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Partially ordered set

A poset P is a set X with a partial order 4 on X .
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Linear extension

A linear extension L is a complete order of 4.
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a c b d

We write e(P) for number of linear extensions of P .



How many steps needed to complete a partial order?
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How many steps needed to complete a partial order?

We first compare c and d , and get c 4 d .
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How many steps needed to complete a partial order?

We then compare b and e, and get e 4 b.
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How many steps needed to complete a partial order?

We continue with d and e, and get d 4 e.

a

cb

ed

f

a c d

e b f



How many steps needed to complete a partial order?

Completing the partial order took 3 steps.
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Strategy to complete the partial order

At each step, compare x and y that satisfies

1

2
− c ≤ P

[
x 4 y

]
≤ 1

2
+ c ,

where P is uniform on linear extensions of P .

Runtime is at most
∣∣ log 1

2+c e(P)
∣∣ steps, optimal up

to a multiplicative constant.
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1
3 – 2

3 Conjecture

Conjecture (Kislitsyn ’68, Fredman ’75, Linial ’84)

For every finite poset that is not completely
ordered, there exists x , y :

1

3
≤ P

[
x 4 y

]
≤ 2

3
.

Quote (Brightwell-Felsner-Trotter ’95)
“This problem remains one of the most intriguing
problems in the combinatorial theory of posets ”



Why 1
3 and 2

3?

The upper,lower bound are achieved by this poset:
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x y z

y x z

y z x

P
[
x 4 y

]
=

1

3
; P

[
y 4 x

]
=

2

3
.



What is known so far

Theorem (Kahn-Saks ’84)
For every finite poset, there always exists x , y :

3

11
≤ P

[
x 4 y

]
≤ 8

11
,

roughly between 0.273 and 0.727.

Proof is based on a geometric approach, using
mixed-volume inequalities.



What is known so far

Theorem (Brightwell-Felsner-Trotter ’95)
For every finite poset, there always exists x , y :

5−
√

5

10
≤ P

[
x 4 y

]
≤ 5 +

√
5

10
,

roughly between 0.276 and 0.724.

Upper-lower bound is tight for infinite posets.



Young diagrams

Elements of Pλ are cells of Young diagram of shape λ.

x 4 y if y lies to the Southeast of x .

Young diagram of shape λ = (4, 3, 1)



Young diagrams

Linear extensions of Pλ correspond to standard
Young tableau of the Young diagram.

1 2 5 6

3 4 7

8

1 2 5 6

3 4 7

8

Linear extensions are counted by hook-length
formulas.



What is known for Young diagrams

Theorem (Olson–Sagan ’18)
There always exists x , y :

1

3
≤ P

[
x 4 y

]
≤ 2

3
,

for posets of Young diagrams.
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What is known for Young diagrams

Theorem (Olson–Sagan ’18)
There always exists x , y :

1

3
≤ P

[
x 4 y

]
≤ 2

3
,

for posets of Young diagrams.

We sketch an alternative proof for Young diagrams
using Naruse hook-length formulas.



Hook-length formulas

Number of linear extensions of Pλ is equal to

HLF(λ) =
(|λ|)!∏
hλ(x)

.

7 6 4 1

5 4 2

4 3 1

2 1

12!
(7)(6)(4)(1) (5)(4)(2) (4)(3)(1) (2)(1)



Skew Young diagrams

Skew Young diagram of shape λ/µ,
λ = (5, 3, 3, 1) and µ = (2, 1).



Excited diagrams

Black boxes can move on the Southeast direction.



Naruse hook-length formulas

Theorem

(Naruse ’14, Morales-Pak-Panova ’17)
Number of linear extensions of Pλ/µ is equal to

HLF(λ)
(|λ| − |µ|)!

(|λ|)!

∑
︸︷︷︸
excited
diagrams

∏

x∈B
hλ(x)

︸ ︷︷ ︸
black
cells

.



Naruse hook-length formulas

7 6

5

7

5 2

7
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7 6

3

4 2

3

HLF(λ)
(12− 3)!

(12)!

[
(7)(6)(5) + (7)(5)(2) + (7)(2)(3) +

+ (7)(6)(3) + (4)(2)(3)

]
.



Proof of Olson–Sagan result

y1 x

p4p3p2p1

0 1

P
[
x 4 y1

]
=

The jump probabilities are

pi := P
[
yi 4 x 4 yi+1

]



Proof of Olson–Sagan result
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Proof of Olson–Sagan result
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The jump probabilities are

pi := P
[
yi 4 x 4 yi+1

]



Proof of Olson–Sagan result

x

y4

p4
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0 1

P
[
x 4 y4

]
=

The jump probabilities are

pi := P
[
yi 4 x 4 yi+1

]



Proof of Olson–Sagan result

x

p4p3p2p1

0 1

P
[
x 4 y5

]
=

The jump probabilities are

pi := P
[
yi 4 x 4 yi+1

]



Linial-type argument

Supppose that p1, p2, . . . , p` are all ≤ 1
3 .

p5p4p3p2p1

0 11
3

2
3

P
[
x 4 yi

]
=

Look at when the probability exceeds 1
3 . Then

1

3
≤ P

[
x 4 yi+1

]
≤ 2

3
.



First jump is less than 1
3

We have p1 <
1
3 or p1 >

2
3 , as otherwise

1

3
≤ p1 = P

[
x 4 y2

]
≤ 2

3
.

x
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By symmetry, p1 <
1
3 .

Thus suffices to show p1 ≥ p2 ≥ . . . ≥ p`.
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Skew diagrams enter the scene

Probabilities p1 and p2 are equal to

p1 = P
[
y1 4 x 4 y2

]
=

1 2

p2 = P
[
y2 4 x 4 y3

]
=

1 3

2

We can now use NHLF.
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p1 is greater than p2

7 6
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7 6
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Thus we complete the proof of this theorem.

Theorem
There always exists x , y :

1

3
≤ P

[
x 4 y

]
≤ 2

3
,

for poset Pλ of Young diagram of shape λ.



What we will do next

Previously, we want to find x , y :

1

3
≤ P

[
x 4 y

]
≤ 2

3
,

Now, we want to find x , y :

1

2
≈ P

[
x 4 y

]
≈ 1

2
,



Kahn–Saks Conjecture

Conjecture (Kahn-Saks ’84)
For every finite poset P , there exists x , y :

1

2
− δ(P) ≤ P

[
x 4 y

]
≤ 1

2
+ δ(P) ,

with δ(P)→ 0 as width(P)→∞.

Here width(P) is the largest size of anti-chains in P .

Komlós ’90 proved such a result for posets with
large number of minimal elements.



Our results



First result

Theorem (C.-Pak-Panova ’20+)
There exists C > 0 and x , y :

1

2
− C√

n
≤ P

[
x 4 y

]
≤ 1

2
+

C√
n
,

for poset Pλ of Young diagram of shape λ = λ′n.

λ′ 2λ′ 3λ′



Where is the improvement?

x and y are different from Olson–Sagan.

x

y1
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P
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=



Where is the improvement?

x and y are different from Olson–Sagan.
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Where is the improvement?

x and y are different from Olson–Sagan.
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Where is the improvement?

x and y are different from Olson–Sagan.
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Where is the improvement?

x and y are different from Olson–Sagan.

x

y5

p4p4p3p2p1

0 1

P
[
x 4 y5

]
=



Key steps in the proof
After several asymptotic reductions,

µ λ d

∣∣∣∣P
[
x 4 y

]
− 1

2

∣∣∣∣ ≤ sums of

(
µ1, . . . , µd

)
≈
(
λ1
2
±
√
λ1, . . . ,

λd
2
±
√
λd

)
.

By NHLF, reduces to asymptotic of Schur
polynomials.
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Schur polynomial

Schur polynomial is

sλ(z1, . . . , zd) =
∑

T∈SSYT(λ)
z
t1(T )
1 . . . z td(T )

n ,

summed over semistandard Young tableau.

1 1 1 2

2 2 2

3 3 4

4

z31 z
4
2 z

2
3 z

2
4



Key lemma

Lemma
For d > 0 and z1 > . . . > zd > εz1 > 0 ,

sλ(z1, . . . , zd)

zλ11 . . . zλdd
.

∏

1≤i<j≤d

{
λi − λj + 1 ,

zi
zi − zj

}
,

under some technical conditions .



Back to first result

Theorem (C.-Pak-Panova ’20+)
There exists C > 0 and x , y :

1

2
− C√

n
≤ P

[
x 4 y

]
≤ 1

2
+

C√
n
,

for poset Pλ of Young diagram of shape λ = λ′n.

But we can do better for Catalan posets!
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Catalan posets

n = 2 n = 4 n = 5

1 2 4 7

3 5 6 8

0 1 2 3 4 5 6 7 8

1

2



Second result

Theorem (C.-Pak-Panova ’20+)
There exists C > 0 and x , y :

1

2
− C

n1.25
≤ P

[
x 4 y

]
≤ 1

2
+

C

n1.25
,

For Catalan posets with 2n cells.



How good is this bound?

Exponent of the error for n ≤ 1000.



How to improve to n1.25?

Calculations are done with HLF instead of NHLF.

x

y

n
2n

3
4n

1
2



What is next?

Theorem (C.-Pak-Panova ’20+)
There exists x , y :

1

2
− δ(n) ≤ P

[
x 4 y

]
≤ 1

2
+ δ(n) ,

where δ(n)→ 0 for the poset of Young diagram of
shape λn.

Open Problem
Prove same result for other families of posets, e.g.,
k-dimensional Young diagrams and periodic posets.



THANK YOU!

1 2 4 7 8

3 5 6 9 10
0 1 2 3 4 5 6 7 8 9 10

1

2

x

y

n
2n

3
4

√
n

ArXiv preprints: 2005.08390 and 2005.13686.
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