Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan (UCLA)

joint with Igor Pak

What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if $a_k^2 \geq a_{k+1} a_{k-1}$ $(1 \leq k < n)$.

Equivalently,

$$\log a_k \ge \frac{\log a_{k+1} + \log a_{k-1}}{2}$$
 $(1 \le k < n).$

Example: binomial coefficients

$$a_k = \binom{n}{k}$$
 $k = 0, 1, \ldots, n$.

This sequence is log-concave because

$$\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1} \binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),$$

which is greater than 1.

Example: permutations with k inversions

 $a_k = \text{number of } \pi \in S_n \text{ with } k \text{ inversions},$ where inversion of π is pair i < j s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \le k \le \binom{n}{2}} a_k x^k = (1+x) \dots (1+x+\dots+x^{n-1})$$

is a product of log-concave polynomials.

measures, posets, random walks.

Log-concavity appears in many objects:

algebras, matroids, mixed volumes,

Log-concavity appears in many objects:

algebras, matroids, mixed volumes, measures, posets, random walks

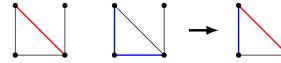
Today we focus on matroids and posets.

Matroids

Matroid \mathcal{M} is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$,

• $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

• If $S, T \in \mathcal{I}$ and |S| < |T|, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.



Examples: Matroids

Graphical matroids

- X = edges of a graph G,
- \mathcal{I} = forests in G.

Realizable matroids

- $X = \text{ finite set of vectors over field } \mathbb{F},$
- \bullet $\mathcal{I} =$ sets of linearly independent vectors.

Mason's Conjecture (1972)

For every matroid and $k \geq 1$,

(1)
$$I_k^2 > I_{k+1} I_{k-1}$$
;

(2)
$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1};$$

(3)
$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

 I_k is number of ind. sets of size k, and n = |X|.

Why
$$(1+\frac{1}{k})(1+\frac{1}{n-k})$$
?

Mason (3) is equivalent to ultra/binomial log-concavity,

$$\frac{{I_k}^2}{\binom{n}{k}^2} \geq \frac{I_{k+1}}{\binom{n}{k+1}} \frac{I_{k-1}}{\binom{n}{k-1}}.$$

Equality occurs **if** every (k+1)-subset is independent.

Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz '18)

For every matroid and $k \ge 1$,

$$I_k^2 \geq I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for matroids.

Solution to Mason (2)

Theorem (Huh-Schröter-Wang '18)

For every matroid and $k \ge 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for correlation bound on matroids.

Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)

For every matroid and $k \ge 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.

Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)

For every matroid and $k \ge 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Theorem (Murai-Nagaoka-Yazawa '21)

Equality occurs if and only if every (k + 1)-subset is independent.

Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Warmup: graphical matroids refinement

Corollary (C.-Pak)

For graphical matroid of simple connected graph

$$G = (V, E)$$
 that is not tree, and $k = |V| - 2$,

$$(I_k)^2 \geq \frac{3}{2} \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1},$$

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

$$\frac{3}{2} \geq 1 + \frac{1}{n-k} = 1 + \frac{1}{|E|-|V|+2}.$$

Comparison with Mason (3)

Our bound gives

$$\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq \frac{3}{2}$$
 when $|E| - |V| \to \infty$,

Meanwhile, Mason (3) bound only gives

$$\frac{(I_k)^2}{I_{k+1}\,I_{k-1}} \geq 1$$
 when $|E|-|V| \to \infty$.

Our bound is better numerically and asymptotically.

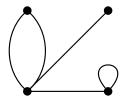
Parallel classes of matroid \mathfrak{M}

Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$.

Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$.

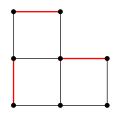
Parallel class = equivalence class of \sim .

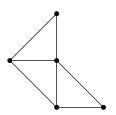


Matroid contraction

Contraction of $S \in \mathcal{I}$ is matroid \mathcal{M}_S with

$$X_S = X \setminus S, \qquad \mathcal{I}_S = \{T \setminus S : S \subseteq T\}.$$



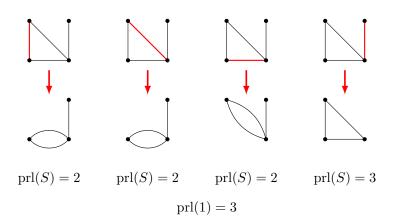


 $prl(S) := number of parallel classes of <math>M_S$

Parallel number

The k-parallel number is

$$\operatorname{prl}(k) := \max\{\operatorname{prl}(S) \mid S \in \mathcal{I} \text{ with } |S| = k\}.$$



Refinement for Mason (3)

Theorem 1 (C.-Pak)

For every matroid and k > 1,

$${I_k}^2 \ \geq \ \left(1 + rac{1}{k}
ight) \left(1 + rac{1}{\mathsf{prl}(k-1) + 1}
ight) I_{k+1} \, I_{k-1}.$$

This refines Mason (3),

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1},$$

since

$$\operatorname{prl}(k-1) \leq n-k+1.$$

When is equality achieved?

- When every (k+1)-subset is independent, prl(k-1) = n-k+1.
- Graphical matroid when G is a cycle, prl(k-1) = 3.
- Full realizable matroids over finite field \mathbb{F}_q , $\operatorname{prl}(k-1) = \frac{n}{a^{k-1}} 1$.
- (k, m, n)-Steiner system matroid, $prl(k-1) = \frac{n-k+1}{m-k+1}.$

Equality conditions

Theorem 2 (C.-Pak)

For every matroid and $k \ge 1$,

$$I_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\operatorname{prl}(k-1) + 1}\right) I_{k+1} I_{k-1}$$
if and only if

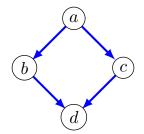
for every
$$S \in \mathcal{I}$$
 with $|S| = k - 1$,

- S has prl(k-1) parallel classes; and
- Every parallel class of S has same size.

Stanley's poset inequality

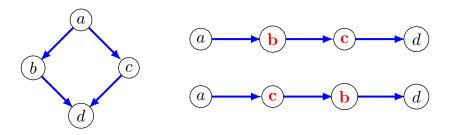
Partially ordered sets

A poset P is a set X with a partial order \prec on X.



Linear extension

A linear extension L is a complete order of \prec .



We write L(x) = k if x is k-th smallest in L.

Stanley's inequality

Fix $z \in P$.

 N_k is number of linear extensions with L(z) = k.

Theorem (Stanley '81)

For every poset and $k \ge 1$,

$$N_k^2 \geq N_{k+1} N_{k-1}$$

Proof used Aleksandrov-Fenchel inequality for mixed volumes.

When is equality achieved?

Theorem (Shenfeld-van Handel)

Suppose $N_k > 0$. Then

$$N_k^2 = N_{k+1} N_{k-1}$$

if and only if

$$N_k = N_{k+1} = N_{k-1}.$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes.

Our contribution

We give new combinatorial proof for Stanley's ineq. and extend to weighted version.

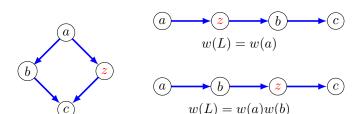
Order-reversing weight

A weight $w: X \to \mathbb{R}_{>0}$ is order-reversing if

$$w(x) \ge w(y)$$
 whenever $x \prec y$.

Weight of linear extension L is

$$w(L) := \prod_{L(x) < L(z)} w(x).$$



Weighted Stanley's inequality

Fix $z \in P$.

 $N_{w,k}$ is w-weight of linear extensions with L(z) = k.

Theorem 3 (C. Pak)

For every poset and $k \ge 1$,

$$N_{w,k}^2 \geq N_{w,k+1} N_{w,k-1}$$
.

When is equality achieved?

Theorem 4 (C.-Pak)

Suppose $N_{w,k} > 0$. Then

$$N_{w,k}^2 = N_{w,k+1} N_{w,k-1}$$

if and only if

for every linear extension L with L(z) = k,

$$w(L^{-1}(k+1)) = w(L^{-1}(k-1)) =: s,$$

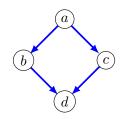
and

$$\frac{N_{w,k}}{g^k} = \frac{N_{w,k+1}}{g^{k+1}} = \frac{N_{w,k-1}}{g^{k-1}}.$$

Poset antimatroids

Feasible words of a poset

A word $\alpha \in X^*$ is feasible if no repeating elements, and y occurs in α and $x \prec y \Rightarrow x$ occurs in α before y.

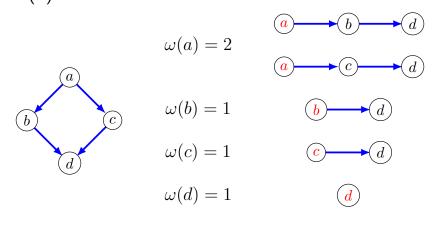


Feasible: \emptyset , a, ab, ac, abc, acb, abcd.

Not feasible: aa, bc, ba.

Chain weight

For $x \in P$, chain weight is $\omega(x) = \text{number of maximal chains that starts with } x$.



Weight of word α is $\omega(\alpha) := \omega(\alpha_1) \dots \omega(\alpha_\ell)$.

Log-concave inequality for poset antimatroids

 $F_{\omega,k}$ is sum of ω -weight of feasible words of length k.

Theorem 5 (C.-Pak)

For every poset and $k \ge 1$,

$$|F_{\omega,k}|^2 \geq |F_{\omega,k+1}|F_{\omega,k-1}|$$

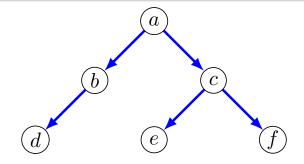
When is equality achieved?

Theorem 6 (C.-Pak)

Equality occurs for k = 1, ..., height(P) - 1

if and only if

Hasse diagram of P is a forest where every leaf is of the same level.



Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

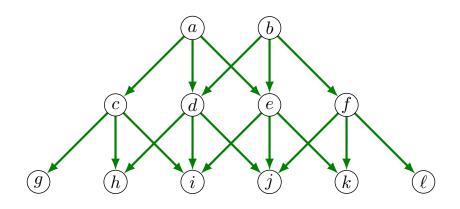
Combinatorial atlas

The strategy

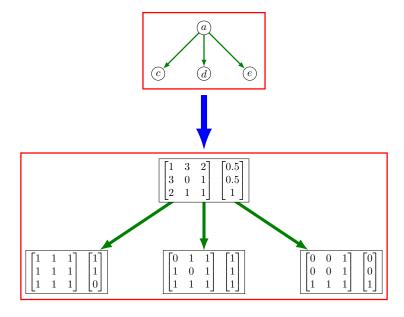
Input: Acyclic digraph A, where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M;
- nonnegative *r*-vector *h*.

Combinatorial atlas: example



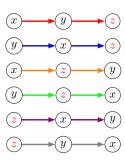
Combinatorial atlas: example (zoomed in)



Combinatorial atlas: Example Stanley's Inequality

Poset
$$=$$
 x y y

x_{min}	y_{min}	x_{max}	y_{max}	
L 0	1	0	1]	x_{min}
1	0	1	0	y_{min}
0	1	0	1	x_{max}
1	0	1	0	y_{max}



The strategy

Input: Acyclic digraph A, where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M;
- A nonnegative r-vector h.

Goal: Show every *M* has hyperbolic inequality.

Hyperbolic inequality

M has hyperbolic inequality property if

$$\langle x, My \rangle^2 \ge \langle x, Mx \rangle \langle y, My \rangle,$$

for every $\mathbf{x} \in \mathbb{R}^r$, $\mathbf{y} \in \mathbb{R}^r_{>0}$.

Note: This property already known to be important in Lorentzian polynomials and Bochner's method proof of Aleksandrov-Fenchel inequality.

How to get log-concave inequalities?

Assume a_{k-1}, a_k, a_{k+1} can be computed by

$$a_k = \langle \mathbf{g}, \mathbf{M} \mathbf{h} \rangle, \ a_{k+1} = \langle \mathbf{g}, \mathbf{M} \mathbf{g} \rangle, \ a_{k-1} = \langle \mathbf{h}, \mathbf{M} \mathbf{h} \rangle,$$
 for specific $\mathbf{M}, \mathbf{g}, \mathbf{h}$ in the atlas.

$$a_k^2 \ge a_{k+1}a_{k-1}$$
 (log-concave ineq.)

The strategy

Input: Acyclic digraph A, where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M,
- A nonnegative r-vector h.

Goal: Show every *M* has hyperbolic inequality.

Method: Verify three conditions:

- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.

Irreducibility condition

- Matrix M associated to v is irreducible when restricted to its support;
- Vector h is associated to v is a positive vector.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

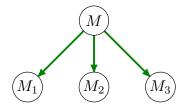
Inheritance condition

The *i*-th edge $e=(v,v_i)$ of v is associated with linear map $T_i:\mathbb{R}^r \to \mathbb{R}^r$

such that, for every $\pmb{x} \in \mathbb{R}^r$,

i-th coordinate of $\mathbf{M}\mathbf{x} = \langle T_i \mathbf{x}, \mathbf{M}_i T_i \mathbf{h} \rangle$,

where M and h are associated to v, while M_i is associated to v_i .



Subdivergence condition

For every $\mathbf{x} \in \mathbb{R}^r$,

$$\sum_{i=1}^r h_i \langle T_i \mathbf{x}, \mathbf{M}_i T_i \mathbf{x} \rangle \geq \langle \mathbf{x}, \mathbf{M} \mathbf{x} \rangle,$$

where $h_i = i$ -th coordinate of h.

Note: Often hardest condition to check, usually done through injective arguments.

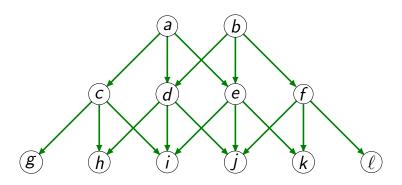
Note: Equality occurs for matroids.

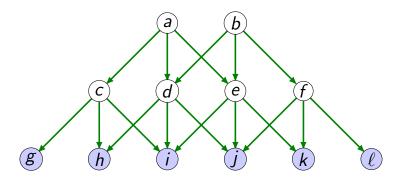
Bottom-to-top principle for inequalities

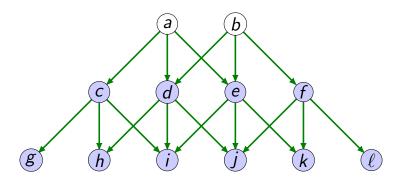
Proposition

Assume irreducibility, inheritance, subdivergence. If M_1, \ldots, M_r has hyperbolic inequality property, then so does M.

Bottom-to-top principle reduces **Goal** to checking hyperbolic inequality only for sink vertices, which are usually easy to check.









How about equalities?

The strategy

Input:

- An acyclic digraph $\mathcal{A} := (\mathcal{V}, \mathcal{E})$ satisfying previous conditions;
- Vectors $oldsymbol{g},oldsymbol{h}\in\mathbb{R}_{>0}$;

Goal: Show "every" **M** has hyperbolic equality,

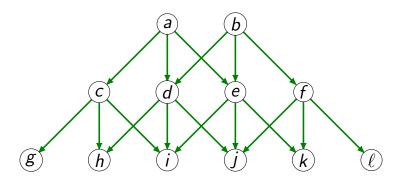
$$\langle \mathbf{g}, \mathbf{M} \mathbf{h} \rangle^2 = \langle \mathbf{g}, \mathbf{M} \mathbf{g} \rangle \langle \mathbf{h}, \mathbf{M} \mathbf{h} \rangle.$$

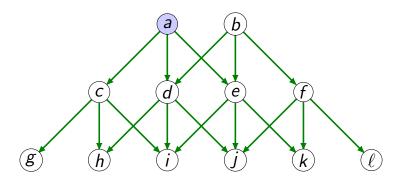
Top-to-bottom principle for equalities

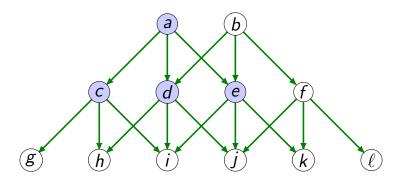
Proposition

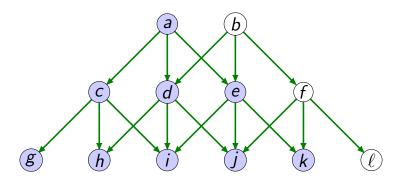
Assume regularity condition. If M has hyperbolic equality property, then so do M_1, \ldots, M_r .

Top-to-bottom principle expands hyperbolic equality to sink vertices, which usually gives combinatorial characterizations.









Conclusion

Problem: Log-concave inequalities and equalities. **Strategy**:

- Build a combinatorial atlas;
- Verify the required conditions;
- Use hyperbolic inequality property to derive log-concave inequalities;
- Use hyperbolic equality to derive log-concave equalities.

THANK YOU!

Preprint to appear soon in your nearest arXiv server.

Webpage: http://math.ucla.edu/~sweehong/

Email: sweehong@math.ucla.edu