# Plabic graphs and cluster structures on positroid varieties

Slides available at www.math.berkeley.edu/~msb

Melissa Sherman-Bennett (UC Berkeley)

joint work with K. Serhiyenko and L. Williams (arXiv:1902.00807) C. Fraser (arXiv:2006.10247)

UCLA Combinatorics Seminar

### Grassmannian background

Fix 
$$0 < k < n$$
.  $[n] := \{1, ..., n\}$  and  $\binom{[n]}{k} := \{I \subset [n] : |I| = k\}$ .  
•  $Gr_{k,n} := \{V \subset \mathbb{C}^n : \dim V = k\}$ .

- $V \in Gr_{k,n} \rightsquigarrow$  full rank  $k \times n$  matrix A whose rows span V
- Plücker coordinates:  $I \in {[n] \choose k}$ ,  $\Delta_I(V) := \max' I$  minor of A in cols I. Satisfy Plücker relations like

$$\Delta_{Sik}\Delta_{Sjl}=\Delta_{Sij}\Delta_{Skl}+\Delta_{Sil}\Delta_{Sjk}.$$

### Grassmannian background

Fix 
$$0 < k < n$$
.  $[n] := \{1, ..., n\}$  and  $\binom{[n]}{k} := \{I \subset [n] : |I| = k\}$ .  
•  $Gr_{k,n} := \{V \subset \mathbb{C}^n : \dim V = k\}$ .

- $V \in Gr_{k,n} \rightsquigarrow$  full rank  $k \times n$  matrix A whose rows span V
- Plücker coordinates:  $I \in {[n] \choose k}$ ,  $\Delta_I(V) := \max' I$  minor of A in cols I. Satisfy Plücker relations like

$$\Delta_{Sik}\Delta_{Sjl}=\Delta_{Sij}\Delta_{Skl}+\Delta_{Sil}\Delta_{Sjk}.$$

• Postnikov, Lusztig: The *totally nonnegative* (TNN) Grassmannian  $Gr_{k,n}^{\geq 0} := \{ V \in Gr_{k,n} : \Delta_I(V) \geq 0 \text{ for all } I \in {[n] \choose k} \}.$ 

#### The combinatorics: positroids

 $V \in Gr_{k,n}$ . The matroid of V is  $\mathcal{M}_V := \{I \in {[n] \choose k} : \Delta_I(V) \neq 0\}$ . If V is TNN,  $\mathcal{M}_V$  is a positroid.

Examples: uniform matroid  $\binom{[n]}{k}$ , Schubert matroids, lattice path matroids.

Indexed by a menagerie of combinatorial objects.



#### The geometry: positroid varieties

Open positroid variety (Knutson-Lam-Speyer, Lusztig, Rietsch):

 $\Pi^{\circ}_{\mathcal{M}} := \{ V \in \mathit{Gr}_{k,n} : \text{ smallest positroid containing } \mathcal{M}_{V} \text{ is } \mathcal{M} \}$ 

Examples:

$$Gr_{k,n}^{\circ} = Gr_{k,n} \setminus \{V : \Delta_{12\cdots k} \Delta_{23\cdots k+1} \cdots \Delta_{n1\cdots k-1} = 0\}$$
  
$$\Pi_{J}^{\circ} = \{V : \Delta_{J} \text{ is lex min nonzero Plücker}\} \setminus \{V : \Delta_{J} \Delta_{J_{2}} \cdots \Delta_{J_{n}} = 0\}$$
  
(open Schubert variety)

#### The geometry: positroid varieties

Open positroid variety (Knutson-Lam-Speyer, Lusztig, Rietsch):

 $\Pi^{\circ}_{\mathcal{M}} := \{ V \in \mathit{Gr}_{k,n} : \text{ smallest positroid containing } \mathcal{M}_{V} \text{ is } \mathcal{M} \}$ 

 $\Pi^\circ_{\mathcal{M}}$  is cut out of  $\mathit{Gr}_{k,n}$  by the equations

$$\Delta_I = 0$$
 for  $I \notin \mathcal{M}$   
 $\Delta_{I_1}, \dots, \Delta_{I_n} \neq 0$ 

so  $\mathbb{C}[\Pi^{\circ}_{\mathcal{M}}]$  is  $\mathbb{C}[Gr_{k,n}]/\langle \Delta_{I} : I \notin \mathcal{M} \rangle$  localized at  $\Delta_{I_{1}}, \dots, \Delta_{I_{n}}$ .

### The geometry: positroid varieties

Open positroid variety (Knutson-Lam-Speyer, Lusztig, Rietsch):

 $\Pi^{\circ}_{\mathcal{M}} := \{ V \in \mathit{Gr}_{k,n} : \text{ smallest positroid containing } \mathcal{M}_{V} \text{ is } \mathcal{M} \}$ 

 $\Pi^\circ_{\mathcal{M}}$  is cut out of  $\mathit{Gr}_{k,n}$  by the equations

$$\Delta_I = 0$$
 for  $I \notin \mathcal{M}$   
 $\Delta_{I_1}, \dots, \Delta_{I_n} \neq 0$ 

so  $\mathbb{C}[\Pi^{\circ}_{\mathcal{M}}]$  is  $\mathbb{C}[Gr_{k,n}]/\langle \Delta_{I}: I \notin \mathcal{M} \rangle$  localized at  $\Delta_{I_{1}}, \dots, \Delta_{I_{n}}$ .

Positive part:  $\Pi_{\mathcal{M}}^{\circ} \cap Gr_{k,n}^{\geq 0} = \{ V \in \Pi_{\mathcal{M}}^{\circ} : \Delta_{I} > 0 \text{ for } I \in \mathcal{M} \}.$ It is a cell (Postnikov, Rietsch).

Also, many short "subtraction-free" relations hold in  $\mathbb{C}[\Pi^{\circ}_{\mathcal{M}}]$ , which give you information about positivity.

M. Sherman-Bennett (UC Berkeley)

Introduced by Fomin and Zelevinsky (2000). Commutative rings with distinguished generators, defined recursively.

Introduced by Fomin and Zelevinsky (2000). Commutative rings with distinguished generators, defined recursively. **Ingredients:** Start with coordinate ring  $\mathbb{C}[V]$ .

• Initial seed  $\Sigma \subset \mathbb{C}[V]$  of cluster variables labeling a directed graph.



Introduced by Fomin and Zelevinsky (2000). Commutative rings with distinguished generators, defined recursively. **Ingredients:** Start with coordinate ring  $\mathbb{C}[V]$ .

• Initial seed  $\Sigma \subset \mathbb{C}[V]$  of cluster variables labeling a directed graph.



- *Mutation*: local move to get new seed. Cluster variable x is exchanged for new cluster variable x' satisfying  $x \cdot x' = A + B$ .
- Some variables are *frozen*, so can't mutate them.

Introduced by Fomin and Zelevinsky (2000). Commutative rings with distinguished generators, defined recursively. **Ingredients:** Start with coordinate ring  $\mathbb{C}[V]$ .

• Initial seed  $\Sigma \subset \mathbb{C}[V]$  of cluster variables labeling a directed graph.



- *Mutation*: local move to get new seed. Cluster variable x is exchanged for new cluster variable x' satisfying  $x \cdot x' = A + B$ .
- Some variables are *frozen*, so can't mutate them.

Cluster algebra  $\mathcal{A}(\Sigma) := \mathbb{C}[\text{frozen variables}^{\pm 1}][\text{cluster variables}].$ 

Introduced by Fomin and Zelevinsky (2000). Commutative rings with distinguished generators, defined recursively. **Ingredients:** Start with coordinate ring  $\mathbb{C}[V]$ .

• Initial seed  $\Sigma \subset \mathbb{C}[V]$  of cluster variables labeling a directed graph.



- *Mutation*: local move to get new seed. Cluster variable x is exchanged for new cluster variable x' satisfying  $x \cdot x' = A + B$ .
- Some variables are *frozen*, so can't mutate them.

Cluster algebra  $\mathcal{A}(\Sigma) := \mathbb{C}[\text{frozen variables}^{\pm 1}][\text{cluster variables}].$  $\mathbb{C}[V]$  is a cluster algebra if  $\mathbb{C}[V] = \mathcal{A}(\Sigma)$  for some seed  $\Sigma$ .

- Cluster monomials (monomials in elements of a seed, inverses of frozens allowed) are part of a basis for  $\mathcal{A}(\Sigma)$  with positive structure constants (Gross-Hacking-Keel-Kontsevich).
- All cluster variables can be written as subtraction-free rational expressions in initial cluster variables. So initial seed is positive all cluster variables positive.

- Cluster monomials (monomials in elements of a seed, inverses of frozens allowed) are part of a basis for  $\mathcal{A}(\Sigma)$  with positive structure constants (Gross-Hacking-Keel-Kontsevich).
- All cluster variables can be written as subtraction-free rational expressions in initial cluster variables. So initial seed is positive  $\implies$  all cluster variables positive.

**Basic problems:** Show  $\mathbb{C}[V]$  is a cluster algebra. Then explicitly describe as many cluster monomials (equivalently, seeds) as possible.

#### Theorem (Scott '06)

 $\mathbb{C}[Gr_{k,n}^{\circ}]$  is a cluster algebra and Postnikov's plabic graphs for  $Gr_{k,n}^{\circ}$  give seeds (consisting entirely of Plücker coordinates).



#### Theorem (Scott '06)

 $\mathbb{C}[Gr_{k,n}^{\circ}]$  is a cluster algebra and Postnikov's plabic graphs for  $Gr_{k,n}^{\circ}$  give seeds (consisting entirely of Plücker coordinates).

#### Conjecture (Muller-Speyer '16)

Analog of Scott's result should hold for open positroid varieties  $\Pi^{\circ}_{\mathcal{M}}$ .

#### Theorem (Serhiyenko-SB-Williams '19)

Let  $\Pi_{J}^{\circ}$  be an open Schubert variety. Then plabic graphs for  $\Pi_{J}^{\circ}$  give seeds for a cluster algebra structure on  $\mathbb{C}[\Pi_{J}^{\circ}]$ .

Key tool: work of Leclerc on Richardson varieties in  $Fl_n \implies \mathbb{C}[\Pi_J^\circ]$  a cluster algebra.

#### Theorem (Serhiyenko-SB-Williams '19)

Let  $\Pi_{J}^{\circ}$  be an open Schubert variety. Then plabic graphs for  $\Pi_{J}^{\circ}$  give seeds for a cluster algebra structure on  $\mathbb{C}[\Pi_{J}^{\circ}]$ .

Key tool: work of Leclerc on Richardson varieties in  $Fl_n \implies \mathbb{C}[\Pi_J^\circ]$  a cluster algebra.

Theorem (Galashin-Lam '19)

 $\mathbb{C}[\Pi^{\circ}_{\mathcal{M}}]$  is a cluster algebra, and plabic graphs for  $\Pi^{\circ}_{\mathcal{M}}$  give seeds.

#### Theorem (Serhiyenko-SB-Williams '19)

Let  $\Pi_{J}^{\circ}$  be an open Schubert variety. Then plabic graphs for  $\Pi_{J}^{\circ}$  give seeds for a cluster algebra structure on  $\mathbb{C}[\Pi_{J}^{\circ}]$ .

Key tool: work of Leclerc on Richardson varieties in  $Fl_n \implies \mathbb{C}[\Pi_J^\circ]$  a cluster algebra.

Theorem (Galashin-Lam '19)

 $\mathbb{C}[\Pi^\circ_{\mathcal{M}}]$  is a cluster algebra, and plabic graphs for  $\Pi^\circ_{\mathcal{M}}$  give seeds.

Cluster algebra structure picks out the "right" positive part:  $\{V \in \Pi^{\circ}_{\mathcal{M}} : \text{ all cluster variables are positive on } V\} = \Pi^{\circ}_{\mathcal{M}} \cap Gr^{\geq 0}_{k,n}.$ Plabic graphs give positivity tests.

### A bit more on seeds from plabic graphs

A plabic graph G of type (k, n): planar, embedded in disk, boundary vertices  $1, \ldots, n$  going clockwise, internal vertices colored black and white. To get a seed  $\Sigma_G$ :

- Directed graph is dual graph (boundary faces are frozen).
- For cluster: use *trips* to label faces.
  - For trip *i* → *j*, put the *target j* in faces to left of trip.

Every face labeled by *k*-elt subset, which we interpret as Plücker coordinate.



Trip permutation  $\mu$  tells you which positroid variety G is a plabic graph for. All seeds  $\Sigma_G$ , where G has trip permutation  $\mu$ , are related by mutation.

Plabic graph clusters

9/15

### A bit more on seeds from plabic graphs

A plabic graph G of type (k, n): planar, embedded in disk, boundary vertices  $1, \ldots, n$  going clockwise, internal vertices colored black and white. To get a seed  $\Sigma_G$ :

- Directed graph is dual graph (boundary faces are frozen).
- For cluster: use *trips* to label faces.
  - For trip *i* → *j*, put the *target j* in faces to left of trip.

Every face labeled by *k*-elt subset, which we interpret as Plücker coordinate.



Trip permutation  $\mu$  tells you which positroid variety G is a plabic graph for. All seeds  $\Sigma_G$ , where G has trip permutation  $\mu$ , are related by mutation.

Plabic graph clusters

9/15

### A bit more on seeds from plabic graphs

A plabic graph G of type (k, n): planar, embedded in disk, boundary vertices  $1, \ldots, n$  going clockwise, internal vertices colored black and white. To get a seed  $\Sigma_G$ :

- Directed graph is dual graph (boundary faces are frozen).
- For cluster: use *trips* to label faces.
  - For trip *i* → *j*, put the *target j* in faces to left of trip.

Every face labeled by *k*-elt subset, which we interpret as Plücker coordinate.



Trip permutation  $\mu$  tells you which positroid variety G is a plabic graph for. All seeds  $\Sigma_G$ , where G has trip permutation  $\mu$ , are related by mutation.

Plabic graph clusters

### Puzzles for $\Pi^{\circ}_{\mu}$

- For  $\Pi^{\circ}_{\mu} \neq Gr^{\circ}_{k,n}$ :
  - Many nonzero  $P_I$  do not show up in any plabic seed.
  - ② ∃ seeds whose cluster variables are P<sub>I</sub>·(Laurent monomial in frozens), but don't know combinatorial "source".
  - Solution No sequence of mutations between  $\Sigma_G^S$  and  $\Sigma_G!$  Two convention choices for plabic seeds give different cluster algebras  $\mathcal{A}(\Sigma_G)$  and  $\mathcal{A}(\Sigma_G^S)$ .



#### Theorem (Fraser-SB '20)

 $\mathbb{C}[\Pi_{\mu}^{\circ}]$  can be identified with many different cluster algebras (with different frozen and cluster variables), with seeds given by certain relabeled plabic graphs with trip permutation  $\mu$ .



### Relabeled plabic graphs

*G* a plabic graph of type (k, n),  $v \in S_n$ . The *relabeled plabic graph*  $G^v$  is obtained from *G* by applying *v* to its boundary vertex labels.



Trip permutation, face labels, seed of  $G^{\nu}$  computed according to its boundary labels.

**Note:** The "source" seed  $\Sigma_G^S$  is the same as  $\Sigma_{G^{(\mu^{-1})}}$ .

#### Theorem (Fraser-SB '20)

 $\mathbb{C}[\Pi_{\mu}^{\circ}]$  can be identified with many different cluster algebras (with different frozen and cluster variables), with seeds given by certain relabeled plabic graphs with trip permutation  $\mu$ .

#### Theorem (Fraser-SB '20)

 $\mathbb{C}[\Pi^{\circ}_{\mu}]$  can be identified with many different cluster algebras (with different frozen and cluster variables), with seeds given by certain relabeled plabic graphs with trip permutation  $\mu$ .

#### Theorem (Fraser–SB '20)

For open Schubert varieties  $\Pi_J^\circ$ , these cluster algebras are "the same up to frozens" and have same cluster monomials. The relabeled graph seeds can be rescaled by frozens to get seeds in  $\mathcal{A}(\Sigma_G)$ .



#### Theorem (Fraser-SB '20)

 $\mathbb{C}[\Pi_{\mu}^{\circ}]$  can be identified with many different cluster algebras (with different frozen and cluster variables), with seeds given by certain relabeled plabic graphs with trip permutation  $\mu$ .

#### Theorem (Fraser–SB '20)

For open Schubert varieties  $\Pi_J^\circ$ , these cluster algebras are "the same up to frozens" and have same cluster monomials. The relabeled graph seeds can be rescaled by frozens to get seeds in  $\mathcal{A}(\Sigma_G)$ .

#### Conjecture (Fraser–SB '20)

Above theorem holds for arbitrary  $\Pi^{\circ}_{\mu}$ .

Partial results for  $\Pi_{\mu}^{\circ},$  including that relabeled plabic graphs give positivity tests.

M. Sherman-Bennett (UC Berkeley)

### Summary & questions

Call the cluster structure on  $\mathbb{C}[\Pi_{\mu}^{\circ}]$  given by usual plabic graphs the standard cluster structure.

### Summary & questions

Call the cluster structure on  $\mathbb{C}[\Pi_{\mu}^{\circ}]$  given by usual plabic graphs the standard cluster structure.

**Takeaway:** Relabeled plabic graphs with trip perm  $\mu$  give many additional explicit seeds in the standard cluster structure, with cluster variables  $P_I \cdot (Laurent mono. in frozens).$ 

### Summary & questions

Call the cluster structure on  $\mathbb{C}[\Pi_{\mu}^{\circ}]$  given by usual plabic graphs the standard cluster structure.

**Takeaway:** Relabeled plabic graphs with trip perm  $\mu$  give many additional explicit seeds in the standard cluster structure, with cluster variables  $P_I \cdot (Laurent mono. in frozens)$ .

Questions:

- Let Σ be a seed in standard cluster structure on C[Π<sup>◦</sup><sub>μ</sub>] with cluster variables {P<sub>l</sub>·(Laurent mono. in frozens)}. Does Σ come from rescaling a relabeled plabic graph seed?
- Are all Plücker coordinates in C[Π<sup>o</sup><sub>μ</sub>] cluster monomials? From a relabeled plabic graph seed?
- Relabeled versions of other combinatorial objects indexing positroids?
- Characterization of relabeled plabic graph seeds?

## Thanks for listening!

arXiv:1902.00807 arXiv:2006.10247