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Positroid varieties and cluster algebras.

Gr(k,n;C):={V CC" |dimV = k};
~ AM € Maty,(C) | tk(M) = k}

row operations

Gr(k,n; C)

Theorem ([Sco06]). The coordinate ring
clas | e (]

(Pliicker relations)

C[Gr(k,n)] =

18 a cluster algebra.

[Sco06] J. S. Scott. Grassmannians and cluster alge-
bras. Proc. Lond. Math. Soc. (3), 92(2):345-380,

2006.
For I = {iy < -+~ <y}, J={j1 < <ju}

write [ < Jif iy < g1, ..., i < Jge
Definition. Schubert cell:
Qr :={V € Gr(k,n) | I is =-minimal
satisfying A; # 0}.
={V € Gr(k,n) | I = pivots(V)}.
Definition. A Grassmann necklace is a se-

quence Z = (I, Iy, ..., I,) of k-element subsets

of [n] such that for each i € [n], we have
Ly =L\ {i}U{j} for some j € [n].
Positroid:

e fre (1)

where =; is the i-th cyclic shift of <:

I, <, Jforallie [n]}a

1<+ 1< < — 1

Open positroid variety:

Ap(V)#£0for I €Z,
AJ(V) =0 for J ¢ MI

117 := ¢V € Gr(k,n)

Theorem ([GL19]). The coordinate ring
| = CIATL, A | T €T, Je My

(Pliicker relations)

Clilz

1s a cluster algebra.

e For open Schubert varieties, this was done in
[SSBW19] using results of [Lecl6].

[Lec16] B. Leclerc. Cluster structures on strata of flag
varieties. Adv. Math., 300:190-228, 2016.

[SSBW19] K. Serhiyenko, M. Sherman-Bennett, and
L. Williams. Cluster structures in Schubert varieties
in the Grassmannian. Proc. Lond. Math. Soc. (3),
119(6):1694-1744, 2019.

[GL19] P. Galashin and T. Lam. Positroid varieties and
cluster algebras. Ann. Sci. Eec. Norm. Supér., to

appear. arXiv:1906.03501, 2019.

Open Problem. Do this for open Richardson

varieties.
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Top open positroid variety.

Ik,n = (117[27 e 7[n)7
15, o= {V € Gr(h,n) | Ag(V) £0

for all i € [n]}.

Example (k =2,n=4).

1 0 a b a,b,c,d € C:
0 1 ¢ dJ|ad#0,ad—bc#0

0~
H2,4 =

Question. Point count? Poincaré polyno-

mial?
#I54(F) = (@=1) - (a—1) - (¢* —q+1).
IT; ,,(C) is homotopy equivalent to
S x S x pinched torus, so

PLq)=(a+1)-(¢+1)-(¢*+q+1)
e For Gr(k,n), point count and Poincaré poly-
nomial coincide, are given by
n} ]! Z A
= = q"', where
{k q [k]q![n - k]q! AChx (n—k)
(g := 14g4--+¢",  [n]g! =[]y [2]g- - [n],-

Reason: Schubert decomposition

Gr(k,n) = |_| Qy
1e()
> Over C, this is a CW decomposition into

cells of even (real) dimension;

> Over F,, we have #0;(F,) = ¢*?).

Problem. No such decomposition is available

o]
for II} ..

Definition (Rational Catalan numbers).

e For a,b > 1 with ged(a,b) =1, let

1
Cop = s (a : b) = # Dyck,;,, where

Dyck, , := {Dyck paths inside an a x b rectangle}

Theorem ([GL20]). Let ged(k,n) = 1.

e Point count of ITy

#1017 (Fy) = (¢ —1)" ' - Cpi(q),  where

1 a+b}
q

0 = |

[a+bl,| a

e Poincaré¢ polynomial of IT} -
P(Hz,n’ Q) = (q + 1)n—1 : Ollgl,n—k(Q)a where

o= Y

PeDyck, 4,
> area(P)= number of squares strictly be-

tween P and diagonal;

Example (a =3, b =15).
Cos) =+ ++d"+ P+ + 1L
Cis(q) =q" + ¢ +2¢° +2q + 1.

Corollary.

(g—1)"

Prob(V € 1T, (F,)) = = "—4-

e Somehow the RHS does not depend on k.
Question. Common generalization?

Left hand side (cohomology).
e Suppose X is an algebraic variety satisfying
certain conditions.
e H*(X) admits a second grading coming from
the Deligne splitting:

H'(X) = H"")(X).

pEZ
e The corresponding mized Hodge polyno-
mial P(X;q,t) € N[q%,t%] specializes to both
#X (Fg) and P(X;q).

Example. H*(X) could be given by
HC\HY\H?|\H3\H* H°\HS|H"|H®
117011020201
e P(X;q) =q¢*+¢*+2¢* +2¢+ 1.

e Deligne splitting H>®?)(X) could look like

HY @) (X)[[H[H [H2[H3 | H* [ H? [HO[HT | H°
p=i |1]o[t1][o[t]o][1]o0o]1

p=1i—1 110
4 3 242 3 4
+q°t + g7t +qt° 4+t
o’P(X;q,t):q q q2 q2
+q°t + qt

Right hand side (combinatorics).

e Rational q,t-Catalan numbers:

Cuslq,t) = Z rea(P) pdinv(P).
PeDyck,

e arca(P)= number of squares strictly between

P and diagonal;

e dinv(P)= number of pairs (h,v) such that:
> h is a horizontal step, v is a vertical step;
> h appears to the left of v;
> there is a line of slope a/b (parallel to the

diagonal) intersecting both h and v.

Example.
Cs5(q,t) = ¢+ Pt + P12+ Pt 4 qt® + qt* + .

e Cu(q,t) specializes to C} ,(q) and C7,(q):

(a—1)(b—1)

q 2 ’ Ca,b(qv 1/(]) = Ctlz,b(q)

Cap(q,1) = Cgy(q)
Theorem (Follows from [Mell6]).

Oa,b(qa t) = Oa,b(tv Q)

[Mel16] Anton Mellit. Toric braids and (m,n)-parking

functions. arXiv:1604.07456, 2016.

Open Problem. Bijective proof?

Theorem ([GL20]). Let ged(k,n) = 1. Then
the mized Hodge polynomial of 117 | is given by

n—1
P(Hzm; q, t) = <q% + té) Ck,n—k(Qa t)

Moreover, the torus T of diagonal matrices acts

freely on 11y ., and we have

P(Hz,n/Ta q, t) = Ck,n—k(Qv t)

[GL20] P. Galashin and T. Lam. Positroids, knots, and

q,t-Catalan numbers. arXiv:2012.09745.

Corollary. C,;(q,t) are g,t-symmetric and

¢, t-unimodal.

q. t-unimodal means coeflicients of C,;(q,t) at

thO’ qd_ltl, o 7qO.[;d

form a unimodal sequence, for each d.

e Symmetry is known, unimodality is new.
Explanation for the corollary.

[GSV10] M. Gekhtman, M. Shapiro, and A. Vain-
shtein. Cluster algebras and Poisson geometry.
[LS16] T. Lam and D. E. Speyer. Cohomology of clus-

ter varieties. I. Locally acyclic case.
[MS16] G. Muller and D. E. Speyer. Cluster algebras
of Grassmannians are locally acyclic.

> On any cluster variety A(Q), we have the

mutation-invariant GSV form

7Q:z:davu /\da:v‘

x x
u—v Y v

> [LS16]: @ is locally acyclic = multipli-
cation by 7o € H*??(Ag) acts as a curious
Lefschetz operator on H*(Ag).

> 11}, /T is a cluster variety, locally acyclic

by [MS16].

Example. The quiver of X := Igg/T is of
type Fg, with H*®P)(X) indeed given by

Hoer)(X)||HO|HY|H?|H3 | HY|H? | HS|H7 | H3
p=1 170(1}0(1/0 1101
p=1—1 110
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