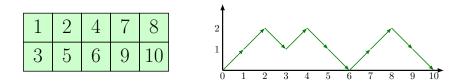
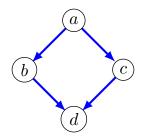
Sorting probability for Young diagrams Swee Hong Chan University of California, Los Angeles Joint work with Igor Pak and Greta Panova

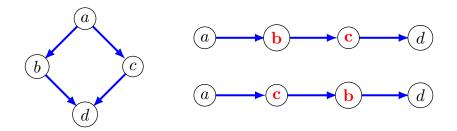


Partially ordered set

A poset P is a set X with a partial order \preccurlyeq on X.

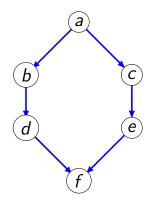


A linear extension L is a complete order of \preccurlyeq .



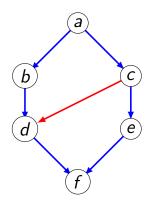
We write e(P) for number of linear extensions of P.

How many steps needed to complete a partial order?

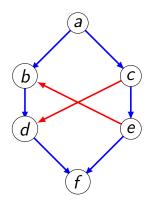


How many steps needed to complete a partial order?

We first compare c and d, and get $c \preccurlyeq d$.

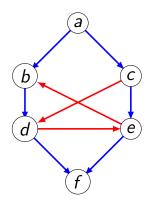


How many steps needed to complete a partial order? We then compare b and e, and get $e \preccurlyeq b$.



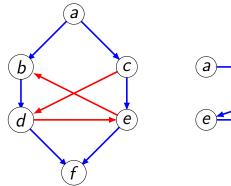
How many steps needed to complete a partial order?

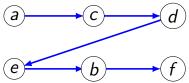
We continue with *d* and *e*, and get $d \preccurlyeq e$.



How many steps needed to complete a partial order?

Completing the partial order took 3 steps.





Strategy to complete the partial order

At each step, compare x and y that satisfies

$$rac{1}{2}-c \leq \mathbf{P}[x \preccurlyeq y] \leq rac{1}{2}+c,$$

where \mathbf{P} is uniform on linear extensions of P.

Strategy to complete the partial order

At each step, compare x and y that satisfies

$$\frac{1}{2} - c \quad \leq \quad \mathbf{P} \big[x \preccurlyeq y \big] \quad \leq \quad \frac{1}{2} + c \,,$$

where \mathbf{P} is uniform on linear extensions of P.

Runtime is at most $|\log_{\frac{1}{2}+c} e(P)|$ steps, optimal up to a multiplicative constant.

 $\frac{1}{3} - \frac{2}{3}$ Conjecture

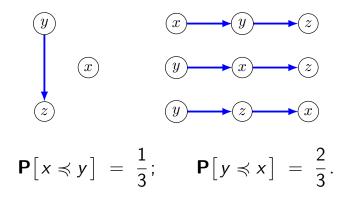
Conjecture (Kislitsyn '68, Fredman '75, Linial '84) For every finite poset that is not completely ordered, there exists x, y:

$$\frac{1}{3} \leq \mathbf{P}[x \preccurlyeq y] \leq \frac{2}{3}$$

Quote (Brightwell-Felsner-Trotter '95) "This problem remains one of the most intriguing problems in the combinatorial theory of posets "

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper, lower bound are achieved by this poset:



What is known so far

Theorem (Kahn-Saks '84) For every finite poset, there always exists x, y: $\frac{3}{11} \leq \mathbf{P}[x \preccurlyeq y] \leq \frac{8}{11},$

roughly between 0.273 and 0.727.

Proof is based on a geometric approach, using mixed-volume inequalities.

What is known so far

Theorem (Brightwell-Felsner-Trotter '95) For every finite poset, there always exists x, y:

$$\frac{5-\sqrt{5}}{10} \leq \mathbf{P}\left[x \preccurlyeq y\right] \leq \frac{5+\sqrt{5}}{10},$$

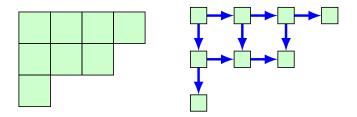
roughly between 0.276 and 0.724.

Upper-lower bound is tight for infinite posets.

Young diagrams

Elements of P_{λ} are cells of Young diagram of shape λ .

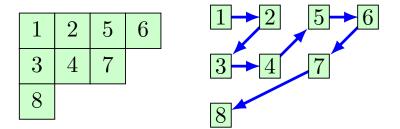
 $x \preccurlyeq y$ if y lies to the Southeast of x.



Young diagram of shape $\lambda = (4, 3, 1)$

Young diagrams

Linear extensions of P_{λ} correspond to standard Young tableau of the Young diagram.



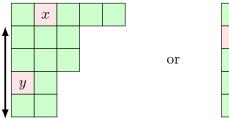
Linear extensions are counted by hook-length formulas.

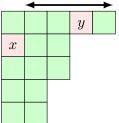
What is known for Young diagrams

Theorem (Olson–Sagan '18) There always exists x, y:

$$\frac{1}{3} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{2}{3},$$

for posets of Young diagrams.





What is known for Young diagrams

Theorem (Olson–Sagan '18) There always exists x, y:

$$\frac{1}{3} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{2}{3},$$

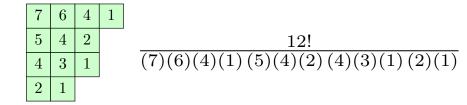
for posets of Young diagrams.

We sketch an alternative proof for Young diagrams using Naruse hook-length formulas.

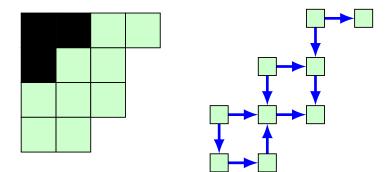
Hook-length formulas

Number of linear extensions of P_{λ} is equal to

$$\mathsf{HLF}(\lambda) = \frac{(|\lambda|)!}{\prod h_{\lambda}(x)}.$$



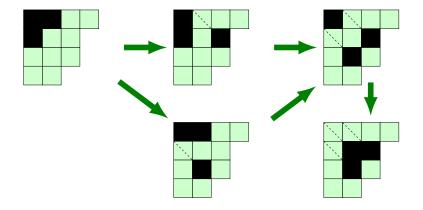
Skew Young diagrams



Skew Young diagram of shape λ/μ , $\lambda = (5, 3, 3, 1)$ and $\mu = (2, 1)$.

Excited diagrams

Black boxes can move on the Southeast direction.

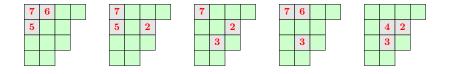


Naruse hook-length formulas

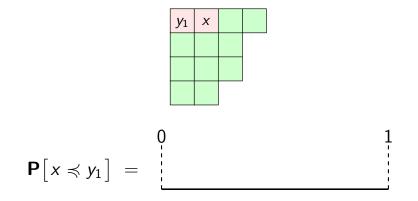
Theorem (Naruse '14, Morales-Pak-Panova '17) Number of linear extensions of $P_{\lambda/\mu}$ is equal to

$$\mathsf{HLF}(\lambda) \frac{(|\lambda| - |\mu|)!}{(|\lambda|)!} \underbrace{\sum_{\substack{\mathsf{excited} \\ \mathsf{diagrams}}} \prod_{\substack{x \in B \\ \mathsf{black} \\ \mathsf{cells}}} h_{\lambda}(x) }_{\mathsf{black}}.$$

Naruse hook-length formulas

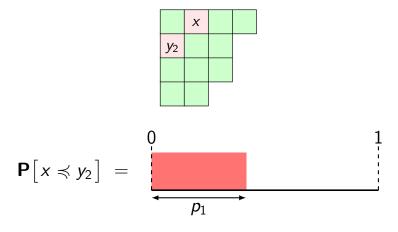


$$\begin{aligned} \mathsf{HLF}(\lambda) \frac{(12-3)!}{(12)!} \left[(7)(6)(5) + (7)(5)(2) + (7)(2)(3) \right. \\ &+ (7)(6)(3) + (4)(2)(3) \right]. \end{aligned}$$



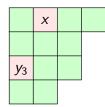
The jump probabilities are

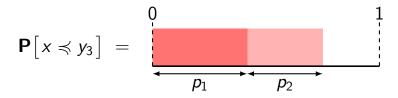
$$p_i := \mathbf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$



The jump probabilities are

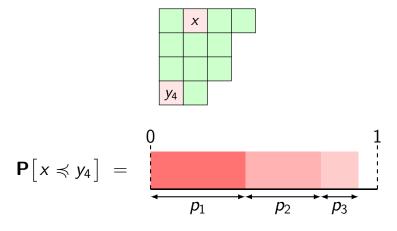
$$p_i := \mathbf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$





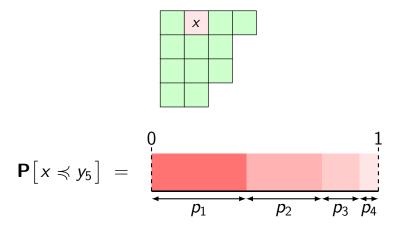
The jump probabilities are

$$p_i := \mathbf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$



The jump probabilities are

$$p_i := \mathbf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

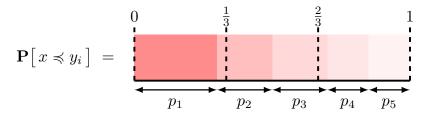


The jump probabilities are

$$p_i := \mathbf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

Linial-type argument

Suppose that p_1, p_2, \ldots, p_ℓ are all $\leq \frac{1}{3}$.



Look at when the probability exceeds $\frac{1}{3}$. Then

$$\frac{1}{3} \leq \mathbf{P} \big[x \preccurlyeq y_{i+1} \big] \leq \frac{2}{3}.$$

First jump is less than $\frac{1}{3}$ We have $p_1 < \frac{1}{3}$ or $p_1 > \frac{2}{3}$, as otherwise $\frac{1}{3} \le p_1 = \mathbf{P}[x \preccurlyeq y_2] \le \frac{2}{3}$.

<u>y</u>2

By symmetry, $p_1 < \frac{1}{3}$.

First jump is less than $\frac{1}{3}$ We have $p_1 < \frac{1}{3}$ or $p_1 > \frac{2}{3}$, as otherwise $\frac{1}{3} \leq p_1 = \mathbf{P} \big[x \preccurlyeq y_2 \big] \leq \frac{2}{3}.$ x y_2

By symmetry, $p_1 < \frac{1}{3}$.

Thus suffices to show $p_1 \ge p_2 \ge \ldots \ge p_\ell$.

Skew diagrams enter the scene

Probabilities p_1 and p_2 are equal to

$$p_1 = \mathbf{P} \big[y_1 \preccurlyeq x \preccurlyeq y_2 \big] =$$

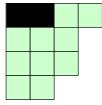
$$p_2 = \mathbf{P}[y_2 \preccurlyeq x \preccurlyeq y_3] =$$

1	3	
2		

Skew diagrams enter the scene

Probabilities p_1 and p_2 are equal to

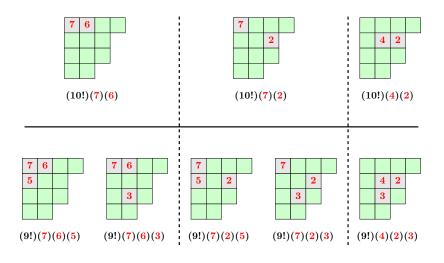
$$p_1 = \mathbf{P} \big[y_1 \preccurlyeq x \preccurlyeq y_2 \big] =$$



$$p_2 = \mathbf{P} \big[y_2 \preccurlyeq x \preccurlyeq y_3 \big] =$$

We can now use **NHLF**.

p_1 is greater than p_2



Thus we complete the proof of this theorem.

Theorem

There always exists x, y:

$$\frac{1}{3} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{2}{3},$$

for poset P_{λ} of Young diagram of shape λ .

What we will do next

Previously, we want to find x, y:

$$\frac{1}{3} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{2}{3},$$

Now, we want to find x, y:

$$\frac{1}{2} \approx \mathbf{P}[x \preccurlyeq y] \approx \frac{1}{2},$$

Kahn–Saks Conjecture

Conjecture (Kahn-Saks '84) For every finite poset P, there exists x, y:

$$\frac{1}{2} - \delta(P) \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{1}{2} + \delta(P),$$

with $\delta(P) \to 0$ as width $(P) \to \infty$.

Here width(P) is the largest size of anti-chains in P.

Komlós '90 proved such a result for posets with large number of minimal elements.

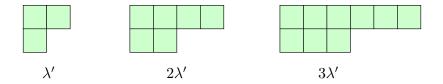
Our results

First result

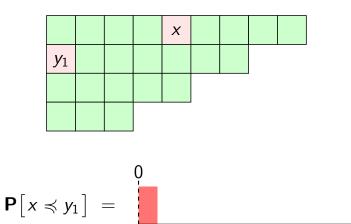
Theorem (C.-Pak-Panova '20+) There exists C > 0 and x, y:

$$\frac{1}{2} - \frac{C}{\sqrt{n}} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{1}{2} + \frac{C}{\sqrt{n}},$$

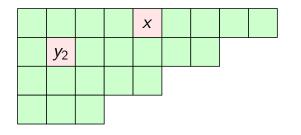
for poset P_{λ} of Young diagram of shape $\lambda = \lambda' n$.



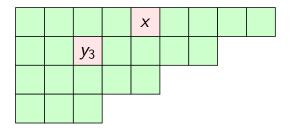
x and y are different from Olson–Sagan.



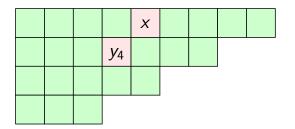
 $\overrightarrow{p_1}$



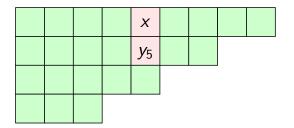
$$\mathbf{P}[x \preccurlyeq y_2] = \bigcup_{\substack{p_1 \neq p_2 \\ p_1 \neq p_2}}^{0} 1$$



$$\mathbf{P}[x \preccurlyeq y_3] = \underbrace{\begin{array}{c} 0 \\ p_1 \\ p_2 \\ p_3 \end{array}}_{p_3} 1$$



$$\mathbf{P}[x \preccurlyeq y_4] = \underbrace{\begin{array}{c} 0 \\ p_1 \\ p_2 \end{array}}_{p_1 \\ p_2 \\ p_3 \\ p_4 \end{array}} \underbrace{\begin{array}{c} 1 \\ p_4 \\$$



$$\mathbf{P}[x \preccurlyeq y_5] = \begin{matrix} 0 & 1 \\ p_1 & p_2 & p_3 \end{matrix}$$

Key steps in the proof

After several asymptotic reductions,

$$\left| \mathbf{P} \left[x \preccurlyeq y \right] - \frac{1}{2} \right| \leq \text{ sums of } \left| \begin{array}{c} \mu & \lambda \\ \mu & \lambda \\ \mu & \lambda \end{array} \right| d$$
$$(\mu_1, \dots, \mu_d) \approx \left(\frac{\lambda_1}{2} \pm \sqrt{\lambda_1}, \dots, \frac{\lambda_d}{2} \pm \sqrt{\lambda_d} \right).$$

Key steps in the proof

After several asymptotic reductions,

$$\left| \mathbf{P} \left[x \preccurlyeq y \right] - \frac{1}{2} \right| \leq \text{ sums of } \mu \lambda$$

$$(\mu_1,\ldots,\mu_d) \approx \left(\frac{\lambda_1}{2} \pm \sqrt{\lambda_1},\ldots,\frac{\lambda_d}{2} \pm \sqrt{\lambda_d}\right).$$

By NHLF, reduces to asymptotic of Schur polynomials.

Schur polynomial

Schur polynomial is

$$s_{\lambda}(z_1,\ldots,z_d) = \sum_{T \in SSYT(\lambda)} z_1^{t_1(T)} \ldots z_n^{t_d(T)},$$

summed over semistandard Young tableau.

Key lemma

Lemma For d > 0 and $z_1 > \ldots > z_d > \varepsilon z_1 > 0$, $\frac{s_{\lambda}(z_1, \ldots, z_d)}{z_1^{\lambda_1} \ldots z_d^{\lambda_d}} \lesssim \prod_{1 \le i < j \le d} \left\{ \lambda_i - \lambda_j + 1, \frac{z_i}{z_i - z_j} \right\}$,

under some technical conditions.

Back to first result

Theorem (C.-Pak-Panova '20+) There exists C > 0 and x, y:

$$\frac{1}{2} - \frac{C}{\sqrt{n}} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{1}{2} + \frac{C}{\sqrt{n}},$$

for poset P_{λ} of Young diagram of shape $\lambda = \lambda' n$.

Back to first result

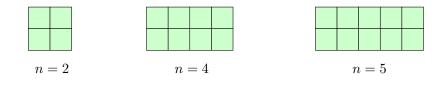
Theorem (C.-Pak-Panova '20+) There exists C > 0 and x, y:

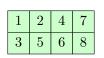
$$\frac{1}{2} - \frac{C}{\sqrt{n}} \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{1}{2} + \frac{C}{\sqrt{n}},$$

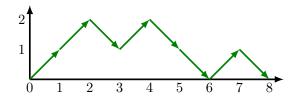
for poset P_{λ} of Young diagram of shape $\lambda = \lambda' n$.

But we can do better for Catalan posets!

Catalan posets





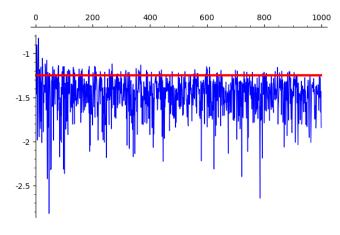


Theorem (C.-Pak-Panova '20+) There exists C > 0 and x, y:

$$\frac{1}{2} - \frac{C}{n^{1.25}} \leq \mathbf{P} \left[x \preccurlyeq y \right] \leq \frac{1}{2} + \frac{C}{n^{1.25}},$$

For Catalan posets with 2n cells.

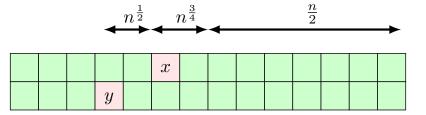
How good is this bound?



Exponent of the error for $n \leq 1000$.

How to improve to $n^{1.25}$?

Calculations are done with **HLF** instead of **NHLF**.



What is next?

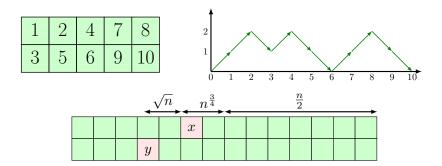
Theorem (C.-Pak-Panova '20+) There exists x, y:

$$\frac{1}{2} - \delta(n) \leq \mathbf{P} \big[x \preccurlyeq y \big] \leq \frac{1}{2} + \delta(n),$$

where $\delta(n) \rightarrow 0$ for the poset of Young diagram of shape λn .

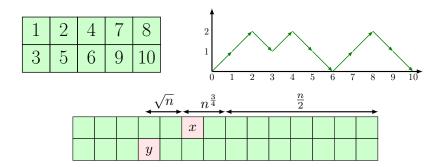
Open Problem

Prove same result for other families of posets, e.g., k-dimensional Young diagrams and periodic posets.



ArXiv preprints: 2005.08390 and 2005.13686. Webpage: http://math.ucla.edu/~sweehong/

THANK YOU!



ArXiv preprints: 2005.08390 and 2005.13686. Webpage: http://math.ucla.edu/~sweehong/