Keller [8]. There is also a nice formula for the period N of the T-system
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(a) (b) (c) (d)

Figure 1: (a) A tensor product D5 ⊗ A3. (b) A finite ⊠ finite quiver. (c) An affine ⊠ finite

quiver. (d) An affine ⊠ affine quiver. Arrows are colored according to Definition 2.1.

associated with Λ ⊗ Λ′, namely, N divides h(Λ) + h(Λ′) where h denotes the Coxeter
number of the corresponding Dynkin diagram, see Section 3.

Remark 1.1. The standard formulation of Zamolodchikov periodicity includes Y-systems
rather than T-systems. However, the machinery of cluster algebras with principal coef-
ficients [5] allows one to show that given a bipartite recurrent quiver, the T-system is

periodic if and only if the Y-system is periodic.

One other interesting phenomenon related to T-systems has been studied to some

extent. Given a bipartite recurrent quiver Q, let us say that the T-system associated with

Q is linearizable if for every vertex v ∈ Vert(Q), there exists an integer N and rational

functions H0, H1, . . . , HN ∈ Q(x) such that H0, HN 6= 0 and ∑
N
i=0 HiTv(t + i) = 0 for

every t ∈ Z satisfying t ≡ ǫv (mod 2). It was shown in [1] that if every vertex of Q
is either a source or a sink and the T-system associated with Q is linearizable then the

underlying graph of Q is necessarily an affine ADE Dynkin diagram. Conversely, for

every such quiver the T-system was shown to be linearizable in [1, 9].

2 Main results

Before we state our results, we need to define various classes of quivers.

Definition 2.1. Given a bipartite quiver Q with vertex set Vert(Q), we define two undi-

rected graphs Γ = Γ(Q) and ∆ = ∆(Q) on Vert(Q) as follows. For every arrow u → v
with ǫu = 0, ǫv = 1, Γ contains an undirected edge (u, v), and for every arrow u → v
with ǫu = 1, ǫv = 0, ∆ contains an undirected edge (u, v).
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Q is a if all components of Γ(Q) are and all components of ∆(Q) are

finite ⊠ finite quiver finite ADE Dynkin diagrams finite ADE Dynkin diagrams

affine ⊠ finite quiver affine ADE Dynkin diagrams finite ADE Dynkin diagrams

affine ⊠ affine quiver affine ADE Dynkin diagrams affine ADE Dynkin diagrams

Table 1: Three classes of bipartite recurrent quivers

Thus each arrow of Q belongs either to Γ or to ∆. Just as in Figure 1, if an arrow

belongs to Γ then we color it red, otherwise we color it blue. Since Q is allowed to have

multiple arrows, Γ and ∆ can have multiple edges but no loops.

We now define finite ⊠ finite, affine ⊠ finite, and affine ⊠ affine quivers. The three def-

initions are encoded in Table 1. For example, a bipartite recurrent quiver Q is called

affine ⊠ finite if all components of Γ(Q) are affine ADE Dynkin diagrams and all com-

ponents of ∆(Q) are finite ADE Dynkin diagrams. Finite ⊠ finite quivers appeared in

Stembridge’s study [12] of admissible W-graphs where he showed that they correspond to

pairs of (possibly non-reduced) commuting Cartan matrices. He gave a classification of

such quivers, and an example of a finite ⊠ finite quiver is shown in Figure 1 (b).

Note that tensor products Λ ⊗ Λ′ of finite ADE Dynkin diagrams belong to the class

of finite ⊠ finite quivers. Our first result combined with Stembridge’s work gives a

classification of bipartite recurrent quivers for which the T-system is periodic:

Theorem 2.2 ([?]). Let Q be a bipartite recurrent quiver. Then the T-system associated with Q
is periodic if and only if Q is a finite ⊠ finite quiver.

Remark 2.3. Even though this is a generalization of Keller’s theorem, we use his result

in our proof. Hence we do not give an alternative proof of periodicity for products of

finite ADE Dynkin diagrams. We do however give an alternative proof for quivers of

type Am ⊗ An in [?, Section 8] thus reproving Volkov’s result [13].

In fact, the following proposition which is due to Stembridge provides a way to

extend Keller’s formula for the period of the T-system:

Proposition 2.4 ([12]). Let Q be a finite ⊠ finite bipartite recurrent quiver. Then all connected
components of Γ(Q) (resp., of ∆(Q)) have the same Coxeter number denoted h(Q) (resp., h′(Q)).

Theorem 2.5 ([?]). For a finite ⊠ finite quiver Q, the period N of the T-system divides h(Q) +
h′(Q).

We now pass to the linearizability property of the T-system.

Theorem 2.6 ([6]). Let Q be a bipartite recurrent quiver, and suppose that the T-system associ-
ated with Q is linearizable. Then Q is an affine ⊠ finite quiver.
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We have classified affine ⊠ finite quivers, see Figure 1 (c) for an example. Computa-

tional evidence suggests the following

Conjecture 2.7 ([6]). Let Q be a bipartite recurrent quiver. Then the T-system associated with
Q is linearizable if and only if Q is an affine ⊠ finite quiver.

When Q is a tensor product of type Â ⊗ A, Conjecture 2.7 was proven by the second

author in [11]. We extend this result by giving an explicit formula for the recurrence

coefficients, see Section 5. We also state and prove periodicity and linearizability for the

cube recurrence, see Section 6.

For affine ⊠ affine quivers, we have proven the following theorem concerning the

asymptotics of the T-system:

Theorem 2.8 (Galashin-Pylyavskyy(2016)). Let Q be a bipartite recurrent quiver that is not

an affine ⊠ affine quiver. Then for any vertex v ∈ Vert(Q) and any map λ : Vert(Q) → R>0

there exists a positive constant C such that for any t ≡ ǫv (mod 2),

Tv(t) |x=λ> C exp(exp(C|t|)).

Here Tv(t) |x=λ means substituting xu := λ(u) into Tv(t) for all u ∈ Vert(Q).

We have classified affine ⊠ affine quivers, an example of an affine ⊠ affine quiver is

shown in Figure 1 (d). To sum up: if Q is a finite ⊠ finite quiver then by Theorem 2.2,

Tv(t) is bounded; otherwise if Q is an affine ⊠ finite quiver then Conjecture 2.7 implies

that Tv(t) grows exponentially; finally, according to our computations, the following

conjecture seems to hold:

Conjecture 2.9. If Q is an affine ⊠ affine quiver then Tv(t) grows quadratic exponentially, that
is, for any v ∈ Vert(Q) and any λ : Vert(Q) → R>0 there exist two constants 0 < C < C′

such that C exp(Ct2) ≤ Tv(t) |x=λ< C′ exp(C′t2).

Theorem 2.10 (Galashin-Pylyavskyy(2016)). Conjecture 2.9 holds when Q is a tensor product
of type Â2n−1 ⊗ Â2m−1.

3 Background

We use the common conventions for finite and affine Dynkin diagrams, for example, A5

is a path on 5 vertices and Â5 is a cycle on six vertices. Since we restrict our attention to

bipartite quivers, we will consider cycles of even length, that is, of type Â2n−1 for n ≥ 1.

Every finite ADE Dynkin diagram Λ corresponds to a finite Coxeter system (W, S).
All the Coxeter elements in (W, S) are conjugate and thus have the same period which is

denoted h(Λ). For example, Dynkin diagram of type An corresponds to the symmetric
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Figure 2: A twist of type A3 × A3 (left). A tensor product Â1 ⊗ A2 (right).

group Sn+1 where the Coxeter element is just the long cycle (1, 2, . . . , n, n + 1) which has

period n + 1, thus h(An) = n + 1. Similarly, h(Dn) = 2n − 2, h(E6) = 12, h(E7) = 18,

and h(E8) = 30.

Suppose we are given two bipartite undirected graphs Λ, Λ′. Let ǫ : Vert(Λ) → {0, 1}
and ǫ′ : Vert(Λ′) → {0, 1} be the corresponding colorings of their vertices. Then we

define the tensor product Λ ⊗ Λ′ to be the quiver Q with vertex set Vert(Λ) × Vert(Λ′)
and edges given by the following rule: (u, u′) → (v, u′) is an edge of Q if (u, v) is an

edge of Λ and (ǫu, ǫ′u′) ∈ {(0, 0), (1, 1)}; similarly, (u, u′) → (u, v′) is an edge of Q if

(u′, v′) is an edge of Λ′ and (ǫu, ǫ′u′) ∈ {(0, 1), (1, 0)}. In other words, Λ ⊗ Λ′ can be

described as follows: its underlying undirected graph is just the direct product of Λ

and Λ′, the red arrows are given by Γ = Λ × Vert(Λ′) and the blue arrows are given

by ∆ = Vert(Λ)× Λ′. Note that the rule in Definition 2.1 allows one to reconstruct the

directions of the arrows in Q from their colors (Γ, ∆).
Instead of explaining the definition of a quiver mutation, we give an equivalent defi-

nition of a recurrent quiver: a bipartite quiver Q is called recurrent if for any two vertices

u, v ∈ Vert(Q), the number of paths u → w → v of length 2 from u to v equals the

number of paths v → w → u of length 2 from v to u. Yet another equivalent way of

giving this definition is that Q is recurrent if the adjacency matrices of Γ(Q) and ∆(Q)
commute.

4 Zamolodchikov periodicity: an example

In this section, we give an example illustrating Theorems 2.2 and 2.5. Consider the

quiver Q which Stembridge [12] called a twist of type A3 × A3. It has six vertices which

we label a, b, c, d, e, f , see Figure 2 (left).

Let us plug in xa = 3, xd = 2 and xb = xc = xe = x f = 1 for simplicity. The T-system

associated with Q proceeds according to equation (1.1), for example, Ta(t+ 1)Ta(t− 1) =
Tc(t) + Td(t) and Tc(t + 1)Tc(t − 1) = Ta(t)Te(t) + Tb(t)Tf (t). We list the values Tv(t)

for all t = 0, 1, . . . , 9 in Table 2. For example, we got Tc(5) =
Ta(4)Te(4)+Tb(4)Tf (4)

Tc(3)
=

18×6+6×6
12 = 12.
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t 0 1 2 3 4 5 6 7 8 9

Ta(t) Tb(t)
Tc(t) Td(t)
Te(t) Tf (t)

3 1

∗ ∗
1 1

∗ ∗
1 2

∗ ∗

1 3

∗ ∗
3 3

∗ ∗
12 6

∗ ∗

18 6

∗ ∗
6 6

∗ ∗
12 24

∗ ∗

2 6

∗ ∗
6 6

∗ ∗
4 2

∗ ∗

3 1

∗ ∗
1 1

∗ ∗
1 2

∗ ∗

Table 2: The values of the T-system associated with a twist of type A3 × A3. For t 6≡ ǫv

(mod 2), Tv(t) is undefined so we replace it with a ∗.

We can see that Tv(t) = Tv(t+ 8) for each t ≡ ǫv (mod 2) so the period N = 4 indeed

divides h(A3) + h(A3) = 4 + 4 = 8 as predicted by Theorem 2.5.

5 Domino tilings

Here we explain our formula for the recurrence coefficients of the T-system associated

with a quiver Q which is a tensor product of type Â2n−1 ⊗ Am, that is, a product of a

2n-cycle and an m-path. Consider an (m + 1)× 2n cylinder C. The vertices of Q can be

naturally identified with the interior vertices of C. For example, if n = 1 and m = 2

then Q has vertices a, b, c, d as in Figure 2 (right) and it is embedded in the 3× 2 cylinder

in Figure 3 (left). For every domino tiling T of C we define a monomial wt(T) in the

initial variables x and an integer ht(T) called the height of T as follows. For every vertex

v ∈ Vert(Q), define an integer adjT(v) to be the number of dominoes adjacent to v in T,

so 2 ≤ adjT(v) ≤ 4. Then we set wt(T) = ∏v∈Vert(Q) xadjT(v)−3
v . Various domino tilings

with their weights are listed in Figures 3 and 4.

To define ht(T), we will use an auxiliary function hT defined on the vertices of C
analogously to the Thurston height function for planar domino tilings. Namely, fix some

vertex s on the bottom boundary of C and set hT(s) = 0. Then for every edge e = (u, v)
of C that does not cut through a domino of T, the face that appears to the left when we

traverse e from u to v is either black or white. If it is black then we put hT(v) = hT(u)− 1,

otherwise we put hT(v) = hT(u) + 1. It is not hard to see that this produces a well

defined function hT which takes values 0 and 1 on the bottom boundary of C and some

values x and x + 1 on the top boundary of C. In this case, we put ht(T) := x.

There are unique domino tilings T−1 and T1 with ht(T−1) = −2 − 2m and ht(T+1) =
2 + 2m, and they satisfy wt(T−1) = wt(T1) = 1. Figure 3 (middle and right) contains

T1 and T−1 together with their corresponding height functions hT1
and hT−1

. Thus all

tilings T of C satisfy ht(T) = −2 − 2m + 4i for some 0 ≤ i ≤ m + 1. We define Laurent

polynomials Hi for 0 ≤ i ≤ m+ 1 as the corresponding partition functions: Hi = ∑ wt(T)
where the sum is taken over all tilings T of C with ht(T) = −2 − 2m + 4i. We call them

Goncharov-Kenyon Hamiltonians as they have been introduced and studied by Goncharov
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a b

dc

0 1

3 2

4 5

7 6

wt = 1
0 1

−1 −2

−4 −3

−5 −6

wt = 1

Figure 3: A 3 × 2 cylinder C (left). The unique domino tilings T1 of height 6 (middle)

and T−1 of height −6 (right).

a b

dc

wt = ac
bd

a b

dc

wt = b
cd

a b

dc

wt = d
ab

a b

dc

wt = c
d

a b

dc

wt = a
b

Figure 4: All five domino tilings of height 2.

and Kenyon [7] in a somewhat different context.

For our running example n = 1, m = 2, we have already seen that H0 = H3 = 1. All

five tilings with ht(T) = 2 are shown in Figure 4. All five tilings with ht(T) = −2 are just

their mirror images. This yields H1 =
bd
ac +

a
cd +

c
ab +

d
c +

b
a and H2 = ac

bd +
b
cd +

d
ab +

c
d +

a
b .

For a vertex v ∈ Vert(Q), define v+ := v and v− to be the vertex opposite to v in the

same red connected component as v (which is a cycle of length 2n). Thus for the quiver

in Figure 2 (right), we have a− = b, b− = a, c− = d, d− = c. We are finally ready to state

the formula for the recurrence:

Theorem 5.1 ([6]). Let v be a vertex on the top boundary of a quiver Q of type Â2n−1 ⊗ Am.
Then for any t ∈ Z with t ≡ ǫv (mod 2), the values of the T-system associated with Q satisfy

Tv+(t + (m + 1)n)− H1Tv−(t + mn) + . . . ± HmTv±(t + n)∓ Tv∓(t) = 0. (5.1)

Theorem 5.1 only gives a formula when v belongs to the boundary of the cylinder.

If v is distance r from the boundary then we prove a formula that looks similar to (5.1)

except that now j-th coefficient is the image of the symmetric polynomial ej[er] under

the ring homomorphism that sends ei to Hi for i = 0, 1, . . . , m + 1.

As an illustration, let us plug in xa = xb = xc = xd = 1 and run the T-system. One

easily checks that the sequence yn equal to Ta(n) when n is even and to Tb(n) when n
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11

1

11

1

11

1

11

1

1

11

a b c

d e

f

e12

e23

e31

1 1 1 1 1 1

c b a c b a

1 1 1 1 1 1

. . . . . .

Figure 5: The triangle T5 (left). The cylinder S2 for n = 1 (middle). The graph G
(right). The red, green, and blue colors correspond to ǫv = 0, 1, 2 respectively.

is odd satisfies y0 = y1 = 1 and yn+1 = y2
n+yn
yn−1

for n ≥ 1. The first few values of yn are

therefore 1, 1, 2, 6, 21, 77, 286, .... On the other hand, we have H0 = H3 = 1 and H1 = H2 =
5 so Theorem 5.1 suggests that the values of xn satisfy yn+3 − 5yn+2 + 5yn+1 − yn = 0 for

all n. This is indeed true, for example, 77 − 5 × 21 + 5 × 6 − 2 = 0.

6 Cube recurrence

6.1 Periodicity in a triangle

For any m ∈ Z, let Pm = {(i, j, k) ∈ Z3 | i + j + k = m} be a plane. Given an integer

m ≥ 3, we define the m-th triangle Tm ⊂ Z3 by Tm = {(i, j, k) ∈ Pm | i, j, k ≥ 0}. For

example, T5 is shown in Figure 5 (left). For every vertex v = (i, j, k) ∈ Tm, we define its

color ǫv ∈ {0, 1, 2} by ǫv ≡ j − k (mod 3) ∈ {0, 1, 2}. We refer to v as a boundary vertex if

either one of i, j, k is zero. For every non-boundary vertex v we introduce a variable xv

and we let x be the set of all these variables. We consider an analog of the T-system in a

triangle which is going to be a family fv(t) of rational functions in x defined whenever

t ≡ ǫv (mod 3). Let e12 = (1,−1, 0), e23 = (0, 1,−1), and e31 = (−1, 0, 1) be three vectors

in P0. For boundary vertices v we set fv(t) = 1 and for every non-boundary vertex

v = (i, j, k) ∈ Tm we set fv(ǫv) = xv. For every such v and every t ≡ ǫv (mod 3), fv

satisfies

fv(t+ 3) fv(t) = fv+e12
(t+ 2) fv−e12

(t+ 1)+ fv+e23(t+ 2) fv−e23(t+ 1)+ fv+e31
(t+ 2) fv−e31

(t+ 1).

The unbounded cube recurrence, i.e. the one defined on P0 rather than Tm, was intro-

duced by Propp [10] where he conjectured that the values are Laurent polynomials. This

was proven by Fomin-Zelevinsky [4], and Carroll and Speyer [2] later gave an explicit

formula for them in terms of groves.
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t 0, 1, 2 3 4 5 6 7 8 9 10, 11, 12
f f (t)

fd(t) fe(t)
fa(t) fb(t) fc(t)

1
1 1

1 1 3

3
∗ ∗

∗ 5 ∗

∗
∗ 15

7 ∗ ∗

∗
41 ∗

∗ ∗ 7

19
∗ ∗

∗ 21 ∗

∗
∗ 13

9 ∗ ∗

∗
5 ∗

∗ ∗ 5

1
∗ ∗

∗ 3 ∗

3
1 1

1 1 1

Table 3: The evolution of the cube recurrence in T5.

b a c b a c b

Figure 6: The graph G2 (left). The unique groves with h = 0 (middle) and h = 2 (right).

Theorem 6.1 (Galashin-Pylyavskyy(2016)). The values of the cube recurrence in a triangle
Tm are Laurent polynomials. Moreover, let σ : Tm → Tm be the clockwise rotation of Tm

defined by σ(i, j, k) = (k, i, j). Then for every v ∈ Tm and every t ≡ ǫv (mod 3), we have
fv(t + 2m) = fσmv(t). Thus the cube recurrence in a triangle satisfies fv(t + 6m) = fv(t).

We give two proofs for Theorem 6.1, one based on Henriques and Speyer’s multidi-
mensional cube recurrence and one similar to our proof of Theorem 2.2 using a tropicaliza-

tion argument.

Let us illustrate Theorem 6.1 by an example for m = 5. Suppose we set fc(ǫc) = 3 and

fv(ǫv) = 1 for v = a, b, d, e, f . Then the values of fv(t) for t = 0, 1, . . . , 12 are shown in

Table 3. For example, fe(7) =
f f (6) fc(5)+ fb(6)+ fd(5)

fe(4)
= 19×7+21+41

15 = 13. Just as Theorem 6.1

states, increasing t by 10 corresponds to rotating the triangle counterclockwise which is

the same as applying σ five times.

6.2 Linearizability on a cylinder

We define the cube recurrence on a cylinder as follows. Let m ≥ 2, n ≥ 1 be two integers and

define the strip Sm = {(i, j, k) ∈ P0 | 0 ≤ i ≤ m}. We let g be the vector ne23 = (0, n,−n),
and everything in this section will be invariant with respect to the shift by 3g. For every

v = (i, j, k) ∈ Sm with 0 < i < m, we introduce a variable xv so that xv = xv+3g and

we define the cube recurrence on a cylinder to be a family fv(t) for v ∈ Sm that satisfies

wt = c
a wt = 1

bc wt = 1
ab

wt = a
c wt = 1

bc wt = 1
ab

Figure 7: The six (3, 2)-groves satisfying h = 1 together with their weights.
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the same recurrence as before but subject to different boundary conditions: fv(t) = 1

whenever i = 0 or i = m and fv(ǫv) = xv for all v ∈ Sm.

Theorem 6.2 (Galashin-Pylyavskyy(2016)). Fix any n and m and let v ∈ Sm be a vertex. Then
the sequence ( fv(ǫv + 3t))t∈Z satisfies a linear recurrence.

We also give an explicit formula for the recurrence coefficients when v = (1, j, k) for

some j and k. Consider the following infinite undirected graph G with vertex set P0

and edge set consisting of edges (v, v + e12), (v, v + e23), and (v, v + e31) for every vertex

v ∈ P0 with ǫv 6= 0, see Figure 5 (right).

We let Gm be the restriction of G to Sm, thus Gm is a graph on a strip with vertex

set Sm whose faces are all either lozenges or boundary triangles, see Figure 6 (left). A

(3n, m)-grove is a forest F with vertex set Sm satisfying several conditions. First, F has to

be invariant under the shift by 3g. Second, F necessarily contains all edges (v, v + e23)
for boundary vertices v with ǫv = 0. Third, for every lozenge face of Gm, F contains

exactly one of its two diagonals. And finally, every connected component of F has to

contain a vertex (0, j, k) and a vertex (m, j′, k′) for some j, j′, k, k′ ∈ Z.

For v ∈ Sm and a (3n, m)-grove F, define degF(v) to be the number of edges of F

incident to v. Define the weight of F to be wt(F) = ∏ x
degF(v)−2
v where the product is

taken over all non-boundary vertices v = (i, j, k) of Sm satisfying 0 ≤ j < 3n. The second

condition in the definition of a grove together with the construction of Gm implies that

every connected component of F involves either only vertices v with ǫv = 1 (we call

such components green because in our figures the green color corresponds to ǫv = 1) or

only vertices v with ǫv 6= 1. Consider any green connected component C of F. Given

such C, the unique green lower boundary vertex of C is u(C) = (0, j,−j) for some

j ≡ 2 (mod 3), and there is a unique green upper boundary vertex w(C) = (m, j′, k′).
The possible values of j′ are j − 2m, j − 2m + 3, . . . , j + m. We define h(C) := (j′ −
j + 2m)/3 ∈ {0, 1, . . . , m}, and it is clear that this number is the same for any green

connected component of F. We define h(F) to be equal to h(C) where C is any such

connected component of F. Finally, for ℓ = 0, 1, . . . , m, we define Jℓ := ∑F wt(F) where

the sum is taken over all groves F with h(F) = ℓ. As it is clear from Figure 6 (middle

and right), for ℓ = 0 or ℓ = m there is only one grove F with h(F) = ℓ and it satisfies

wt(F) = 1, thus J0 = Jm = 1.

Theorem 6.3 (Galashin-Pylyavskyy(2016)). Fix any n and m and let v = (1, j, k) ∈ Sm. Then
for any t ≡ ǫv (mod 3) we have ∑

m
ℓ=0(−1)ℓ Jℓ fv+ℓg(t + 2ℓn) = 0.

For example, let m = 2. Then J0 = J2 = 1, and all the six groves with h(F) = 1

are shown in Figure 7 which implies that J1 = c
a +

a
c +

2
bc +

2
ab . Let us plug in xv = 1

for v = a, b, c. Then the sequence (yn) = ( fa(0), fb(1), fc(2), fa(3), . . . ) satisfies y0 =

y1 = y2 = 1 and yn+3 = yn+2yn+1+2
yn

, so the first few values are 1, 1, 1, 3, 5, 17, 29, 99, 169 . . . .

Theorem 6.3 states that yn+4 − 6yn+2 + yn = 0 for all n which is indeed true, for example,

99 − 6 × 17 + 3 = 0.



12 Pavel Galashin and Pavlo Pylyavskyy

References

[1] Ibrahim Assem, Christophe Reutenauer, and David Smith. Friezes. Advances in
Mathematics, 225(6):3134 – 3165, 2010.

[2] Gabriel D. Carroll and David Speyer. The cube recurrence. Electron. J. Combin.,
11(1):Research Paper 73, 31 pp. (electronic), 2004.

[3] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer.
Math. Soc., 15(2):497–529 (electronic), 2002.

[4] Sergey Fomin and Andrei Zelevinsky. The Laurent phenomenon. Adv. in Appl.
Math., 28(2):119–144, 2002.

[5] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos.
Math., 143(1):112–164, 2007.

[6] Pavel Galashin and Pavlo Pylyavskyy. Quivers with subadditive labelings: classifi-

cation and integrability. arXiv:1606.04878, 2016.

[7] Alexander B. Goncharov and Richard Kenyon. Dimers and cluster integrable sys-

tems. Ann. Sci. Éc. Norm. Supér. (4), 46(5):747–813, 2013.

[8] Bernhard Keller. The periodicity conjecture for pairs of Dynkin diagrams. Ann. of
Math. (2), 177(1):111–170, 2013.

[9] Bernhard Keller and Sarah Scherotzke. Linear recurrence relations for cluster vari-

ables of affine quivers. Adv. Math., 228(3):1842–1862, 2011.

[10] James Propp. The many faces of alternating-sign matrices. In Discrete models: combi-
natorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci.

Proc., AA, pages 043–058 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris,

2001.

[11] Pavlo Pylyavskyy. Zamolodchikov integrability via rings of invariants.

arXiv:1506.05378, 2015.

[12] John R. Stembridge. Admissible W-graphs and commuting Cartan matrices. Adv.
in Appl. Math., 44(3):203–224, 2010.

[13] Alexandre Yu. Volkov. On the periodicity conjecture for Y-systems. Comm. Math.
Phys., 276(2):509–517, 2007.


	Introduction
	Main results
	Background
	Zamolodchikov periodicity: an example
	Domino tilings
	Cube recurrence
	Periodicity in a triangle
	Linearizability on a cylinder


