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Grassmannian background

Fix 0 < k < n. [n] := {1, . . . , n} and
([n]
k

)
:= {I ⊂ [n] : |I | = k}.

• Grk,n := {V ⊂ Cn : dimV = k}.
• V ∈ Grk,n  full rank k × n matrix A whose rows span V

• Plücker coordinates: I ∈
([n]
k

)
, ∆I (V ) := max’l minor of A in cols I .

Satisfy Plücker relations like

∆Sik∆Sjl = ∆Sij∆Skl + ∆Sil∆Sjk .

• Postnikov, Lusztig: The totally nonnegative (TNN) Grassmannian

Gr≥0k,n := {V ∈ Grk,n : ∆I (V ) ≥ 0 for all I ∈
([n]
k

)
}.
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The combinatorics: positroids

V ∈ Grk,n. The matroid of V is MV := {I ∈
([n]
k

)
: ∆I (V ) 6= 0}. If V is

TNN, MV is a positroid.

Examples: uniform matroid
([n]
k

)
, Schubert matroids, lattice path matroids.

Indexed by a menagerie of combinatorial objects.
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The geometry: positroid varieties

Open positroid variety (Knutson-Lam-Speyer, Lusztig, Rietsch):

Π◦M : = {V ∈ Grk,n : smallest positroid containing MV is M}

Examples:

Gr◦k,n = Grk,n \ {V : ∆12···k∆23···k+1 · · ·∆n1···k−1 = 0}
Π◦J = {V : ∆J is lex min nonzero Plücker} \ {V : ∆J∆J2 · · ·∆Jn = 0}

(open Schubert variety)
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Π◦M : = {V ∈ Grk,n : smallest positroid containing MV is M}

Π◦M is cut out of Grk,n by the equations

∆I = 0 for I /∈M
∆I1 , . . . ,∆In 6= 0

so C[Π◦M] is C[Grk,n]/〈∆I : I /∈M〉 localized at ∆I1 , . . . ,∆In .
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Π◦M is cut out of Grk,n by the equations

∆I = 0 for I /∈M
∆I1 , . . . ,∆In 6= 0

so C[Π◦M] is C[Grk,n]/〈∆I : I /∈M〉 localized at ∆I1 , . . . ,∆In .

Positive part: Π◦M ∩ Gr≥0k,n = {V ∈ Π◦M : ∆I > 0 for I ∈M}.
It is a cell (Postnikov, Rietsch).

Also, many short “subtraction-free” relations hold in C[Π◦M], which give
you information about positivity.
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Brief overview of cluster algebras

Introduced by Fomin and Zelevinsky (2000). Commutative rings with
distinguished generators, defined recursively.

Ingredients: Start with coordinate ring C[V ].

• Initial seed Σ ⊂ C[V ] of cluster variables labeling a directed graph.

∆24

∆12

∆34

∆23∆14 ∆13

∆12

∆34

∆23∆14

• Mutation: local move to get new seed. Cluster variable x is
exchanged for new cluster variable x ′ satisfying x · x ′ = A + B.

• Some variables are frozen, so can’t mutate them.

Cluster algebra A(Σ) := C[frozen variables±1][cluster variables].
C[V ] is a cluster algebra if C[V ] = A(Σ) for some seed Σ.
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What to remember about cluster algebras

• Cluster monomials (monomials in elements of a seed, inverses of
frozens allowed) are part of a basis for A(Σ) with positive structure
constants (Gross-Hacking-Keel-Kontsevich).

• All cluster variables can be written as subtraction-free rational
expressions in initial cluster variables. So initial seed is positive =⇒
all cluster variables positive.

Basic problems: Show C[V ] is a cluster algebra. Then explicitly describe
as many cluster monomials (equivalently, seeds) as possible.

M. Sherman-Bennett (UC Berkeley) Plabic graph clusters UCLA Combinatorics Seminar 6 / 15



What to remember about cluster algebras

• Cluster monomials (monomials in elements of a seed, inverses of
frozens allowed) are part of a basis for A(Σ) with positive structure
constants (Gross-Hacking-Keel-Kontsevich).

• All cluster variables can be written as subtraction-free rational
expressions in initial cluster variables. So initial seed is positive =⇒
all cluster variables positive.

Basic problems: Show C[V ] is a cluster algebra. Then explicitly describe
as many cluster monomials (equivalently, seeds) as possible.

M. Sherman-Bennett (UC Berkeley) Plabic graph clusters UCLA Combinatorics Seminar 6 / 15



Grassmannian case

Theorem (Scott ’06)

C[Gr◦k,n] is a cluster algebra and Postnikov’s plabic graphs for Gr◦k,n give
seeds (consisting entirely of Plücker coordinates).
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Grassmannian case

Theorem (Scott ’06)

C[Gr◦k,n] is a cluster algebra and Postnikov’s plabic graphs for Gr◦k,n give
seeds (consisting entirely of Plücker coordinates).

Conjecture (Muller-Speyer ’16)

Analog of Scott’s result should hold for open positroid varieties Π◦M.
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Cluster algebra structure for positroid varieties

Theorem (Serhiyenko-SB-Williams ’19)

Let Π◦J be an open Schubert variety. Then plabic graphs for Π◦J give seeds
for a cluster algebra structure on C[Π◦J ].

Key tool: work of Leclerc on Richardson varieties in Fln =⇒ C[Π◦J ] a
cluster algebra.

Theorem (Galashin-Lam ’19)

C[Π◦M] is a cluster algebra, and plabic graphs for Π◦M give seeds.

Cluster algebra structure picks out the “right” positive part:
{V ∈ Π◦M : all cluster variables are positive on V } = Π◦M ∩ Gr≥0k,n .
Plabic graphs give positivity tests.
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A bit more on seeds from plabic graphs

A plabic graph G of type (k, n): planar, embedded in disk, boundary
vertices 1, . . . , n going clockwise, internal vertices colored black and white.

To get a seed ΣG :

• Directed graph is dual graph
(boundary faces are frozen).
• For cluster: use trips to label

faces.
• For trip i  j , put the target

j in faces to left of trip.

Every face labeled by k-elt
subset, which we interpret as
Plücker coordinate.

 

Trip permutation µ tells you which positroid variety G is a plabic graph for.
All seeds ΣG , where G has trip permutation µ, are related by mutation.
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faces.
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Puzzles for Π◦µ

For Π◦µ 6= Gr◦k,n:

1 Many nonzero PI do not show up in any plabic seed.

2 ∃ seeds whose cluster variables are PI ·(Laurent monomial in frozens),
but don’t know combinatorial “source”.

3 No sequence of mutations between ΣS
G and ΣG ! Two convention

choices for plabic seeds give different cluster algebras A(ΣG ) and
A(ΣS

G ).
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Main results

Theorem (Fraser–SB ’20)

C[Π◦µ] can be identified with many different cluster algebras (with different
frozen and cluster variables), with seeds given by certain relabeled plabic
graphs with trip permutation µ.

 

M. Sherman-Bennett (UC Berkeley) Plabic graph clusters UCLA Combinatorics Seminar 11 / 15



Relabeled plabic graphs

G a plabic graph of type (k , n), v ∈ Sn. The relabeled plabic graph G v is
obtained from G by applying v to its boundary vertex labels.

Trip permutation, face labels, seed of G v computed according to its
boundary labels.

Note: The “source” seed ΣS
G is the same as Σ

G (µ−1) .
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Main results

Theorem (Fraser–SB ’20)

C[Π◦µ] can be identified with many different cluster algebras (with different
frozen and cluster variables), with seeds given by certain relabeled plabic
graphs with trip permutation µ.

Theorem (Fraser–SB ’20)

For open Schubert varieties Π◦J , these cluster algebras are “the same up to
frozens” and have same cluster monomials. The relabeled graph seeds can
be rescaled by frozens to get seeds in A(ΣG ).
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Main results

Theorem (Fraser–SB ’20)

C[Π◦µ] can be identified with many different cluster algebras (with different
frozen and cluster variables), with seeds given by certain relabeled plabic
graphs with trip permutation µ.

Theorem (Fraser–SB ’20)

For open Schubert varieties Π◦J , these cluster algebras are “the same up to
frozens” and have same cluster monomials. The relabeled graph seeds can
be rescaled by frozens to get seeds in A(ΣG ).

Conjecture (Fraser–SB ’20)

Above theorem holds for arbitrary Π◦µ.

Partial results for Π◦µ, including that relabeled plabic graphs give positivity
tests.
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Summary & questions

Call the cluster structure on C[Π◦µ] given by usual plabic graphs the
standard cluster structure.

Takeaway: Relabeled plabic graphs with trip perm µ give many additional
explicit seeds in the standard cluster structure, with cluster variables
PI ·(Laurent mono. in frozens).

Questions:

• Let Σ be a seed in standard cluster structure on C[Π◦µ] with cluster
variables {PI ·(Laurent mono. in frozens)}. Does Σ come from
rescaling a relabeled plabic graph seed?

• Are all Plücker coordinates in C[Π◦µ] cluster monomials? From a
relabeled plabic graph seed?

• Relabeled versions of other combinatorial objects indexing positroids?

• Characterization of relabeled plabic graph seeds?
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Thanks for listening!
arXiv:1902.00807
arXiv:2006.10247
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