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Partially ordered set

A poset P is a set X with a partial order < on X.




Linear extension

A linear extension L is a complete order of
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We write e(P) for number of linear extensions

of P.



How many steps needed to complete a partial order?
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How many steps needed to complete a partial order?

We first compare ¢ and d, and get ¢ <X d.
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How many steps needed to complete a partial order?

We then compare b and e, and get e < b.




How many steps needed to complete a partial order?

We continue with d and e, and get d < e.




How many steps needed to complete a partial order?

Completing the partial order took 3 steps.




Strategy to complete the partial order

At each step, compare x and y that satisfies

1
E_C < P[xsy} < =+c,

where P is uniform on linear extensions of P.



Strategy to complete the partial order

At each step, compare x and y that satisfies

1
E_C < P[x#y} < =-+c,

where P is uniform on linear extensions of P.

Runtime is at most | log: .. e(P)| steps, optimal up
to a multiplicative constant.
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Conjecture
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Conjecture (Kislitsyn '68, Fredman '75, Linial '84)

For every finite poset that is not completely
ordered, there exists x, y:

1 2
3 < P[Xﬁ)/} < 3

Quote (Brightwell-Felsner-Trotter '95)

“This problem remains one of the most intriguing
problems in the combinatorial theory of posets "




Why s and 27

The upper,lower bound are achieved by this poset:



What is known so far

Theorem (Kahn-Saks '84)

For every finite poset, there always exists x, y:

3 8
S < < =
11— - 11

roughly between 0.273 and 0.727.

P[x<y]

Proof is based on a geometric approach, using
mixed-volume inequalities.



What is known so far

Theorem (Brightwell-Felsner-Trotter '95)

For every finite poset, there always exists x, y:
5-V5  _ 5+5
10 - - 10
roughly between 0.276 and 0.724.

P[x<y]

Upper-lower bound is tight for infinite posets.



Young diagrams

Elements of P, are cells of Young diagram of shape .

x <y if y lies to the Southeast of x.

Young diagram of shape A = (4,3,1)



Young diagrams

Linear extensions of P, correspond to standard
Young tableau of the Young diagram.

Linear extensions are counted by hook-length
formulas.



What is known for Young diagrams
Theorem (Olson-Sagan '18)

There always exists x, y:

1 2
- < Plx< < =,
3 = Plxsyl = 3
for posets of Young diagrams.
-
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What is known for Young diagrams
Theorem (Olson-Sagan '18)

There always exists x, y:

Y < P[Xﬁy] S %7

for posets of Young diagrams.

We sketch an alternative proof for Young diagrams
using Naruse hook-length formulas.



Hook-length formulas

Number of linear extensions of P, is equal to
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Skew Young diagrams

?*D

Skew Young diagram of shape A/,
A=(5,3,3,1) and p = (2,1).



Excited diagrams

Black boxes can move on the Southeast direction.




Naruse hook-length formulas

Theorem
(Naruse '14, Morales-Pak-Panova '17)

Number of linear extensions of P, is equal to
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Naruse hook-length formulas
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Proof of Olson—Sagan result

ni|x

Plxsn] =

The jump probabilities are

pi = Plyi < x < yis1]



Proof of Olson—Sagan result

X

Y2

The jump probabilities are

pi = Plyi < x < yis1]



Proof of Olson—Sagan result

X

y3

< L

P1 P2
The jump probabilities are

pi = Plyi < x < yis1]
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Proof of Olson—Sagan result

The jump probabilities are

Pi

X
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P[Yi I X = Yi+1]
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Proof of Olson—Sagan result

X

p2
The jump probabilities are

pi = Plyi < x < yis1]




Linial-type argument
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Supppose that pi, po, ..., p; are all <

Ple<y] =
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Look at when the probability exceeds % Then

1 2
= < Plx=xymn] < 3



1

First jump is less than 3

We have p; < % or p; > % as otherwise

L

2
< p =Plxxy] < 3
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Y2

By symmetry, p; < %



1

First jump is less than 3

We have p; < % or p; > % as otherwise

L

2
< p =Plxxy] < 3

=) | |

Y2

By symmetry, p; < %

Thus suffices to show p; > p, > ... > pp.



Skew diagrams enter the scene

Probabilities p; and p, are equal to

1

pp=Plnsxxy] =

pp = Plysx=xy] =




Skew diagrams enter the scene

Probabilities p; and p, are equal to

pp=Plnsxxy] =

p2: r

We can now use NHLF.



p1 is greater than p,
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Thus we complete the proof of this theorem.

Theorem
There always exists x, y:
1 2
- < Pix< < =,
3 = Plesyl = 3
for poset Py of Young diagram of shape .




What we will do next

Previously, we want to find x, y:

1
Now, we want to find x, y:
1 ~ P[x#y] ~ %,



Kahn-Saks Conjecture
Conjecture (Kahn-Saks '84)

For every finite poset P, there exists x,y:

%_5(/3) < Plxxy] < %+5(P),

with §(P) — 0 as width(P) — oo.

Here width(P) is the largest size of anti-chains in P.

Komlés "90 proved such a result for posets with
large number of minimal elements.



Our results



First result

Theorem (C.-Pak-Panova '20+)
There exists C > 0 and x, y:

1 C
2 Un < Plx<xy] <

for poset P, of Young diagram of shape A = \'n.
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Where is the improvement?

x and y are different from Olson-Sagan.

n




Where is the improvement?

x and y are different from Olson-Sagan.

Y2

Hlb



Where is the improvement?

x and y are different from Olson-Sagan.

y3




Where is the improvement?

x and y are different from Olson-Sagan.

Ya




Where is the improvement?

x and y are different from Olson-Sagan.

Y5




Key steps in the proof
After several asymptotic reductions,
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Key steps in the proof
After several asymptotic reductions,

<  sums of 0 A\ d

(b1, ) & <);i if)

By NHLF, reduces to asymptotic of Schur
polynomials.



Schur polynomial

Schur polynomial is

s\(z1,. .., 24) = Z zltl(T)...zn

TESSYT())

summed over semistandard Young tableau.
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Key lemma

Lemma
Ford >0and z; > ... > zy > ez, >0,

S)\(Zl, Ce ,Zd) Zj
TR H {)\i_)\j+1’2i—zj}’

Z1 -4y 1<i<j<d

under some technical conditions.




Back to first result

Theorem (C.-Pak-Panova '20+)
There exists C > 0 and x, y:

1
2 Un < Plxxy] <

for poset P, of Young diagram of shape A\ = \'n.




Back to first result

Theorem (C.-Pak-Panova '20+)
There exists C > 0 and x, y:

1
2 Un < Plxxy] <

for poset P, of Young diagram of shape A\ = \'n.
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But we can do better for Catalan posets!



Catalan posets




Second result

Theorem (C.-Pak-Panova '20+)
There exists C > 0 and x, y:

1 C

5w < Plxsyl

N
|
+

For Catalan posets with 2n cells.




How good is this bound?
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Exponent of the error for n < 1000.



How to improve to n2°?

Calculations are done with HLF instead of NHLF.
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What is next?

Theorem (C.-Pak-Panova '20+)

There exists x, y:

1 1
Lo < Plxsy] € Ledlm).
where §(n) — 0 for the poset of Young diagram of
shape \n.

Open Problem

Prove same result for other families of posets, e.g.,
k-dimensional Young diagrams and periodic posets.
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