Positroids, knots, and q,t-Catalan numbers.

Joint work with Thomas Lam

[GL19] P. Galashin and T. Lam. Positroid varieties and cluster algebras. Ann. Sci. Éc. Norm. Supér., to appear. arXiv:1906.03501, 2019.
[GL20] P. Galashin and T. Lam. Positroids, knots, and

[GL20] P. Galashin and T. Lam. Positroids, knots, and $q,t\mbox{-Catalan numbers.} \ \mbox{arXiv:2012.09745}.$

[GL21] P. Galashin and T. Lam. Positroid Catalan numbers. arXiv:2104.05701.

Positroid varieties and cluster algebras.

$$\begin{aligned} &\operatorname{Gr}(k,n;\mathbb{C}) := \{ V \subseteq \mathbb{C}^n \mid \dim V = k \}; \\ &\operatorname{Gr}(k,n;\mathbb{C}) \cong \frac{\{ M \in \operatorname{Mat}_{k \times n}(\mathbb{C}) \mid \operatorname{rk}(M) = k \}}{\operatorname{row operations}}. \end{aligned}$$

Theorem ([Sco06]). The coordinate ring

$$\mathbb{C}[Gr(k,n)] = \frac{\mathbb{C}[\Delta_J \mid J \in \binom{[n]}{k}]}{(Pl\ddot{u}cker\ relations)}.$$

is a cluster algebra.

[Sco06] J. S. Scott. Grassmannians and cluster algebras. *Proc. Lond. Math. Soc.* (3), 92(2):345–380, 2006.

For
$$I = \{i_1 < \dots < i_k\}, J = \{j_1 < \dots < j_k\},$$

write $I \leq J$ if $i_1 \leq j_1, \dots, i_k \leq j_k$.

Definition. Schubert cell:

$$\Omega_I := \{ V \in \operatorname{Gr}(k,n) \mid I \text{ is \preceq-minimal}$$
 satisfying $\Delta_I \neq 0 \}.$

$$= \{ V \in Gr(k, n) \mid I = pivots(V) \}.$$

Definition. A *Grassmann necklace* is a sequence $\mathcal{I} = (I_1, I_2, \dots, I_n)$ of k-element subsets of [n] such that for each $i \in [n]$, we have $I_{i+1} = I_i \setminus \{i\} \cup \{j\}$ for some $j \in [n]$.

Positroid:

$$\mathcal{M}_{\mathcal{I}} := \left\{ J \in {[n] \choose k} \middle| I_i \preceq_i J \text{ for all } i \in [n] \right\},$$
 where \preceq_i is the *i*-th cyclic shift of \preceq :

where $\underline{\cdot}_i$ is the *i*-th cyclic shift of $\underline{\cdot}$

$$i \leq_i i+1 \leq_i \cdots \leq_i i-1.$$

Open positroid variety:

$$\Pi_{\mathcal{I}}^{\circ} := \left\{ V \in \operatorname{Gr}(k, n) \middle| \begin{array}{c} \Delta_{I}(V) \neq 0 \text{ for } I \in \mathcal{I}, \\ \Delta_{J}(V) = 0 \text{ for } J \notin \mathcal{M}_{\mathcal{I}} \end{array} \right\}$$

Theorem ([GL19]). The coordinate ring

$$\mathbb{C}[\Pi_{\mathcal{I}}^{\circ}] = \frac{\mathbb{C}[\Delta_{I}^{\pm 1}, \Delta_{J} \mid I \in \mathcal{I}, \ J \in \mathcal{M}_{\mathcal{I}}]}{(Pl\"{u}cker \ relations)}.$$

is a cluster algebra.

• For *open Schubert varieties*, this was done in [SSBW19] using results of [Lec16].

[Lec16] B. Leclerc. Cluster structures on strata of flag varieties. Adv. Math., 300:190–228, 2016.[SSBW19] K. Serhiyenko, M. Sherman-Bennett, and

L. Williams. Cluster structures in Schubert varieties in the Grassmannian. *Proc. Lond. Math. Soc.* (3),

119(6):1694–1744, 2019.
[GL19] P. Galashin and T. Lam. Positroid varieties and cluster algebras. Ann. Sci. Éc. Norm. Supér., to

appear. arXiv:1906.03501, 2019.

Open Problem. Do this for open Richardson varieties.

```
• Somehow the RHS does not depend on k.
Question. Common generalization?
        Left hand side (cohomology).
• Suppose X is an algebraic variety satisfying
certain conditions.
\bullet H^*(X) admits a second grading coming from
the Deligne splitting:
             H^{i}(X) = \bigoplus_{p \in \mathbb{Z}} H^{i,(p,p)}(X).
  The corresponding mixed Hodge polyno-
mial \mathcal{P}(X;q,t) \in \mathbb{N}[q^{\frac{1}{2}},t^{\frac{1}{2}}] specializes to both
\#X(\mathbb{F}_q) and \mathcal{P}(X;q).
Example. H^*(X) could be given by
• Deligne splitting H^{i,(p,p)}(X) could look like
• \mathcal{P}(X;q,t) = q^4 + q^3t + q^2t^2 + qt^3 + t^4 + q^2t + qt^2
     Right hand side (combinatorics).
• Rational q, t-Catalan numbers:
       C_{a,b}(q,t) := \sum_{P \in \text{Dvck}_{a,t}} q^{\text{area}(P)} t^{\text{dinv}(P)}.
• area(P) = number of squares strictly between
P and diagonal;
• \operatorname{dinv}(P) = number of pairs (h, v) such that:
  \triangleright h is a horizontal step, v is a vertical step;
  \triangleright h appears to the left of v;
  \triangleright there is a line of slope a/b (parallel to the
diagonal) intersecting both h and v.
Example.
C_{3,5}(q,t) = q^4 + q^3t + q^2t^2 + q^2t + qt^3 + qt^2 + t^4.
• C_{a,b}(q,t) specializes to C'_{a,b}(q) and C''_{a,b}(q):
         q^{\frac{(a-1)(b-1)}{2}} \cdot C_{a,b}(q,1/q) = C'_{a,b}(q)
                         C_{a,b}(q,1) = C''_{a,b}(q)
Theorem (Follows from [Mel16]).
                C_{a,b}(q,t) = C_{a,b}(t,q).
[Mel16] Anton Mellit. Toric braids and (m, n)-parking
   functions. arXiv:1604.07456, 2016.
Open Problem. Bijective proof?
Theorem ([GL20]). Let gcd(k, n) = 1. Then
the mixed Hodge polynomial of \Pi_{k,n}^{\circ} is given by
   \mathcal{P}(\prod_{k,n}^{\circ}; q, t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} C_{k,n-k}(q, t).
Moreover, the torus T of diagonal matrices acts
freely on \Pi_{k,n}^{\circ}, and we have
          \mathcal{P}(\prod_{k,n}^{\circ}/T;q,t) = C_{k,n-k}(q,t).
[GL20] P. Galashin and T. Lam. Positroids, knots, and
   q, t-Catalan numbers. arXiv:2012.09745.
Corollary. C_{a,b}(q,t) are q,t-symmetric and
q, t-unimodal.
q, t-unimodal means coefficients of C_{a,b}(q,t) at
                q^d t^0, q^{d-1} t^1, \dots, q^0 t^d
form a unimodal sequence, for each d.
• Symmetry is known, unimodality is new.
Explanation for the corollary.
[GSV10] M. Gekhtman, M. Shapiro, and A. Vain-
   shtein. Cluster algebras and Poisson geometry.
[LS16] T. Lam and D. E. Speyer. Cohomology of clus-
   ter varieties. I. Locally acyclic case.
[MS16] G. Muller and D. E. Speyer. Cluster algebras
   of Grassmannians are locally acyclic.
  \triangleright On any cluster variety \mathcal{A}(Q), we have the
mutation-invariant GSV form
               \gamma_Q = \sum_{u \to v} \frac{dx_u}{x_u} \wedge \frac{dx_v}{x_v}.
  \triangleright [LS16]: Q is locally acyclic \Longrightarrow multipli-
cation by \gamma_Q \in H^{2,(2,2)}(\mathcal{A}_Q) acts as a curious
Lefschetz operator on H^*(\mathcal{A}_Q).

ightharpoonup \Pi_{k,n}^{\circ}/T is a cluster variety, locally acyclic
by [MS16].
Example. The quiver of X := \prod_{3,8}^{\circ}/T is of
type E_8, with H^{i,(p,p)}(X) indeed given by
```

 $H^{i,(p,p)}(X) \| H^0 | H^1 | H^2 | H^3 | H^4 | H^5 |$

 $1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0$

p = i - 1

 H^6

 $1 \mid 0 \mid 1$

1

Top open positroid variety.

 $\Pi_{2,4}^{\circ} \cong \left\{ \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix} \middle| \begin{array}{c} a, b, c, d \in \mathbb{C} : \\ a, d \neq 0, ad - bc \neq 0 \end{array} \right\}$

Question. Point count? Poincaré polyno-

 $\#\Pi_{2,4}^{\circ}(\mathbb{F}_q) = (q-1) \cdot (q-1) \cdot (q^2 - q + 1).$

 $S^1 \times S^1 \times \text{pinched torus}, \quad \text{so}$

 $\mathcal{P}(\Pi_{2,4}^{\circ};q) = (q+1) \cdot (q+1) \cdot (q^2 + q + 1)$

• For Gr(k, n), point count and Poincaré poly-

 $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!} = \sum_{\lambda \subseteq h_{\lambda}(n-k)} q^{|\lambda|}, \quad \text{where}$

 $[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q \cdot [2]_q \cdot \dots [n]_q.$

 $\operatorname{Gr}(k,n) = \bigsqcup_{I \in \binom{[n]}{L}} \Omega_I$

 \rhd Over \mathbb{C} , this is a CW decomposition into

Problem. No such decomposition is available

 $C_{a,b} := \frac{1}{a+b} {a+b \choose a} = \# \operatorname{Dyck}_{a,b}, \text{ where}$

 $\operatorname{Dyck}_{a,b} := \{\operatorname{Dyck \ paths \ inside \ an} \ a \times b \ \operatorname{rectangle}\}$

 $ightharpoonup \operatorname{Over} \mathbb{F}_q$, we have $\#\Omega_I(\mathbb{F}_q) = q^{|\lambda(I)|}$.

Definition (Rational Catalan numbers).

• For $a, b \ge 1$ with gcd(a, b) = 1, let

Theorem ([GL20]). Let gcd(k, n) = 1.

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot C'_{k,n-k}(q),$

 $C'_{a,b}(q) = \frac{1}{[a+b]_a} \begin{bmatrix} a+b \\ a \end{bmatrix}_a.$

 $C_{a,b}^{\prime\prime}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}.$

 $\mathcal{P}(\Pi_{k,n}^{\circ};q) = (q+1)^{n-1} \cdot C_{k,n-k}^{"}(q), \quad \text{where}$

 \triangleright area(P)= number of squares strictly be-

 $C'_{3.5}(q) = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1.$

 $\operatorname{Prob}(V \in \Pi_{k,n}^{\circ}(\mathbb{F}_q)) = \frac{(q-1)^n}{a^n - 1}.$

 $C_{3.5}''(q) = q^4 + q^3 + 2q^2 + 2q + 1.$

• Poincaré polynomial of $\Pi_{k,n}^{\circ}$:

• Point count of $\Pi_{k,n}^{\circ}$:

tween P and diagonal;

Corollary.

Example (a = 3, b = 5).

 $\Pi_{k,n}^{\circ}(\mathbb{C})$ is homotopy equivalent to

nomial coincide, are given by

Reason: Schubert decomposition

cells of even (real) dimension;

for $\Pi_{k,n}^{\circ}$.

for all $i \in [n]$.

 $\mathcal{I}_{k,n}=(I_1,I_2,\ldots,I_n);$

Example (k = 2, n = 4).

mial?

 $I_i = \{i, i+1, \dots, i+k-1\};$

 $\Pi_{k,n}^{\circ} := \{ V \in \operatorname{Gr}(k,n) \mid \Delta_{I_i}(V) \neq 0 \}$