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The complete flag variety

The complete flag variety Fℓ(Cn) is the set of complete flags of
nested vector subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn,

where dimVi = i .

Example

Standard flag SF: ⊂ ⊂ ⊂ ⊂ = C4

Since Fℓ(Cn) has transitive action of GLn, we can identify it with
GLn(C)/Stab(SF) = GLn(C)/U, where U = upper triangular
matrices.
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Schubert varieties

Bruhat decomposition: GLn =


w∈Sn LwU

Schubert cells: X ◦
w = LwU/U ⊂ Fℓ(Cn)

Schubert varieties: Xw = X ◦
w give a complex cell decomposition

of F ℓ(Cn).

Schubert classes [Xw ] form a basis for the cohomology ring

H(Fℓ(Cn)) ∼= Z[x1, . . . , xn]/Z[x1, . . . , xn]Sn+ .

Lascoux and Schützenberger (1982) introduced a “nice” choice for
polynomial representatives of these classes:

[Xw ] → Sw (x1, . . . , xn), a Schubert polynomial.
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Schubert polynomials are nice

No cleanup: Su ·Sv =


w cwu,vSw ⇔ [Xu] · [Xv ] =


w cwu,v [Xw ]

Stability: For w ∈ Sn, Sw = Sι(w) where ι : Sn → Sn+1 is the
natural inclusion.

Monomial positivity:
S14523 = x21x

2
2 + x21x2x3 + x21x

2
3 + x1x

2
2x3 + x1x2x

2
3 + x22x

2
3
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The definition of Sw(x)

Start with the longest permutation in Sn

w0 = n n − 1 . . . 1 Sw0(x) := xn−1
1 xn−2

2 . . . xn−1

The rest are defined recursively by divided difference
operators:

∂i f :=
f − si · f
xi − xi+1

and Swsi (x) := ∂iSw (x) if w(i) > w(i+1)
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Double Schubert polynomials

The diagonal matrices D ↷ GLn(C)/U preserving the Schubert
varieties.

D-equivariant Schubert classes [Xw ]D ∈ H
D(Fℓ(Cn)).

There are also double Schubert polynomials, which are defined
by the same operators, with the initial condition

Sw0(x; y) :=


i+j≤n

(xi − yj).

Sw (x; y) represents [Xw ]D .
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Pipe dreams

A pipe dream is a tiling of the n × n grid with the four tiles so
that there are n pipes which

start at the left edge of the grid,

end at the top edge,

pairwise cross at most once.

We also require that only appear on the main anti-diagonal

and only appear below.
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The permutation of a pipe dream

Write PD(w) for the set of pipe dreams which trace out the
permutation w .

1

2

3

4

If a ⊞ tile sits in row i and column j , assign it the weight (xi − yj).
The weight of a pipe dream is the product of the weights of its
crossing tiles.

wt(P) =
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Pipe dreams for double Schuberts

Theorem (Fomin-Kirillov 1996, Knutson-Miller 2005)

The double Schubert polynomial Sw (x; y) is the weighted sum

Sw (x; y) =


P∈PD(w)

wt(P).

S2143 = (x1− y1)(x3− y1)+ (x1− y1)(x2− y2)+ (x1− y1)(x1− y3).
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Equivariant cohomology

The group D × D acts on Mat(n) =










z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zn1 zn2 · · · znn









by

(d , δ) ·M := dMδ−1.

Since Mat(n) is contractible,

HD×D(Mat(n)) = HD×D(pt) = O(d×d) = Z[x1, . . . , xn, y1, . . . , yn].

Whenever X ∈ Mat(n) is stable under the action of D × D, it has
a class [X ]D×D ∈ HD×D(Mat(n)) = Z[x, y].
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Matrix Schubert varieties

The matrix Schubert variety (Fulton 1992) X̃w = LwU ⊆ Mat(n)
is defined by rank conditions on maximal northwest submatrices.

Theorem (Knutson-Miller 2005)

The D × D-equivariant cohomology class of a matrix Schubert
variety is the corresponding double Schubert polynomial:

[X̃w ]D×D = Sw (x; y).

Another goal of Knutson-Miller was to exhibit a geometrically
natural explanation for the pipe dream formula for Schubert
polynomials.
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Computing equivariant classes

Axioms for equivariant cohomology:
For B ⊂ n×n, let CB be the coordinate subspace 〈zij : (i , j) /∈ B〉.

HD×D(CB) =


(i ,j)∈B(xi − yj).

if X =
m

i=1 Xi , is a reduced scheme, then

HD×D(X ) =


j

HD×D(Xj),

where the sum is over Xj with dimXj = dimX .

If in≺X is a Gröbner degeneration of X , then
HD×D(X ) = HD×D(in≺X ).
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Gröbner degeneration

Choose a term order ≺ so that we have a initial term in≺f for
every f ∈ C[z].

Write in≺S = 〈in≺f : f ∈ S〉.

We write in≺X for the vanishing locus of in≺I (X ), where I (X ) is
the ideal of all polynomials vanishing on X . in≺X is a Gröbner
degeneration of X .

Since in≺I (X ) is generated by monomials, in≺X is a union of
coordinate subspaces. But which ones?
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Gröbner bases

If I = 〈S〉, then
in≺I ⊇ in≺S .

Definition (Buchberger 1965)

S is a Gröbner basis for the ideal I if I = 〈S〉 and in≺I = in≺S .

A (anti)diagonal term order on C[z] is one where the initial term
of any minor is the product of its main (anti)diagonal.
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Example

Take the Schubert determinantal ideal

I (X̃2143) =


z11,



z11 z12 z13
z21 z22 z23
z31 z32 z33





and degenerate with respect to an antidiagonal term order. It
turns out these two polynomials are a Gröbner basis, so:

in≺a I (X̃2143) = 〈z11, z13z22z31〉
= 〈z11, z31〉 ∩ 〈z11, z22〉 ∩ 〈z11, z13〉.
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Pipe dreams are natural

Theorem (Knutson-Miller 2005)

With respect to an antidiagonal term order, the ‘obvious’
generators for I (X̃w ) are a Gröbner basis.

Theorem (Knutson-Miller 2005)

The initial scheme of X̃w with respect to an antidiagonal term
order is a union of coordinate subspaces indexed by PD(w).

in≺a(X̃w ) =


P∈PD(w)

C⊞(P).

Hence,

Sw (x; y) =


P∈PD(w)

HD×D(C⊞(P)) =


P∈PD(w)

wt(P).
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Lascoux’s ice formula

In an unpublished manuscript “Chern and Yang through ice,”
Lascoux (2002) gave a different combinatorial formula for Schubert
polynomials in terms of square ice.
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Why ice?

Do not consume!
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What is Lascoux’s formula?

Let’s use different notation...
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From ice to bumpless pipe dreams
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Bumpless pipe dreams

A bumpless pipe dream (Lam-Lee-Shimozono 2018) is a tiling of
the n × n grid with the six tiles pictured above so that there are n
pipes which

1 start at the right edge of the grid,

2 end at the bottom edge, and

3 pairwise cross at most one time.
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The permutation of a bumpless pipe dream

1 2 3 4 5

Write BPD(w) for the set of bumpless pipe dreams of the
permutation w .
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The weight of a bumpless pipe dream

If a □ tile sits in row i and column j , assign it the weight (xi − yj).
The weight of a bumpless pipe dream is the product of the weights
of its □ tiles.

y1 y2 y3 y4 y5

x1

x2

x3

x4

x5

wt(P) =
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Another Schubert formula

Theorem (Lam-Lee-Shimozono 2018, Lascoux 2002, Weigandt
2020)

The double Schubert polynomial Sw (x; y) is the partition function

Sw (x; y) =


P∈BPD(w)

wt(P).
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Example

S2143 = (x1− y1)(x3− y3)+ (x1− y1)(x2− y1)+ (x1− y1)(x1− y2).

S2143 = (x1− y1)(x3− y1)+ (x1− y1)(x2− y2)+ (x1− y1)(x1− y3).
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A different degeneration

Take the Schubert determinantal ideal

I (X̃2143) =


z11,



z11 z12 z13
z21 z22 z23
z31 z32 z33





and degenerate with respect to a diagonal term order.

in≺d
(I2143) = 〈z11, z12z21z33〉 = 〈z11, z33〉 ∩ 〈z11, z21〉 ∩ 〈z11, z12〉.
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First conjecture

Conjecture (Hamaker-P-Weigandt 2020)

If in≺d
(Xw ) is reduced, then

in≺d
(X̃w ) =



P∈BPD(w)

C□(P).
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True for vexillary permutations

A permutation is vexillary if it avoids the pattern 2143.

Theorem (Knutson-Miller-Yong 2009)

With respect to a diagonal term order, the ‘obvious’ defining
equations for I (X̃w ) are a Gröbner basis ⇔ w is vexillary.

Theorem (Knutson-Miller-Yong 2009, Weigandt 2020)

The conjecture holds for w vexillary.

2 2

3

1 2

3

1 2

2

1 1

3

1 1

2
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Different generators

Take the ‘obvious’ defining equations for I (X̃w ). Some of
them may be single variables zij . Throw away all other terms
that contain them. These are the CDG generators
(Conca-De Negri-Gorla 2015).

A permutation is predominant if its Lehmer code is of the
form λ0mℓ for some partition λ and m, ℓ ∈ N.

Theorem (Hamaker-P-Weigandt 2020)

If w is predominant, then in≺d
(Xw ) is reduced and CDG and the

main conjecture holds for w.

w = 42153 : .
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CDG permutations

Theorem (Conj: Hamaker-P-Weigandt 2020, Proved: Klein 2020)

With respect to any diagonal term order, the CDG generators for
I (X̃w ) are Gröbner ⇔ w avoids the eight patterns 13254, 21543,
214635, 215364, 241635, 315264, 215634, 4261735 in S7.

Corollary (Hamaker-P-Weigandt 2020, Klein 2020)

If Sw is a multiplicity-free sum of monomials, then the CDG
generators for I (X̃w ) are diagonal Gröbner.

Proof.

By comparing with the pattern conditions for multiplicity-freeness
of Fink-Mészáros-St. Dizier (2020).
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Non-reduced degenerations

Given a scheme X and a reduced irreducible variety Y , write
multY (X ) for the multiplicity of X along Y .

Equivariant cohomology satisfies:

HD×D(X ) =


j

multXj
(X )HD×D(Xj),

where the sum is over the top-dimensional components of X .

Example: X = Spec(C[x , y ]/〈x2y〉). Then, multx-axis(X ) = 1 and
multy-axis(X ) = 2.
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Duplicitous permutations

Write Dup(n) for the set of permutations in Sn which have
multiple BPDs with the same □ tiles.

Dup(6) = {214365, 321654}.

Computations of Heck-Weigandt suggest this phenomenon is also
governed by pattern avoidance, but we don’t know all the patterns
(includes the Billey-Pawlowski (2014) multiplicity-free patterns).
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The full conjecture

Conjecture (Hamaker-P-Weigandt 2020)

For all (set-theoretic) components CB of in≺d
(Xw ),

multCB
(in≺d

(Xw )) = #{P ∈ BPD(w) : □(P) = B}.

So bumpless pipe dreams for w with multiplicity correspond to
components of the diagonal Gröbner degeneration in≺d

(Xw ) with
multiplicity.
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Thanks!

Thank you!!
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