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The complete flag variety F¢(C") is the set of complete flags of
nested vector subspaces

OZ\/QC\/lCVQC-"CVn:Cn,

where dim V; = /.

Standard flag 8F: C C C C =C*

Since F¢(C") has transitive action of GL,, we can identify it with
GL,(C)/Stab(8F) = GL,(C)/U, where U = upper triangular
matrices.
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Bruhat decomposition: GL, = [[,,cs LwU
Schubert cells: X, = LwU/U C F¢(C")

Schubert varieties: X,, = X2 give a complex cell decomposition
of F(CM).

Schubert classes [X,] form a basis for the cohomology ring

H*(FUC™) 2 Zlxa, - - -, Xl /Z[x1, - - x0T

Lascoux and Schiitzenberger (1982) introduced a “nice” choice for
polynomial representatives of these classes:

[Xw] — Sw(x1,...,x%n),a Schubert polynomial.
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No cleanup: G,-6, =) ¢/, 6y & [Xu] - [Xv] = >, cy[Xw]

Stability: For w € §,, 6, = GL(W) where ¢ : S, — S,41 is the
natural inclusion.

Monomial positivity:
S14503 = X12X22 + X12X2X3 + x12X§ + X1X22X3 + xlxzx-f + X22x§

Oliver Pechenik University of Waterloo Grobner geometry of Schubert polynomials through ice



e Start with the longest permutation in S,
— . =1 _n-2
wo=nn—1...1 Guwo(X) := X7 "Xx3 “... Xn—1

® The rest are defined recursively by divided difference

operators:
f—si-f o ,
Oif = ————— and Gy (x) := 0iSy(x) if w(i)> w(i+1)
Xi — Xi+1
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The diagonal matrices D ~ GL,(C)/U preserving the Schubert
varieties.

D-equivariant Schubert classes [X,|p € Hf(F¢(C")).

There are also double Schubert polynomials, which are defined
by the same operators, with the initial condition

Su(xiy) = ] (i =)
i+j<n

Sw(x;y) represents [Xy]p.
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A pipe dream is a tiling of the n x n grid with the four tiles so
that there are n pipes which

® start at the left edge of the grid,
e end at the top edge,
® pairwise cross at most once.

We also require that only EI appear on the main anti-diagonal
and only I:' appear below.
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Write PD(w) for the set of pipe dreams which trace out the
permutation w.

J

1 P55
2 b—
3

4 U

If a B tile sits in row i and column j, assign it the weight (x; — yj).

The weight of a pipe dream is the product of the weights of its
crossing tiles.

wt(P) =
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Theorem (Fomin-Kirillov 1996, Knutson-Miller 2005)
The double Schubert polynomial &,,(x;y) is the weighted sum

Guwlxy)= > wt(P)

PePD(w)

G2143 = (x1 —y1)(x3 = y1) + (x1 —y1) (2 — y2) + (x1 — y1) (1 — ¥3)-

J ) J J
fer ﬁJJrJ 5
NE s j jrf*
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Z11 Z12 "t Zin
21 22 22

The group D x D acts on Mat(n) = _ . . by
Znl Zn2 " Zpn

(d,0) - M := dMs—L.

Since Mat(n) is contractible,

HDXD(Mat(n)) = HDXD(pt) = O(DXD) = Z[Xb ey Xny Y1y e 7yn]'

Whenever X € Mat(n) is stable under the action of D x D, it has
a class [X]pxp € Hpxp(Mat(n)) = Z[x, y].
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The matrix Schubert variety (Fulton 1992) X,, = LwU C Mat(n)
is defined by rank conditions on maximal northwest submatrices.

Theorem (Knutson-Miller 2005)

The D x D-equivariant cohomology class of a matrix Schubert
variety is the corresponding double Schubert polynomial:

[)~<W]D><D = GW(X; Y)

Another goal of Knutson-Miller was to exhibit a geometrically

natural explanation for the pipe dream formula for Schubert
polynomials.
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Axioms for equivariant cohomology:
For B C nx n, let Cg be the coordinate subspace (z; : (i,j) ¢ B).

® Hpxp(Cg) = [1ijes(xi — ¥)-
e if X = U,’ll X;, is a reduced scheme, then

Hpxp(X) = Z Hpxp(X;),
J

where the sum is over X; with dim X; = dim X.

e If in_ X is a Grobner degeneration of X, then
Hpxp(X) = Hpxp(in<X).
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Choose a term order < so that we have a initial term in_f for
every f € Cl[z].

Write in,S = (insf : f € §).

We write in< X for the vanishing locus of in_/(X), where /(X) is
the ideal of all polynomials vanishing on X. in X is a Grobner
degeneration of X.

Since in</(X) is generated by monomials, in X is a union of
coordinate subspaces. But which ones?
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If I =(S), then

in</ 2 in<5.

Definition (Buchberger 1965)
S is a Grobner basis for the ideal / if / = (S) and in</ = in.S.

A (anti)diagonal term order on C|z] is one where the initial term
of any minor is the product of its main (anti)diagonal.
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Take the Schubert determinantal ideal

) 7211 Z12 713
1(X2143) = ( z11, | 221 200 23
731 732 733

and degenerate with respect to an antidiagonal term order. It
turns out these two polynomials are a Grébner basis, so:

in<a/(;<2143) = (z11, Z13222231)

= (211, z31) N (211, 222) N (211, 213)-
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Take the Schubert determinantal ideal

) 7211 Z12 713
1(X2143) = ( z11, | 221 200 23
731 732 733

and degenerate with respect to an antidiagonal term order. It
turns out these two polynomials are a Grébner basis, so:

in<a/(;<2143) = (z11, Z13222231)

= (211, z31) N (211, 222) N (211, 213)-

J) ) J) J)
Jrer fJJrJ j
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Theorem (Knutson-Miller 2005)

With respect to an antidiagonal term order, the ‘obvious’
generators for I(X,,) are a Grébner basis.

Theorem (Knutson-Miller 2005)

The initial scheme of X,, with respect to an antidiagonal term
order is a union of coordinate subspaces indexed by PD(w).

in<a()~<W) = U CBE(CP)
PePD(w
Hence,

Su(xy) = Z HDXD(CEE(JD)) Z wt(P).

PePD(w) PePD(w)
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In an unpublished manuscript “Chern and Yang through ice,”
Lascoux (2002) gave a different combinatorial formula for Schubert
polynomials in terms of square ice.
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In an unpublished manuscript “Chern and Yang through ice,”
Lascoux (2002) gave a different combinatorial formula for Schubert
polynomials in terms of square ice.
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Let's use different notation...
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A bumpless pipe dream (Lam-Lee-Shimozono 2018) is a tiling of
the n x n grid with the six tiles pictured above so that there are n
pipes which

© start at the right edge of the grid,

© end at the bottom edge, and

© pairwise cross at most one time.
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Write BPD(w) for the set of bumpless pipe dreams of the
permutation w.
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If a O tile sits in row i and column j, assign it the weight (x; — yj).
The weight of a bumpless pipe dream is the product of the weights
of its [ tiles.

1.
X2

X4

{ 176
Yi Y2 y3 Ya Y5

wt(P) =
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Theorem (Lam-Lee-Shimozono 2018, Lascoux 2002, Weigandt
2020)

The double Schubert polynomial S,(x;y) is the partition function

Gulxy)= > wt(P)

PEBPD(w)
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G2143 = (x1 —y1)(x3 = y3) + (x1 —y1) (2 — y1) + (x1 — y1) (X1 — y2)-

N
N
N
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G2143 = (x1 —y1)(x3 = y3) + (x1 —y1) (2 — y1) + (x1 — y1) (X1 — y2)-

( f ( { (

2143 = (x1 —y1) (X3 — y1) + (x1 — y1)(x2 — y2) + (X1 — y1)(x1 — y3).
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Take the Schubert determinantal ideal

) 7211 Z12 713
I(X2143) = ( 211, | 221 200 23
731 732 733

and degenerate with respect to a diagonal term order.

in<d(/2143) = <lea 212221233> = <2117 Z33> N <2117 Z21> N <le> 212>-
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Take the Schubert determinantal ideal

) 7211 Z12 713
I(X2143) = ( 211, | 221 200 23
731 732 733

and degenerate with respect to a diagonal term order.

in<d(/2143) = <lea 212221233> = <2117 Z33> N <211a Z21> N <le> 212>-
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Conjecture (Hamaker-P-Weigandt 2020)
If in. (Xy) is reduced, then

ing, (;(W) =
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A permutation is vexillary if it avoids the pattern 2143.

Theorem (Knutson-Miller-Yong 2009)

With respect to a diagonal term order, the ‘obvious’ defining
equations for 1(X,,) are a Grobner basis < w is vexillary.

Theorem (Knutson-Miller-Yong 2009, Weigandt 2020)

The conjecture holds for w vexillary.

( ( ( (T (T
1 ~+ 1 | 1 — | A (-Jr
aas e Redliass easi Pealliass
(11 (11 |(I (11 |(I
2[2 12 J1]2| |1]1]| |1]1]
3 3 3 2
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e Take the ‘obvious’ defining equations for /(X,,). Some of
them may be single variables z;. Throw away all other terms
that contain them. These are the CDG generators
(Conca-De Negri-Gorla 2015).

e A permutation is predominant if its Lehmer code is of the
form A0™¢ for some partition A and m, ¢ € N.

Theorem (Hamaker-P-Weigandt 2020)

If w is predominant, then in_ (X, ) is reduced and CDG and the
main conjecture holds for w.

;

]
J
a b
| C |

(] (111
w = 42153 : fannn!
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Theorem (Conj: Hamaker-P-Weigandt 2020, Proved: Klein 2020)

WiNth respect to any diagonal term order, the CDG generators for
I(Xw) are Grébner < w avoids the eight patterns 13254, 21543,
214635, 215364, 241635, 315264, 215634, 4261735 in S;.

Corollary (Hamaker-P-Weigandt 2020, Klein 2020)

If Sy is a multiplicity-free sum of monomials, then the CDG
generators for 1(X,,) are diagonal Grébner.

By comparing with the pattern conditions for multiplicity-freeness
of Fink-Mészaros-St. Dizier (2020). O
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Given a scheme X and a reduced irreducible variety Y, write
multy (X) for the multiplicity of X along Y.

Equivariant cohomology satisfies:

Hpxp(X) = Zmultxj(X) HD><D(X_/')7
j
where the sum is over the top-dimensional components of X.

Example: X = Spec(Clx, y]/{x%y)). Then, mult, .,is(X) = 1 and
multy. 5is(X) = 2.
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Write Dup(n) for the set of permutations in S, which have
multiple BPDs with the same [ tiles.

( 4
1 _) 'd (
)
( (] (
r——) (——’ = r J =
'd ) 'd (__/ 4
( C
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Write Dup(n) for the set of permutations in S, which have
multiple BPDs with the same [ tiles.

( 4
1 _) 'd (
)
( (] (
r——) (——’ = r J =
'd ) 'd (__/ 4
( C

Dup(6) = {214365, 321654}

Computations of Heck-Weigandt suggest this phenomenon is also
governed by pattern avoidance, but we don't know all the patterns
(includes the Billey-Pawlowski (2014) multiplicity-free patterns).
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Conjecture (Hamaker-P-Weigandt 2020)

For all (set-theoretic) components Cg of in_ (Xy),
multc, (iny, (Xw)) = #{P € BPD(w) : O(P) = B}.

So bumpless pipe dreams for w with multiplicity correspond to
components of the diagonal Grébner degeneration in_ (X,,) with
multiplicity.
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Thank you!!
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