Robinson-Schensted correspondence for natural unit interval orders

Dongkwan Kim

Oct 1, 2020

(joint with Pavlo Pylyavskyy)
1. What does the title mean?
2. Motivation
3. \mathcal{P}-Knuth equivalence
4. Ladders and the main theorem
5. \mathcal{P}-Robinson-Schensted algorithm
Outline

1. What does the title mean?
2. Motivation
3. \mathcal{P}-Knuth equivalence
4. Ladders and the main theorem
5. \mathcal{P}-Robinson-Schensted algorithm
Robinson-Schensted correspondence

Robinson-Schensted-Knuth correspondence is a bijection

\[
\{\mathbb{N}\text{-valued matrices}\} \rightarrow \bigsqcup_{\lambda} \text{SSYT}_\lambda \times \text{SSYT}_\lambda
\]

that is usually described in terms of “bumping process”. If we restrict the domain to permutation matrices, then it becomes a bijection

\[
S_n \rightarrow \bigsqcup_{\lambda \vdash n} \text{SYT}_\lambda \times \text{SYT}_\lambda
\]

which is the usual Robinson-Schensted correspondence.
What does the title mean?

Robinson-Schensted correspondence

1

1 1 1 2 2 3 5
2 2 3 3
3 4 6
4

⇒

1 1 1 2 2 3 5
2 2 3 3
3 4 6
4

⇒

1 1 1 1 2 3 5
2 2 2 3
3 4 6
4

⇒

1 1 1 1 2 3 5
2 2 2 3
3 3 6
4

⇒

1 1 1 1 2 3 5
2 2 2 3
3 3 6
4

⇒

1 1 1 1 2 3 5
2 2 2 3
3 3 6
4
Suppose that a partial order \mathcal{P} on $[1, n]$ is given. We assume that

$$a \succ_P b \Rightarrow a > b,$$

i.e. the usual order on $[1, n]$ is a linearization of \mathcal{P}. We write:

- $a \rightarrow_P b$ if a is bigger than b with respect to \mathcal{P},
- $a \dashrightarrow_P b$ if a and b are not comparable in \mathcal{P}, and
- $a \leftarrow_P b$ if $a > b$ and $a \dashrightarrow_P b$.

Definition

We say that \mathcal{P} is a natural unit interval order if for any $a, b, c \in [1, n]$ such that $a \rightarrow_P c$, $a \dashrightarrow_P b$, and $b \dashrightarrow_P c$, we have $a > b > c$.
Natural unit interval orders

If \mathcal{P} is a natural unit interval order on $[1, n]$, then there exist $y_1, y_2, \ldots, y_n \in \mathbb{R}$ such that $y_1 < y_2 < \cdots < y_n$ and $a \rightarrow_{\mathcal{P}} b \iff y_a > y_b + 1$.

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {1};
 \node (b) at (1,0) {2};
 \node (c) at (2,0) {3};
 \node (d) at (3,0) {4};
 \node (e) at (4,0) {5};
 \node (f) at (5,0) {6};

 \draw (a) -- (b);
 \draw (b) -- (c);
 \draw (c) -- (d);
 \draw (d) -- (e);
 \draw (e) -- (f);

 \node (a2) at (-1,-2) {3};
 \node (b2) at (0,-2) {4};
 \node (c2) at (1,-2) {5};

 \draw (a2) -- (a);
 \draw (a2) -- (b);
 \draw (b2) -- (b);
 \draw (b2) -- (c);
 \draw (c2) -- (c);
 \draw (c2) -- (d);

 \node (a3) at (-2,-4) {1};
 \node (b3) at (-1,-4) {2};

 \draw (a3) -- (a2);
 \draw (a3) -- (b2);
 \draw (b3) -- (b2);
 \draw (b3) -- (c2);

 \node (a4) at (-3,-6) {6};
 \node (b4) at (-2,-6) {3};
 \node (c4) at (-1,-6) {4};
 \node (d4) at (0,-6) {5};

 \draw (a4) -- (a3);
 \draw (a4) -- (b3);
 \draw (b4) -- (b3);
 \draw (b4) -- (c3);
 \draw (b4) -- (d3);
 \draw (c4) -- (b3);
 \draw (c4) -- (c3);
 \draw (c4) -- (d3);
 \draw (d4) -- (c3);

 \node (a5) at (-4,-8) {6};

 \draw (a5) -- (a4);
 \draw (a5) -- (b4);
 \draw (a5) -- (c4);
 \draw (a5) -- (d4);
\end{tikzpicture}
\end{center}
If \mathcal{P} is a natural unit interval order on $[1, n]$, then there exists a partition $\lambda \subset (n - 1, n - 2, \ldots, 2, 1)$ such that $a \leftarrow_{\mathcal{P}} b$ if and only if $a \leq \lambda_{n+1-b}$. In this case we write $\mathcal{P} = \mathcal{P}_{\lambda,n}$.
Outline

1. What does the title mean?
2. Motivation
3. P-Knuth equivalence
4. Ladders and the main theorem
5. P-Robinson-Schensted algorithm
Recall the fundamental quasisymmetric function F_S for $S \in [1, n - 1]$ defined by

$$F_S = \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

For $w \in S_n$, we define its \mathcal{P}-descent to be

$$\text{des}_{\mathcal{P}}(w) = \{ i \in [1, n - 1] \mid w_i \to_{\mathcal{P}} w_{i+1} \}.$$

We consider the following quasisymmetric function

$$\gamma_{\mathcal{P}, S_n} = \sum_{w \in S_n} F_{\text{des}_{\mathcal{P}}(w)}.$$

For example, if \mathcal{P} is the usual order then $\gamma_{\mathcal{P}, S_n} = h_{1^n}$.
Motivation

Stanley-Stembridge conjecture

Lemma
\[\gamma_{P,S_n} \text{ is a symmetric function and } p\text{-positive.} \]

Theorem (Haiman, Gasharov)
\[\gamma_{P,S_n} \text{ is Schur-positive.} \]

Conjecture (Stanley, Stembridge)
\[\gamma_{P,S_n} \text{ is } h\text{-positive.} \]

This conjecture is still open, but partial progress was made:
Stanley-Stembridge, Gebhard-Sagan, Dahlberg-van Willigenburg, Harada-Precup, Cho-Huh, Cho-Hong, etc.
Graded Stanley-Stembridge conjecture

For $w \in S_n$, set its “fake \mathcal{P}-inversion” to be

$$f\text{-inv}_{\mathcal{P}}(w) = \{(w_i, w_j) \in [1, n]^2 \mid i < j, w_i \rightarrow_\mathcal{P} w_j\}.$$

We consider the following weighted version

$$\tilde{\gamma}_{\mathcal{P}, S_n} = \sum_{w \in S_n} t^{|f\text{-inv}_{\mathcal{P}}(w)|} F_{\text{des}_\mathcal{P}}(w).$$

Theorem (Shareshian-Wachs)

$\tilde{\gamma}_{\mathcal{P}, S_n}$ is a symmetric function and both p-and Schur-positive.

Conjecture (Shareshian-Wachs)

$\tilde{\gamma}_{\mathcal{P}, S_n}$ is h-positive.
Hessenberg varieties

For $\lambda \subset (n-1, \cdots, 2, 1)$ and regular semisimple $s \in GL_n$, we let

$$\mathcal{H}ess_{\lambda, s} = \{ F_\bullet = [F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset F_n] \mid s \cdot F_i \subset F_{n-\lambda_i'} \}$$

called a Hessenberg variety.

Tymoczko defined a so-called “dot-action” on $\bigoplus_{i \in \mathbb{Z}} H^2_i(\mathcal{H}ess_{\lambda, s}) t^i$ where T is the maximal torus containing s, which makes it into a graded S_n-module.

Theorem (Brosnan-Chow, Guay-Paquet)

The Frobenius character of $\bigoplus_{i \in \mathbb{Z}} H^2_i(\mathcal{H}ess_{\lambda, s}) t^i$ equals $\tilde{\gamma}_{P_{\lambda, n}, S_n}$.

This is originally conjectured by Shareshian-Wachs.
Our goal is to understand combinatorics behind this picture.

- Introduce \mathcal{P}-Knuth equivalence
- Define \mathcal{P}-Robinson-Schensted algorithm
- Use these combinatorial tools to analyze $\tilde{\gamma}_{\mathcal{P},n_S}$ in detail

\Rightarrow refinement of the results of Shareshian-Wachs
Outline

1. What does the title mean?
2. Motivation
3. \mathcal{P}-Knuth equivalence
4. Ladders and the main theorem
5. \mathcal{P}-Robinson-Schensted algorithm
Knuth moves and equivalence

Regard S_n as a set of words with alphabets in $[1, n]$.

Definition

We say that $w, w' \in S_n$ are connected by a Knuth move if for $a, b, c \in [1, n]$ such that $a < b < c$ we have either

\[
w = \cdots cab \cdots \leftrightarrow w' = \cdots acb \cdots \text{ or }\]
\[
w = \cdots bca \cdots \leftrightarrow w' = \cdots bac \cdots .
\]

The Knuth equivalence is defined to be the closure of these moves.

For each equivalence class Γ, consider the following generating function $\gamma_\Gamma = \sum_{w \in \Gamma} F_{\text{des}}(w)$. Then,

- $\gamma_{P,S_n} = \sum_{\Gamma} \gamma_\Gamma$ when P is the usual order, and
- $\gamma_\Gamma = s_\lambda$ for some $\lambda \vdash n$.

Example: S_4
For \(a, b, c \in [1, n] \) such that \(a < b < c \) and \(a \leftrightarrow \mathcal{P} c \), there are four possibilities of \(\mathcal{P}|\{a,b,c\} \):

1. \(\mathcal{P}|_{\{a,b,c\}} \cong \mathcal{P}(1),3 \)
2. \(\mathcal{P}|_{\{a,b,c\}} \cong \mathcal{P}(1,1),3 \)
3. \(\mathcal{P}|_{\{a,b,c\}} \cong \mathcal{P}(2),3 \)
4. \(\mathcal{P}|_{\{a,b,c\}} \cong \mathcal{P}(2,1),3 \)
\(\mathcal{P}\)-Knuth moves and equivalence

In each case, we define the \(\mathcal{P}\)-Knuth move as follows:

1. \(a \leftarrow \mathcal{P} b\) and \(b \leftarrow \mathcal{P} c\):

\[
\cdots bca \cdots \xrightarrow{\mathcal{P}} \cdots cab \cdots .
\]

2. \(a \leftarrow \mathcal{P} b\) and \(b \leftarrow \mathcal{P} c\):

\[
\cdots bca \cdots \xrightarrow{\mathcal{P}} \cdots bac \cdots \quad \text{and} \quad \cdots cba \cdots \xrightarrow{\mathcal{P}} \cdots cab \cdots .
\]

3. \(a \leftarrow \mathcal{P} b\) and \(b \leftarrow \mathcal{P} c\):

\[
\cdots bca \cdots \xrightarrow{\mathcal{P}} \cdots cba \cdots \quad \text{and} \quad \cdots acb \cdots \xrightarrow{\mathcal{P}} \cdots cab \cdots .
\]

4. \(a \leftarrow \mathcal{P} b\) and \(c \leftarrow \mathcal{P} c\) (“usual case”):

\[
\cdots bca \cdots \xrightarrow{\mathcal{P}} \cdots bac \cdots \quad \text{and} \quad \cdots acb \cdots \xrightarrow{\mathcal{P}} \cdots cab \cdots .
\]

The \(\mathcal{P}\)-Knuth equivalence is defined to be the closure of these moves.
Example: S_3

(a) $\mathcal{P}_{0,3}$

(b) $\mathcal{P}_{(1),3}$

(c) $\mathcal{P}_{(2),3}$

(d) $\mathcal{P}_{(1,1),3}$

(e) $\mathcal{P}_{(2,1),3}$
For each equivalence class Γ, consider

$$\tilde{\gamma}_P,\Gamma = \sum_{w \in \Gamma} t^{\text{f-inv}_P(w)} F_{\text{des}_P}(w)$$

so that $\tilde{\gamma}_P, S_n = \sum_{\Gamma} \tilde{\gamma}_P,\Gamma$.

Question

Is $\tilde{\gamma}_P,\Gamma$ a symmetric function?

Question

Is $\tilde{\gamma}_P,\Gamma$ Schur-positive?

Question

Is $\tilde{\gamma}_P,\Gamma$ a single Schur function?
Example: $\mathcal{P} = \mathcal{P}_{(2,1),4}$

$$
\begin{array}{cccc}
\text{s}_4 & \text{ts}_4 & \text{ts}_4 & \text{ts}_{31} \\
1234 & 1243 & 1324 & 1342 \\
1432 & 2134 & 2143 & 2341 \\
2431 & 2413 & 3142 & 3142 \\
3241 & 3421 & 4231 & 4312 \\
4321 & & & \\
\end{array}
$$
Main conjecture

Lemma

If w and w' are \mathcal{P}-Knuth equivalent, then $|f\text{-inv}_\mathcal{P}(w)| = |f\text{-inv}_\mathcal{P}(w')|$.

As a result, $\tilde{\gamma}_\mathcal{P,\Gamma} = t^{f\text{-inv}_\mathcal{P}(w)} \cdot (\tilde{\gamma}_\mathcal{P,\Gamma})_{t=1}$ for any $w \in \Gamma$.

Conjecture

If \mathcal{P} is a natural unit interval order on $[1, n]$, then $(\tilde{\gamma}_\mathcal{P,\Gamma})_{t=1}$ for each \mathcal{P}-Knuth equivalence class Γ is a Schur positive symmetric function.

This is a refinement of the theorem of Shareshian-Wachs.
Example: $\mathcal{P} = \mathcal{P}_{2,2,1,5}, \tilde{\gamma}_{\mathcal{P}, \Gamma} = t^2(s_{32} + s_{41})$
Example: $\mathcal{P} = \mathcal{P}_{(2,1,1),5}, \tilde{\gamma}_{\mathcal{P},\Gamma} = t^3(s_{32} + 2s_{41})$
Example: $\mathcal{P} = \mathcal{P}_{(3,2,1),5}, \tilde{\gamma}_\mathcal{P}, \Gamma = t^3(2s_{32} + s_{41})$
Example: $\mathcal{P} = \mathcal{P}_{(4,3,2,1),6}, \tilde{\gamma}_\mathcal{P}, \Gamma = t^2(s_{42} + s_{51})$
Example: $\mathcal{P} = \mathcal{P}(5,4,2,1), 6$, $\tilde{\gamma}_{\mathcal{P}, \Gamma} = t^2 (s_{2211} + s_{3111})$
Example: $\mathcal{P} = \mathcal{P}_{(3,3,2,1),6}, \tilde{\gamma}_{\mathcal{P},\Gamma} = t^4(s_{33} + 2s_{42} + s_{51})$
Example: $P = P_{(3,1,1),5}, \tilde{\gamma}_P, \Gamma = t^3(s_{311} + s_{32} + 2s_{41})$
Outline

1. What does the title mean?
2. Motivation
3. \(\mathcal{P} \)-Knuth equivalence
4. Ladders and the main theorem
5. \(\mathcal{P} \)-Robinson-Schensted algorithm
Ladder order

Definition
We say that \mathcal{P} is a ladder order if it is isomorphic to $\mathcal{P}_{(n-2, n-3, \ldots, 1), n}$ for some n.

For example, any $[a, b] \subseteq [1, n]$ is a ladder in \mathcal{P} if $\mathcal{P}|_X$ is a ladder order.

For example, any $[a, b] \subseteq [1, n]$ is a ladder in $\mathcal{P}_{(n-2, n-3, \ldots, 1), n}$.
Climbing a ladder

Definition

We say that someone is climbing a ladder in \mathcal{P} or \mathcal{P} is ladder-climbing if there exist $x, y_1, \ldots, y_k \in [1, n]$ such that

- $x \not\in \{y_1, y_2, \ldots, y_k\}$,
- $\{y_1, y_2, \ldots, y_k\}$ is a ladder in \mathcal{P}, and
- $y_1 \leftarrow_{\mathcal{P}} x \leftarrow_{\mathcal{P}} y_k$.

In such a case, we also say that x is climbing a ladder in \mathcal{P} or x is climbing (the ladder) $\{y_1, \ldots, y_k\}$ in \mathcal{P}. Otherwise we say that no one is climbing a ladder in \mathcal{P} or \mathcal{P} is not ladder-climbing.
Ladders and the main theorem

Example: $\mathcal{P}_{(3,1,1),5}$ and $\mathcal{P}_{(4,2,1,1),6}$

Theorem

\mathcal{P} is not ladder-climbing if and only if \mathcal{P} avoids $\mathcal{P}_{(3,1,1),5}$ and $\mathcal{P}_{(4,2,1,1),6}$.
Main theorem

Theorem (Main theorem)

Suppose that \(P \) is a natural unit interval order that is not ladder-climbing. Then for any \(P \)-Knuth equivalence class \(\Gamma \), there exist \(\lambda_1, \ldots, \lambda_k \) such that

\[
\tilde{\gamma}_{P, \Gamma} = t |f-inv_P(\Gamma)| (s_{\lambda_1} + \cdots + s_{\lambda_k}) \text{ where } |f-inv_P(\Gamma)| \text{ is } |f-inv_P(w)| \text{ for any } w \in \Gamma, \text{ and }
\]

\[2\] the lengths of \(\lambda_1, \ldots, \lambda_k \) are all equal.

It is likely that the first part of the main theorem is valid for any natural unit interval order \(P \) albeit the second part is not true.
Outline

1. What does the title mean?
2. Motivation
3. \mathcal{P}-Knuth equivalence
4. Ladders and the main theorem
5. \mathcal{P}-Robinson-Schensted algorithm
A tableau T is said to be a \mathcal{P}-tableau if

- the entries of T are exactly $1, 2, \ldots, n$ without repetition,
- the entries are increasing along columns with respect to \mathcal{P} and
- the entries are nondecreasing along rows with respect to \mathcal{P}.

```
1 4 3 2
5 8 7 6
9
```
Properties of \mathcal{P}-Robinson-Schensted algorithm

Theorem

Suppose that \mathcal{P} is not ladder-climbing. Then there exists a bijection \mathcal{P}-RS : $\mathcal{S}_n \rightarrow \bigsqcup_{\lambda \vdash n} \mathcal{P}$-Tab$\lambda$ \times SYTλ such that:

(A) $\text{des}_\mathcal{P}(w) = \{n - x \mid x \in \text{des}(Q)\} = \text{des}(\text{evac}(Q))$.

(B) $w \sim_\mathcal{P} \text{read}(P)$ (reading word of P).

(C) If $w' \in \mathcal{S}_n$ satisfies \mathcal{P}-RS(w') = (P', Q') and $w \sim_\mathcal{P} w'$, then the first columns of P and P' are of the same length.

Unlike the usual Robinson-Schensted algorithm, in general we do not have the same \mathcal{P}-tableaux for w, w' such that $w \sim_\mathcal{P} w'$.
Proof of the main theorem

Theorem (Main theorem)

Suppose that \mathcal{P} is not ladder-climbing. Then for any \mathcal{P}-Knuth equivalence class Γ, there exist $\lambda_1, \ldots, \lambda_k$ such that

1. $\tilde{\gamma}_{\mathcal{P},\Gamma} = t^{\left| f\text{-inv}_\mathcal{P}(\Gamma) \right|} (s_{\lambda_1} + \cdots + s_{\lambda_k})$ where $\left| f\text{-inv}_\mathcal{P}(\Gamma) \right|$ is $\left| f\text{-inv}_\mathcal{P}(w) \right|$ for any $w \in \Gamma$, and
2. the lengths of $\lambda_1, \ldots, \lambda_k$ are all equal.

Sketch of the proof.

Using (B) one can show that \mathcal{P}-RS restricts to a bijection $\Gamma \simeq \bigsqcup_{i=1}^{k} \{ P_i \} \times \text{SYT}_{\text{sh}(P_i)}$ for certain \mathcal{P}-tableaux P_1, \ldots, P_k. Now by (A), it follows that $\tilde{\gamma}_{\mathcal{P},\Gamma} = t^{\left| f\text{-inv}_\mathcal{P}(\Gamma) \right|} \sum_{i=1}^{n} s_{\text{sh}(P_i)}$, which proves (1). The first columns of P_1, \ldots, P_k are of the same length by (C), and thus (2) follows.
Thank you!