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Given n1 points and n2 closed rectangles with axis-parallel

Incidences between points and rectangles

sides in R2. If no k rectangles have k points in common,
what is the maximum number of incidences?

Without the assumption that no k boxes have k points in
common, there could be n1 · n2 incidences.

An incidence is a point-rectangle (p, r) pair such that the
point p lies in the rectangle r .



For fixed k, what is the maximum number of edges in a

Zarankiewicz’s problem

Kk ,k -free bipartite graph G = (V1,V2;E )?

For k ∈ N, let Kk ,k denote the complete bipartite graph with
A question in extremal graph theory:

k vertices in each block.
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For fixed k, what is the maximum number of edges in a

Zarankiewicz’s problem

Kk ,k -free bipartite graph G = (V1,V2;E )?

For k ∈ N, let Kk ,k denote the complete bipartite graph with

Kövári–Sós–Turán ’54:
If G = (V1,V2;E ) with |V1| + |V2| = n is Kk ,k -free, then

Known to be best possible for k ≤ 3.
Conjectured to be best possible for all k ∈ N.

|E | ≤ Ok

�

n2−1/k
�

.

A question in extremal graph theory:

k vertices in each block.
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Given n1 points and n2 axis-parallel rectangles in R2.

If no k rectangles have k points in common, then

Let G = (V1,V2;E ) the the incidence graph. That is:
Let vertices in V1 correspond to points, vertices in V2

correspond to rectangles, and

G is Kk ,k -free. So by Kövári–Sós–Turán, the number of
incidences is Ok

�

n2−1/k
�

for each k ∈ N.

E = {(p, r) ∈ V1 × V2 : point p is in rectangle r}.

Incidences between points and rectangles



Geometric Incidence Problems

improved for incidence graphs of objects in Rd .
The bounds implied by Kövári–Sós–Turán can often be



Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum
number of incidences?

improved for incidence graphs of objects in Rd .
The bounds implied by Kövári–Sós–Turán can often be

2
1

3

2

2
1

1



Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum

The point-line incidence graph does not contain a K2,2, so
by Kövári–Sós–Turán, number of incidences is O

�

n3/2
�

.

number of incidences?

improved for incidence graphs of objects in Rd .
The bounds implied by Kövári–Sós–Turán can often be

2
1

3

2

2
1

1



Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum

The point-line incidence graph does not contain a K2,2, so
by Kövári–Sós–Turán, number of incidences is O

�

n3/2
�

.

number of incidences?

Szemerédi-Trotter ’83:
The number of incidences is O

�

n4/3
�

.

improved for incidence graphs of objects in Rd .
The bounds implied by Kövári–Sós–Turán can often be



Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum

The point-line incidence graph does not contain a K2,2, so
by Kövári–Sós–Turán, number of incidences is O

�

n3/2
�

.

number of incidences?

Szemerédi-Trotter ’83:
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and lines with Ω
�

n4/3
�

incidences.
This is optimal, i.e., there exist configurations of points
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Zarankiewicz’s problem for semialgebraic graphs

A graph G = (V1,V2;E ) is semialgebraic if V1 ⊂ Rd1 , V2 ⊂ Rd2 ,
and there exists a system of polynomial inequalities φ(x , y)
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.
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A graph G = (V1,V2;E ) is semialgebraic if V1 ⊂ Rd1 , V2 ⊂ Rd2 ,
and there exists a system of polynomial inequalities φ(x , y)
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.

Incidence graph of points and lines in R2 is semialgebraic.
Lines correspond to points in R2, e.g., the line b1x + b2y = 1

corresponds to the point (b1, b2).
Then E = {(a, b) ∈ V1 × V2 : a · b = 1}.

Fox-Pach-Sheffer-Suk-Zahl ’12:
Let G = (V1,V2;E ) be a semialgebraic graph with
|V1| + |V2| = n. If G is Kk ,k -free, then |E | = Ok ,φ

�

n2−c
�

where 0 < c < 1 depends only on d1 and d2.
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Identify axis-parallel rectangles with points in R4. That is,
the coordinates of the bottom left endpoint combined
with the coordinates of the top right endpoint to obtain

The point-rectangle incidence graph is semialgebraic.

a semialgebraic graph in R2 × R4.
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Incidences between points and rectangles

Kövári–Sós–Turán implies the bound Ok

�

n2−1/k
�

.

Fox-Pach-Sheffer-Suk-Zahl implies the bound Ok ,ϵ
�

n10/7+ϵ
�

.

Identify axis-parallel rectangles with points in R4. That is,
the coordinates of the bottom left endpoint combined
with the coordinates of the top right endpoint to obtain

The point-rectangle incidence graph is semialgebraic.

So there is some hope for better bounds!

In the point-line incidence graph, E is defined by the inner
product, using addition and multiplication.

In the point-rectangle incidence graph, E is defined using
only ordering.

a semialgebraic graph in R2 × R4.
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Incidences between points and boxes
Theorem 1 (B.-Chernikov-Starchenko-Tao-Tran ’20):

When k = 2, the bound in (i) can be improved to O(n log n).
Tomon-Zakharov ’20:

(i) Given n1 points and n2 closed rectangles with
axis-parallel sides in R2. If no k rectangles have k points
in common, the number of incidences is Ok
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and there exists a system of linear inequalities φ(x , y)
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.
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number of linear inequalities in the defining system.



Zarankiewicz’s problem for semilinear graphs

A graph G = (V1,V2;E ) is semilinear if V1 ⊂ Rd1 , V2 ⊂ Rd2 ,
and there exists a system of linear inequalities φ(x , y)
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.

Functions that are coordinate-wise monotone.
Any ordered division ring instead of R.

More generally:

Theorem 2 (B.-Chernikov-Starchenko-Tao-Tran ’20):
Let G = (V1,V2;E ) be a semilinear graph with |V1| + |V2| = n.
If G is Kk ,k -free, then |E | = Ok ,φ (n logc n), where c is the
number of linear inequalities in the defining system.
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Let fs (n) be the maximum number of edges in a Kk ,k -free
graph on n vertices defined by s linear equations.
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Proof of Theorem 2
Proof Idea:

Induction on number of linear equations s.
Let fs (n) be the maximum number of edges in a Kk ,k -free
graph on n vertices defined by s linear equations.

If s = 0, then G is the complete graph, so either
|V1| < k or |V2| < k, i.e., |E | ≤ kn.

Base Case: f0(n) ≤ kn

Use the order structure of R to split up the graph and
control incidences.

Inductive Step: Enough to show fs (n) ≤ 2fs
�

b n2 c
�

+ fs−1(n).

Suppose L is one of the defining inequalities. Can assume
L has the form L1(x) < L2(y) with L1 : V1 → R and L2 : V2 → R.
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Proof of Theorem 2

a

V +
1

V +
2

V −
1

V −
2

That is fs (n) ≤ 2fs
�

b n2 c
�

+ fs−1(n).

L has the form L1(x) < L2(y).

|E ∩ (V +
1
× V −

2
)| = 0
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Erdős ’64:
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hypergraph with |V1| + · · · + |Vr | = n. If H is Kk ,...,k -free,
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That is, the exponent can not be substantially improved.

Probabilistic lower bounds of the form |E | = Ωr ,k

�
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Do ’18:
Let H = (V1,V2, . . . ,Vr ,E ) be a semialgebraic hypergraph
with |V1| + · · · + |Vr | = n. If H is Kk ,··· ,k -free, then
|E | = Or ,k ,φ

�

nr−c
�

where c depends only on d1, d2, . . . , dr .
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Extensions to Hypergraphs
Theorem 3 (B.-Chernikov-Starchenko-Tao-Tran ’20):
Let H = (V1,V2, . . . ,Vr ,E ) be a semilinear hypergraph with
|V1| + · · · + |Vr | = n. If H is Kk ,··· ,k -free, then
|E | = Or ,k ,φ

�

nr−1 logc n
�

where c depends only on r and the
number of defining inequalities.

Proof Idea:
Double induction on uniformity r , and the number of
inequalities c.

We also need a divide and conquer strategy. For r = 2, we
reduced to graph with smaller |V1| + |V2|. For r = 3, we
instead reduce to a graph with smaller

|V1||V2| + |V2||V3| + |V3||V1|.
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Point-polytope incidences:
Given n1 points and n2 polytopes in Rd with faces in some
fixed finite set of orientations, such that the incidence
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in Rd . A point being contained in a half-space is a linear
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Consequences of Theorem 2
Point-polytope incidences:
Given n1 points and n2 polytopes in Rd with faces in some
fixed finite set of orientations, such that the incidence
graph does not contain Kk ,k , the number of incidences
is O

�

n1+ϵ
�

, for any ϵ > 0.

Proof:
Parametrize half-spaces with a fixed orientation by points
in Rd . A point being contained in a half-space is a linear

If there are s orientations, then get a semilinear graph

By Theorem 2, there are Ok ,s,d (n logs n) edges.

inequality.

in Rd × Rsd with s inequalities.
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Consequences of Theorem 2

Given n points in R2, what is the maximum number
Question

Erdős unit distance conjecture:

pairs of points at distance one?

In the ℓ2 norm, the number of unit distances is O
�

n1+ϵ
�

.

For polygonal norms, it is possible to get Ω
�

n2
�

.

Every blue-green pair is at distance one



Consequences of Theorem 2

Unit distances in polygonal norms:
For any fixed k, if no k points are at unit distance from any
k other points, then the number of unit distances is O

�

n1+ϵ
�

.
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Connections to Model Theory

Isomorphic structures have the same theory, but the
converse is not true. In fact, given an infinite structure,
there is at least one structure per infinite cardinality
with the same theory.

E.g., any real closed field has the same theory as R.

computable numbers
hyperreal numbers
algebraic numbers

Model theorists study a structure (e.g. (Z;+), (C;+,×), etc)
by considering the set of all first order sentences true in
the structure, refered to as the theory of the structure.
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the quantifiers ∀ and ∃, where the xi ’s can take values in M.

More generally, any algebraic equation (or a boolean
combination of algebraic equations) is a formula.



Connections to Model Theory

One consequence of tameness is that graphs defined by

What can be said when for some uncountable cardinality κ,
there is exactly one structure (up to isomorphism) having
the same theory as the given structure?

formulas in such structures are not too complicated.

Such structures are referred to as tame.

e.g. φ(x , y) : x = y2 and φ(x) : ∃y , x = y2

A formula φ(x1, . . . , xm) generalizes equations by allowing
the quantifiers ∀ and ∃, where the xi ’s can take values in M.

More generally, any algebraic equation (or a boolean
combination of algebraic equations) is a formula.

We can think of φ(x , y) as a (possibly infinite) graph
G = (M,M,E ), where E =

�

(a, b) ∈M |x | × M |y | : φ(a, b) is true
	

.



Connections to Model Theory

Often tameness is related to combinatorial properties of the
graphs of formulas, resulting in improved bounds for

regularity lemma type statements
Erdős-Hajnal problem
Zarankiewicz’s problem
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graph of every formula φ(x , y) with x , y ∈M has bounded
VC-dimension.

If there is exactly one structure of each uncountable
cardinality satisfying the same theory, then the

More generally, structures where every formula has
bounded VC-dimension are said to have the
no independence property.



NIP Structures

graph of every formula φ(x , y) with x , y ∈M has bounded
VC-dimension.

If there is exactly one structure of each uncountable
cardinality satisfying the same theory, then the

More generally, structures where every formula has
bounded VC-dimension are said to have the

real closed fields

no independence property.

Examples:

the field of p-adic numbers
Algebraic closure of finite fields



NIP Structures

Janzer-Pohoata ’20:
If we also have that k ≥ d ≥ 3, |E | = o

�

n2−1/d
�

.

Fox-Pach-Sheffer-Suk-Zahl ’12:
Suppose M is a structure, φ(x ; y) is a formula with
VC-dimension d, G = (V1,V2;E ) is a Kk ,k -free graph with
V1 ⊆ M |x |, V2 ⊆ M |y |, and E = {(a, b) ∈ V1 × V2 : φ(a, b)}.
Then |E | = Ok

�

n2−1/d
�

.



Distal Structures
A structure M is distal if every formula φ(x ; y) is distal, i.e.,
it admits a definable cell decomposition.



Distal Structures

Chernikov-Galvin-Starchenko ’16:
Suppose M is a structure, φ(x ; y) is a distal formula,

A structure M is distal if every formula φ(x ; y) is distal, i.e.,
it admits a definable cell decomposition.

(V1,V2;E ) is a Kk ,k -free graph with V1 ⊆ M |x |, V2 ⊆ M |y |,
and E = {(a, b) ∈ V1 × V2 : φ(a, b)}.
Then |E | = Ok

�

n2−c
�

where c depends only on φ.

Real closed fields are distal.
Algebraic closure of finite fields are NIP but not distal.

Generalizes Fox-Pach-Sheffer-Suk-Zahl.

Examples:



Linear vs. nonlinear
The distinction between the point-rectangle incidence graph
and the point-line incidence graph is a linear vs. nonlinear
(or modular vs. nonmodular) distinction.

What can be said when for each infinite cardinality κ, there
is exactly one structure up to isomorphism having a given
theory.

Introduced in an effort to answer the following question:
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(or modular vs. nonmodular) distinction.
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is exactly one structure up to isomorphism having a given
theory.

Introduced in an effort to answer the following question:

Real closed fields are not modular.
Ordered group of real numbers is modular.

Examples:



Linear vs. nonlinear
The distinction between the point-rectangle incidence graph
and the point-line incidence graph is a linear vs. nonlinear
(or modular vs. nonmodular) distinction.

What can be said when for each infinite cardinality κ, there
is exactly one structure up to isomorphism having a given
theory.

Introduced in an effort to answer the following question:

In this setting, Theoerm 2 is a statement about graphs
definable in o-minimal modular structures

Real closed fields are not modular.
Ordered group of real numbers is modular.

Examples:



Questions


