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Abstract

This thesis studies topological spaces arising in total positivity. Examples include the to-
tally nonnegative Grassmannian Gr≥0(𝑘, 𝑛), Lusztig’s totally nonnegative part (𝐺/𝑃 )≥0 of a
partial flag variety, Lam’s compactification of the space of electrical networks, and the space
of (boundary correlation matrices of) planar Ising networks. We show that all these spaces
are homeomorphic to closed balls. In addition, we confirm conjectures of Postnikov and
Williams that the CW complexes Gr≥0(𝑘, 𝑛) and (𝐺/𝑃 )≥0 are regular. This implies that the
closure of each positroid cell inside Gr≥0(𝑘, 𝑛) is homeomorphic to a closed ball. We discuss
the close relationship between the above spaces and the physics of scattering amplitudes,
which has served as a motivation for most of our results.

In the second part of the thesis, we investigate the space of planar Ising networks. We
give a simple stratification-preserving homeomorphism between this space and the totally
nonnegative orthogonal Grassmannian, describing boundary correlation matrices of the pla-
nar Ising model by inequalities. Under our correspondence, Kramers–Wannier’s high/low
temperature duality transforms into the cyclic symmetry of Gr≥0(𝑘, 𝑛).

Thesis Supervisor: Alexander Postnikov
Title: Professor of Applied Mathematics
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1

Introduction

Постепенно человек утрачивает свою форму и становится шаром.

И став шаром, человек утрачивает все свои желания.
– Даниил Хармс

We investigate various topological spaces arising in the theory of total positivity. Each

space comes equipped with a natural decomposition into cells, and is conjectured to be a

regular CW complex homeomorphic to a closed ball. A regular CW complex is a topological

space subdivided into cells, such that the closure of each cell is homeomorphic to a ball, and

the boundary of each cell is homeomorphic to a sphere. A prototypical example of a regular

CW complex is a convex polytope.

We show that each of the totally nonnegative spaces introduced in Sections 1.1–1.6 is

homeomorphic to a closed ball. Additionally, we show that the spaces from Sections 1.1–1.3

are regular CW complexes. As we discuss in Section 1.7, the spaces that we consider are

surprisingly closely related to each other and to the physics of scattering amplitudes.

This thesis is based on papers [GKL17, GKL19, GP18].

1.1 The totally nonnegative Grassmannian

Let Gr(𝑘, 𝑛) denote the Grassmannian of 𝑘-planes in R𝑛. Postnikov [Pos07] defined its totally

nonnegative part Gr≥0(𝑘, 𝑛) as the set of 𝑋 ∈ Gr(𝑘, 𝑛) whose Plücker coordinates are all

nonnegative. Postnikov conjectured that Gr≥0(𝑘, 𝑛) is a regular CW complex homeomorphic
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to a closed ball. He gave a decomposition of Gr≥0(𝑘, 𝑛) into positroid cells, where each cell

is specified by requiring some subset of the Plücker coordinates to be strictly positive, and

requiring the rest to equal zero.

Over the past decade, much work has been done towards Postnikov’s conjecture. The

face poset of the positroid cell decomposition (described in [Rie98, Rie06, Pos07]) was shown

to be thin and shellable by Williams [Wil07]. Combined with Björner’s results [Bjö84], this

implies that there exists some regular CW complex with the same face poset. Postnikov,

Speyer, and Williams [PSW09] showed that the cell decomposition is a CW complex, and

Rietsch and Williams [RW10] showed that the closure of each cell is contractible. We start

by giving a simple proof of the following result.

Theorem 1.1.1. Gr≥0(𝑘, 𝑛) is homeomorphic to a 𝑘(𝑛− 𝑘)-dimensional closed ball.

This proves a special case of Postnikov’s conjecture: there is one top-dimensional positroid

cell in Gr≥0(𝑘, 𝑛) whose closure is the whole Gr≥0(𝑘, 𝑛), and thus Theorem 1.1.1 shows that

the closure of this cell is homeomorphic to a ball. Our proof of Theorem 1.1.1 employs a cer-

tain cyclic shift vector field 𝜏 on Gr≥0(𝑘, 𝑛). The flow defined by 𝜏 contracts all of Gr≥0(𝑘, 𝑛)

to the unique cyclically symmetric point 𝑋0 ∈ Gr≥0(𝑘, 𝑛). We construct a homeomorphism

from Gr≥0(𝑘, 𝑛) to a closed ball 𝐵 ⊂ Gr≥0(𝑘, 𝑛) centered at 𝑋0, by mapping each trajectory

in Gr≥0(𝑘, 𝑛) to its intersection with 𝐵. A feature of our construction is that we do not rely

on any cell decomposition of Gr≥0(𝑘, 𝑛).

We also prove Postnikov’s conjecture in full generality, although in this case the proof is

much more involved, see Sections 3.1 and 3.2.

Theorem 1.1.2. Gr≥0(𝑘, 𝑛) is a regular CW complex homeomorphic to a closed ball.

1.2 The totally nonnegative part of a partial flag variety

Let 𝐺 be a simple and simply connected algebraic group, split over R, and let 𝑃 ⊂ 𝐺 be a

parabolic subgroup. Lusztig [Lus94] introduced the totally nonnegative part of the partial

flag variety 𝐺/𝑃 , denoted (𝐺/𝑃 )≥0. He called (𝐺/𝑃 )≥0 a “remarkable polyhedral subspace”,
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and conjectured that (𝐺/𝑃 )≥0 has a decomposition into cells Π>0
𝑔

∼= Rdim(𝑔), which was

proved by Rietsch [Rie99]. The following result was conjectured by Williams [Wil07].

Theorem 1.2.1. (𝐺/𝑃 )≥0 is a regular CW complex homeomorphic to a closed ball.

For a specific choice of 𝐺 and 𝑃 , (𝐺/𝑃 )≥0 becomes the totally nonnegative Grassmannian

Gr≥0(𝑘, 𝑛), thus Theorems 1.1.1 and 1.1.2 are special cases of Theorem 1.2.1. Similarly to

the case of Gr≥0(𝑘, 𝑛), Williams [Wil07] proved that the face poset of (𝐺/𝑃 )≥0 is thin and

shellable, and then Rietsch–Williams [RW08, RW10] showed that (𝐺/𝑃 )≥0 is a CW complex

such that the closure of every cell is contractible.

1.3 The totally nonnegative part of the unipotent radical

The theory of total positivity originated in the 1930’s, and concerns real matrices whose

minors are all nonnegative [Sch30, GK50, Whi52]. Later, Lusztig [Lus94] was motivated by

a question of Kostant to consider connections between totally nonnegative matrices and his

theory of canonical bases for quantum groups [Lus90]. This led him to introduce the totally

nonnegative part 𝐺≥0 of a split semisimple 𝐺.

Fomin and Shapiro [FS00] realized that Lusztig’s work may be used to address a long-

standing problem in poset topology. Namely, the Bruhat order of the Weyl group 𝑊 of 𝐺

had been shown to be shellable by Björner and Wachs [BW82], and by general results of

Björner [Bjö84] it follows that there exists a “synthetic” regular CW complex whose face

poset coincides with (𝑊,≤). The motivation of [FS00] was to answer a natural question

due to Bernstein and Björner of whether such a regular CW complex exists “in nature”. Let

𝑈 ⊂ 𝐺 be the unipotent radical of the standard Borel subgroup, and let 𝑈≥0 := 𝑈 ∩ 𝐺≥0

be its totally nonnegative part. For 𝐺 = SL𝑛, 𝑈≥0 is the semigroup of upper-triangular

unipotent matrices with all minors nonnegative. The work of Lusztig [Lus94] implies that

𝑈≥0 has a cell decomposition whose face poset is (𝑊,≤). The space 𝑈≥0 is not compact,

but Fomin and Shapiro [FS00] conjectured that taking the link of the identity element in

𝑈≥0, which also has (𝑊,≤) as its face poset, gives the desired regular CW complex. Their

conjecture was confirmed by Hersh [Her14]. Alternatively, it follows as a corollary to our
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proof of Theorem 1.2.1, see Remark 3.3.12. Thus we provide an independent proof of the

Fomin–Shapiro conjecture.

Corollary 1.3.1 ([Her14]). The link of the identity in 𝑈≥0 is a regular CW complex.

1.4 The cyclically symmetric amplituhedron

A robust connection between the totally nonnegative Grassmannian and the physics of scat-

tering amplitudes was developed in [AHBC+16], which led Arkani-Hamed and Trnka [AHT14]

to define topological spaces called amplituhedra.

Let 𝑘,𝑚, 𝑛 be nonnegative integers with 𝑘+𝑚 ≤ 𝑛, and 𝑍 be a (𝑘+𝑚)×𝑛 matrix whose

(𝑘 +𝑚)× (𝑘 +𝑚) minors are all positive. We regard 𝑍 as a linear map R𝑛 → R𝑘+𝑚, which

induces a map 𝑍Gr on Gr(𝑘, 𝑛) taking the subspace 𝑋 to the subspace {𝑍(𝑣) : 𝑣 ∈ 𝑋}. The

(tree) amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍) is the image of Gr≥0(𝑘, 𝑛) in Gr(𝑘, 𝑘 + 𝑚) under the map

𝑍Gr [AHT14, Section 4]. When 𝑘 = 1, the totally nonnegative Grassmannian Gr≥0(1, 𝑛) is

a simplex in P𝑛−1, and the amplituhedron 𝒜𝑛,1,𝑚(𝑍) is a cyclic polytope in P𝑚 [Stu88].

We now take 𝑚 to be even, and 𝑍 = 𝑍0 such that the rows of 𝑍0 span the unique element

of Gr≥0(𝑘 +𝑚,𝑛) invariant under Z/𝑛Z-cyclic action (cf. [Kar18]). We call 𝒜𝑛,𝑘,𝑚(𝑍0) the

cyclically symmetric amplituhedron. When 𝑘 = 1 and 𝑚 = 2, 𝒜𝑛,1,2(𝑍0) is a regular 𝑛-gon

in the plane. More generally, 𝒜𝑛,1,𝑚(𝑍0) is a polytope whose vertices are 𝑛 regularly spaced

points on the trigonometric moment curve in P𝑚.

Theorem 1.4.1. The cyclically symmetric amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍0) is homeomorphic to a

𝑘𝑚-dimensional closed ball.

It is expected that every amplituhedron is homeomorphic to a closed ball. In some special

cases, this is indeed true, see [KW19, BGPZ19].

1.5 The space of planar electrical networks

Let Γ be an electrical network consisting only of resistors, modeled as an undirected graph

whose edge weights (conductances) are positive real numbers. The electrical properties of
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Γ are encoded by the response matrix Λ(Γ) : R𝑛 → R𝑛, sending a vector of voltages at

𝑛 distinguished boundary vertices to the vector of currents induced at the same vertices.

The response matrix can be computed using (only) Kirchhoff’s law and Ohm’s law. Fol-

lowing Curtis, Ingerman, and Morrow [CIM98] and Colin de Verdière, Gitler, and Verti-

gan [CdVGV96], we consider the space Ω𝑛 of response matrices of planar electrical networks:

those Γ embedded into a disk, with boundary vertices on the boundary of the disk. This

space is not compact; a compactification 𝐸𝑛 was defined by Lam [Lam18]. It comes equipped

with a natural embedding 𝜄 : 𝐸𝑛 →˓ Gr≥0(𝑛− 1, 2𝑛). We exploit this embedding to establish

the following result.

Theorem 1.5.1. The space 𝐸𝑛 is homeomorphic to an
(︀
𝑛
2

)︀
-dimensional closed ball.

A cell decomposition of 𝐸𝑛 was defined in [Lam18], extending earlier work in [CIM98,

CdVGV96]. The face poset of this cell decomposition had been defined and studied by

Kenyon [Ken12, Section 4.5.2]. Theorem 1.5.1 says that the closure of the unique cell of

top dimension in 𝐸𝑛 is homeomorphic to a closed ball. In [Lam15], Lam showed that the

face poset of the cell decomposition of 𝐸𝑛 is Eulerian, and conjectured that it is shellable.

Hersh and Kenyon recently proved this conjecture [HK18]. Björner’s results [Bjö84] therefore

imply that this poset is the face poset of some regular CW complex homeomorphic to a ball.

We expect that 𝐸𝑛 forms such a CW complex, so that the closure of every cell of 𝐸𝑛 is

homeomorphic to a closed ball. Proving this remains an open problem.

1.6 The space of planar Ising networks

The Ising model, introduced by Lenz in 1920 as a model for ferromagnetism and solved

by Ising [Isi25] in dimension 1, plays a central role in statistical mechanics and conformal

field theory. One of the main features of this model is that it undergoes a phase transition

in dimensions larger than 1, and in particular its critical temperature 1
2
log(

√
2 + 1) in

dimension 2 has been computed by Kramers and Wannier [KW41], who found a duality

transformation exchanging subcritical and supercritical temperatures. The free energy of

the model was computed by Onsager [Ons44] and Yang [Yan52], and since then it became
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a subject of active mathematical and physical research. Conformal invariance of the scaling

limit was conjectured in [BPZ84b, BPZ84a] in relation to conformal field theory, and proven

more recently as a part of a series of groundbreaking results by Smirnov, Chelkak, Hongler,

Izyurov, and others [Smi10, CHI15, CS12, HS13, CDCH+14].

Among the most important quantities associated with the Ising model are two-point

correlation functions. It was shown in [Gri67] and later generalized in [KS68] that these

correlation functions satisfy natural inequalities, and in particular, the question of char-

acterizing correlation functions coming from the Ising model was raised in the appendix

of [KS68].

A starting point for our results was recent insightful work of Lis [Lis17], where he dis-

covered a deep connection between the planar Ising model and total positivity, and used it

to prove new inequalities on boundary two-point correlation functions in the planar case.

Despite the enormous amount of research on the planar Ising model, some basic questions

seem to have remained unanswered. Let us denote by 𝒳𝑛 ⊂ Mat𝑛(R) the space of all

boundary correlation matrices of planar Ising networks with 𝑛 boundary nodes embedded in

a disk. This is a subspace of the space Mat𝑛(R) of 𝑛 × 𝑛 matrices with real entries. Every

matrix in 𝒳𝑛 is symmetric and has diagonal entries equal to 1, but 𝒳𝑛 is neither a closed

nor an open subset of the space of such matrices. Let 𝒳 𝑛 denote the closure of 𝒳𝑛 inside

Mat𝑛(R), i.e., 𝒳 𝑛 is the space of boundary correlation matrices of a slightly more general

class of planar Ising networks, as discussed in Section 4.5.

Two fundamental questions about 𝒳 𝑛 that we answer (see Theorem 4.1.3) are:

∙ Describe 𝒳 𝑛 by equalities and inequalities inside Mat𝑛(R).

∙ Describe the topology of 𝒳 𝑛.

Using a construction similar to the one in [Lis17], we give a simple embedding 𝜑 of the space

𝒳 𝑛 as a subset of Gr≥0(𝑛, 2𝑛) which turns out to be precisely the totally nonnegative or-

thogonal Grassmannian OG≥0(𝑛, 2𝑛), introduced in [HW13, HWX14] in the study of ABJM

scattering amplitudes. This gives a solution to the first question. Next, we show that 𝒳 𝑛

is homeomorphic to an
(︀
𝑛
2

)︀
-dimensional closed ball using the same cyclic shift vector field 𝜏

that was used in the proof of Theorem 1.1.1. Surprisingly, we find (Theorem 4.2.4) that the
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1. 𝒩 = 4 SYM

2. 𝒩 = 6 ABJM

3. 𝒜𝑛,𝑘,𝑚(𝑍) 4. Gr≥0(𝑘, 𝑛)

5. (𝐺/𝑃 )≥0

6. 𝐸𝑛 (Electrical)7. 𝒳 𝑛 (Ising)8. OG≥0(𝑛, 2𝑛)

[AHBC+16]

[HWX14] Theorem 4.1.3 Question 4.8.2

Theorem 4.1.3

Remark 4.4.2

linear projection [AHT14]

casespecial

Eq. (2.4.1), cf. [Lam18]

Figure 1-1: Connections between various totally positive spaces, see Section 1.7.

celebrated Kramers–Wannier’s duality [KW41] is translated by our map 𝜑 into the cyclic

shift on Gr≥0(𝑘, 𝑛).

1.7 Connections

Totally positive spaces have attracted a lot of interest due to their appearances in other

contexts such as cluster algebras [FZ02] and the physics of scattering amplitudes [AHBC+16].

In particular, our original motivation came from studying the amplituhedron of [AHT14] and

the more general Grassmann polytopes of [Lam16]. The faces of a Grassmann polytope are

linear projections of closures of positroid cells, which is why it is essential to understand the

topology of these closures in order to develop a theory of Grassmann polytopes.

The relationship between the following objects is shown schematically in Figure 1-1:

1. the planar 𝒩 = 4 supersymmetric Yang–Mills theory;

2. the three-dimensional 𝒩 = 6 supersymmetric Chern–Simons matter theory (also known

as ABJM theory);

3. the amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍) from Section 1.4;

4. the totally nonnegative Grassmannian Gr≥0(𝑘, 𝑛) from Section 1.1;

5. the totally nonnegative part (𝐺/𝑃 )≥0 of a partial flag variety from Section 1.2;

6. the compactification 𝐸𝑛 of the space of electrical networks from Section 1.5;

7. the space 𝒳 𝑛 of planar Ising networks from Section 1.6;

17



8. the totally nonnegative orthogonal Grassmannian OG≥0(𝑛, 2𝑛) from Section 1.6.

The scattering amplitudes in the planar 𝒩 = 4 supersymmetric Yang–Mills theory can

be computed by formally integrating a certain differential form over the amplituhedron

𝒜𝑛,𝑘,𝑚(𝑍), cf. [AHBC+16, AHT14]. By definition, 𝒜𝑛,𝑘,𝑚(𝑍) is a linear projection of Gr≥0(𝑘, 𝑛),

see Section 1.4. As we explained in Section 1.2, Postnikov’s Gr≥0(𝑘, 𝑛) is a special case of

Lusztig’s (𝐺/𝑃 )≥0. Next, Lam [Lam18] constructed an embedding of his compactification

𝐸𝑛 of the space of electrical networks into Gr≥0(𝑛− 1, 2𝑛), see (2.4.1). Similarly, the space

𝒳 𝑛 of planar Ising networks from Section 1.6 is identified via Theorem 4.1.3 with the to-

tally nonnegative orthogonal Grassmannian OG≥0(𝑛, 2𝑛), which is a subset of Gr≥0(𝑛, 2𝑛)

by definition. The spaces 𝐸𝑛 and 𝒳 𝑛 share a lot of common properties (cf. Section 4.8),

for example, their face posets are isomorphic. However, the precise relationship between

them remains completely mysterious to us, see Question 4.8.2. By Remark 4.4.2, each of

these spaces can be realized as a subset of 𝐺/𝑃 for a suitable choice of 𝐺 and 𝑃 , but this

subset does not coincide with the totally nonnegative part (𝐺/𝑃 )≥0. Finally, the totally non-

negative orthogonal Grassmannian OG≥0(𝑛, 2𝑛) (which is homeomorphic to 𝒳 𝑛) was first

introduced in [HW13, HWX14] in connection with the 𝒩 = 6 ABJM theory, analogously to

the relationship [AHBC+16] between Gr≥0(𝑘, 𝑛) and the 𝒩 = 4 SYM theory.

1.8 Outline

Chapters 2, 3, 4 correspond to papers [GKL17, GKL19, GP18]. Theorems 1.1.1, 1.4.1,

and 1.5.1 are proved in Chapter 2 using the cyclic shift vector field 𝜏 . Theorem 1.2.1 and

its special case Theorem 1.1.2 are proved in Chapter 3. Chapter 4 develops the theory of

planar Ising networks, see Section 4.1 for the precise statement of the main results.
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2

The cyclic shift vector field

In this chapter, give a simple unified approach to show that the spaces Gr≥0(𝑘, 𝑛), 𝒜𝑛,𝑘,𝑚(𝑍0),

and 𝐸𝑛 are homeomorphic to closed balls, thus proving Theorems 1.1.1, 1.4.1, and 1.5.1. We

note that the same approach can be used to show that the spaces 𝑈≥0 (when 𝐺 = SL𝑛) and

(𝐺/𝑃 )≥0 (when𝐺 and 𝑃 are arbitrary) are homeomorphic to closed balls as well, see [GKL17,

§4] and [GKL18].

In Section 2.1, we introduce contractive flows, and then we use them in Sections 2.2, 2.3,

and 2.4 to prove Theorems 1.1.1, 1.4.1, and 1.5.1, respectively.

2.1 Contractive flows

In this section we prove Lemma 2.1.3, which we will repeatedly use in establishing our

theorems. Consider a real normed vector space (R𝑁 , ‖ · ‖). Thus for each 𝑟 > 0, the closed

ball 𝐵𝑁
𝑟 := {𝑝 ∈ R𝑁 : ‖𝑝‖ ≤ 𝑟} of radius 𝑟 is a compact convex body in R𝑁 whose interior

contains the origin. We denote its boundary by 𝜕𝐵𝑁
𝑟 , which is the sphere of radius 𝑟.

Definition 2.1.1. We say that a map 𝑓 : R×R𝑁 → R𝑁 is a contractive flow if the following

conditions are satisfied:

(1) the map 𝑓 is continuous;

(2) for all 𝑝 ∈ R𝑁 and 𝑡1, 𝑡2 ∈ R, we have 𝑓(0, 𝑝) = 𝑝 and 𝑓(𝑡1+ 𝑡2, 𝑝) = 𝑓(𝑡1, 𝑓(𝑡2, 𝑝)); and
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(3) for all 𝑝 ̸= 0 and 𝑡 > 0, we have ‖𝑓(𝑡, 𝑝)‖ < ‖𝑝‖.

The condition (2) says that 𝑓 induces a group action of (R,+) on R𝑁 . In particular,

𝑓(𝑡, 𝑝) = 𝑞 is equivalent to 𝑓(−𝑡, 𝑞) = 𝑝, so (3) implies that if 𝑡 ̸= 0 and 𝑓(𝑡, 𝑝) = 𝑝, then

𝑝 = 0. The converse to this statement is given below in Lemma 2.1.2(i).

For 𝐾 ⊂ R𝑁 and 𝑡 ∈ R, we let 𝑓(𝑡,𝐾) denote {𝑓(𝑡, 𝑝) : 𝑝 ∈ 𝐾}.

Lemma 2.1.2. Let 𝑓 : R× R𝑁 → R𝑁 be a contractive flow.

(i) We have 𝑓(𝑡, 0) = 0 for all 𝑡 ∈ R.

(ii) Let 𝑝 ̸= 0. Then the function 𝑡 ↦→ ‖𝑓(𝑡, 𝑝)‖ is strictly decreasing on (−∞,∞).

(iii) Let 𝑝 ̸= 0. Then lim
𝑡→∞

‖𝑓(𝑡, 𝑝)‖ = 0 and lim
𝑡→−∞

‖𝑓(𝑡, 𝑝)‖ = ∞.

Proof. (i) By (1), the function 𝑠 ↦→ ‖𝑓(𝑠, 0)‖ is continuous on R, and it equals 0 when 𝑠 = 0.

If 𝑓(𝑡, 0) ̸= 0 for some 𝑡 > 0, then 0 < ‖𝑓(𝑠, 0)‖ < ‖𝑓(𝑡, 0)‖ for some 𝑠 ∈ (0, 𝑡), which

contradicts (3) applied to 𝑝 = 𝑓(𝑠, 0) and 𝑡− 𝑠. Therefore 𝑓(𝑡, 0) = 0 for all 𝑡 ≥ 0. By (2),

for 𝑡 ≥ 0 we have 0 = 𝑓(0, 0) = 𝑓(−𝑡, 𝑓(𝑡, 0)) = 𝑓(−𝑡, 0), and so 𝑓(−𝑡, 0) = 0 as well.

(ii) This follows from (3) and the fact that 𝑓 induces a group action of R on R𝑁 , once we

know that 𝑓(𝑡, 𝑝) is never 0. But if 𝑓(𝑡, 𝑝) = 0 then 𝑓(−𝑡, 0) = 𝑝, which contradicts part (i).

(iii) Let 𝑟1(𝑝) and 𝑟2(𝑝) denote the respective limits. By part (ii), both limits exist,

where 𝑟1(𝑝) ∈ [0,∞) and 𝑟2(𝑝) ∈ (0,∞]. For any 𝑟 ∈ (0,∞), consider the compact set

𝐾𝑟 :=
⋂︀
𝑠≥0 𝑓(𝑠, 𝐵

𝑁
𝑟 ). By (2), we have 𝐾𝑟 ⊂ 𝑓(𝑡,𝐾𝑟) =

⋂︀
𝑠≥𝑡 𝑓(𝑠, 𝐵

𝑁
𝑟 ) for any 𝑡 ≥ 0. On

the other hand, if 𝑞 ∈ 𝐾𝑟 is a point with maximum norm, and 𝑞 ̸= 0, then (3) implies that

𝑞 /∈ 𝑓(𝑡,𝐾𝑟) for any 𝑡 > 0. Thus 𝐾𝑟 = {0}. Taking 𝑟 = ‖𝑝‖ implies that 𝑟1(𝑝) = 0. Suppose

now that 𝑟2(𝑝) ̸= ∞. Then for any 𝑡 ≥ 0, we have 𝑓(−𝑡, 𝑝) ∈ 𝐵𝑁
𝑟2(𝑝)

, i.e. 𝑝 ∈ 𝑓(𝑡, 𝐵𝑁
𝑟2(𝑝)

).

Thus 𝑝 ∈ 𝐾𝑟2(𝑝) = {0}, a contradiction.

Lemma 2.1.3. Let 𝑄 ⊂ R𝑁 be a smooth embedded submanifold of dimension 𝑑 ≤ 𝑁 , and

𝑓 : R×R𝑁 → R𝑁 a contractive flow. Suppose that 𝑄 is bounded and satisfies the condition

𝑓(𝑡, 𝑄) ⊂ 𝑄 for 𝑡 > 0. (2.1.1)
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Then the closure 𝑄 is homeomorphic to a closed ball of dimension 𝑑, and 𝑄 ∖ 𝑄 is homeo-

morphic to a sphere of dimension 𝑑− 1.

Proof. Since 𝑄 is bounded, its closure 𝑄 is compact. By Lemma 2.1.2(iii) and (2.1.1) we

have 0 ∈ 𝑄, and therefore 0 ∈ 𝑄. Because 𝑄 is smoothly embedded, we can take 𝑟 > 0

sufficiently small so that 𝐵 := 𝐵𝑁
𝑟 ∩𝑄 is homeomorphic to a closed ball of dimension 𝑑. We

let 𝜕𝐵 denote (𝜕𝐵𝑁
𝑟 ) ∩𝑄, which is a (𝑑− 1)-dimensional sphere.

For any 𝑝 ∈ R𝑁 ∖ {0}, consider the curve 𝑡 ↦→ 𝑓(𝑡, 𝑝) starting at 𝑝 and defined for

all 𝑡 ∈ R. By Lemma 2.1.2(ii), this curve intersects the sphere 𝜕𝐵𝑁
𝑟 for a unique 𝑡 ∈ R,

which we denote by 𝑡𝑟(𝑝). Also, for 𝑝 ∈ 𝑄 ∖ {0}, define 𝑡𝜕(𝑝) ∈ (−∞, 0] as follows. Let

𝑇 (𝑝) := {𝑡 ∈ R : 𝑓(𝑡, 𝑝) ∈ 𝑄}. We have 0 ∈ 𝑇 (𝑝), and 𝑇 (𝑝) is bounded from below by

Lemma 2.1.2(iii) because 𝑄 is bounded. By (2.1.1), if 𝑡 ∈ 𝑇 (𝑝) then [𝑡,∞) ⊂ 𝑇 (𝑝). Also,

𝑇 (𝑝) is closed since it is the preimage of 𝑄 under the continuous map 𝑡 ↦→ 𝑓(𝑡, 𝑝). It follows

that 𝑇 (𝑝) = [𝑡𝜕(𝑝),∞) for some 𝑡𝜕(𝑝) ∈ (−∞, 0].

Claim. The functions 𝑡𝑟 and 𝑡𝜕 are continuous on 𝑄 ∖ {0}.

Proof. First we prove that 𝑡𝑟 is continuous on R𝑁 ∖{0}. It suffices to show that the preimage

of any open interval 𝐼 ⊂ R is open. To this end, let 𝑞 ∈ 𝑡−1
𝑟 (𝐼). Take 𝑡1, 𝑡2 ∈ 𝐼 with

𝑡1 < 𝑡𝑟(𝑞) < 𝑡2. By Lemma 2.1.2(ii), we have ‖𝑓(𝑡1, 𝑞)‖ > 𝑟 > ‖𝑓(𝑡2, 𝑞)‖. Note that the

map 𝛾1 : R𝑁 → R𝑁 , 𝑝 ↦→ 𝑓(𝑡1, 𝑝) is continuous and R𝑁 ∖ 𝐵𝑁
𝑟 is open, so 𝛾−1

1 (R𝑁 ∖ 𝐵𝑁
𝑟 ) is

an open neighborhood of 𝑞. Similarly, defining 𝛾2 : R𝑁 → R𝑁 , 𝑝 ↦→ 𝑓(𝑡2, 𝑝), we have that

𝛾−1
2 (int(𝐵𝑁

𝑟 )) is an open neighborhood of 𝑞. Therefore 𝛾−1
1 (R𝑁 ∖ 𝐵𝑁

𝑟 ) ∩ 𝛾−1
2 (int(𝐵𝑁

𝑟 )) is an

open neighborhood of 𝑞, whose image under 𝑡𝑟 is contained in (𝑡1, 𝑡2) ⊂ 𝐼. This shows that

𝑡𝑟 is continuous on R𝑁 ∖ {0}.

Next, let us define

𝑅 := {𝑓(𝑡, 𝑝) : (𝑡, 𝑝) ∈ R×𝑄}. (2.1.2)

The map 𝑏 : R× 𝜕𝐵 → 𝑅 ∖ {0} defined by (𝑡, 𝑝) ↦→ 𝑓(𝑡, 𝑝) is a continuous bijection. (Recall

that 𝜕𝐵 = (𝜕𝐵𝑁
𝑟 )∩𝑄.) Its inverse 𝑝 ↦→ (−𝑡𝑟(𝑝), 𝑓(𝑡𝑟(𝑝), 𝑝)) is continuous as well. Therefore

𝑏 is a homeomorphism. We claim that 𝑄 is relatively open in 𝑅. Indeed, since 𝑄 ∖ {0} is a

21



submanifold of 𝑅 ∖ {0} of the same dimension 𝑑, we deduce that 𝑄 ∖ {0} is an open subset

of 𝑅 ∖ {0}. Also, 𝑄 contains the neighborhood int(𝐵𝑁
𝑟 ) ∩ 𝑅 of 0 in 𝑅. Thus 𝑄 is an open

subset of 𝑅.

We now prove that the map 𝑡𝜕 : 𝑄 ∖ {0} → R is continuous, by a very similar argument.

Let 𝐼 ⊂ R be an open interval and consider a point 𝑞 ∈ 𝑡−1
𝜕 (𝐼). Take 𝑡1, 𝑡2 ∈ 𝐼 with

𝑡1 < 𝑡𝜕(𝑞) < 𝑡2. By the definition of 𝑡𝜕, we have 𝑓(𝑡1, 𝑞) ∈ 𝑅 ∖ 𝑄. By (2.1.1), we have

𝑓(𝑡2, 𝑞) ∈ 𝑄. Note that the map 𝛾1 : 𝑅 → 𝑅, 𝑝 ↦→ 𝑓(𝑡1, 𝑝) is continuous and 𝑅∖𝑄 is open in 𝑅,

so 𝛾−1
1 (𝑅∖𝑄) is an open neighborhood of 𝑞 in 𝑅. Similarly, defining 𝛾2 : 𝑅 → 𝑅, 𝑝 ↦→ 𝑓(𝑡2, 𝑝),

we have that 𝛾−1
2 (𝑄) is an open neighborhood of 𝑞 in 𝑅. Therefore 𝛾−1

1 (𝑅 ∖𝑄)∩ 𝛾−1
2 (𝑄)∩𝑄

is an open neighborhood of 𝑞 in 𝑄, whose image under 𝑡𝜕 is contained inside (𝑡1, 𝑡2) ⊂ 𝐼.

This finishes the proof of the claim.

Define the maps 𝛼 : 𝑄→ 𝐵 and 𝛽 : 𝐵 → 𝑄 by

𝛼(𝑝) := 𝑓(𝑡𝑟(𝑝)− 𝑡𝜕(𝑝), 𝑝), 𝛽(𝑝) := 𝑓(𝑡𝜕(𝑝)− 𝑡𝑟(𝑝), 𝑝)

for 𝑝 ̸= 0, and 𝛼(0) := 0, 𝛽(0) := 0. Let us verify that 𝛼 sends 𝑄 inside 𝐵 and 𝛽 sends

𝐵 inside 𝑄. If 𝑝 ∈ 𝑄 ∖ {0}, then 𝑓(𝑡𝑟(𝑝), 𝑝) ∈ 𝐵 and 𝑡𝜕(𝑝) ≤ 0, whence the contractive

property (3) implies 𝛼(𝑝) = 𝑓(−𝑡𝜕(𝑝), 𝑓(𝑡𝑟(𝑝), 𝑝)) ∈ 𝐵. Similarly, if 𝑝 ∈ 𝐵 ∖ {0}, then

𝑓(𝑡𝜕(𝑝), 𝑝) ∈ 𝑄 and 𝑡𝑟(𝑝) ≤ 0, whence (2.1.1) implies 𝛽(𝑝) = 𝑓(−𝑡𝑟(𝑝), 𝑓(𝑡𝜕(𝑝), 𝑝)) ∈ 𝑄.

Now we check that 𝛼 and 𝛽 are inverse maps. For any 𝑝 ∈ 𝑄 and Δ𝑡 ∈ R such that

𝑓(Δ𝑡, 𝑝) ∈ 𝑄, we have

𝑡𝑟(𝑓(Δ𝑡, 𝑝)) = 𝑡𝑟(𝑝)−Δ𝑡, 𝑡𝜕(𝑓(Δ𝑡, 𝑝)) = 𝑡𝜕(𝑝)−Δ𝑡.

Taking Δ𝑡 := 𝑡𝜕(𝑝)− 𝑡𝑟(𝑝), we find

𝛼(𝛽(𝑝)) = 𝛼(𝑓(Δ𝑡, 𝑝)) = 𝑓(𝑡𝑟(𝑓(Δ𝑡, 𝑝))− 𝑡𝜕(𝑓(Δ𝑡, 𝑝)), 𝑓(Δ𝑡, 𝑝)) = 𝑓(−Δ𝑡, 𝑓(Δ𝑡, 𝑝)) = 𝑝.

We can similarly verify that 𝛽(𝛼(𝑝)) = 𝑝, by instead taking Δ𝑡 := 𝑡𝑟(𝑝)− 𝑡𝜕(𝑝).

By the claim, 𝑡𝑟 and 𝑡𝜕 are continuous on 𝑄 ∖ {0}, so 𝛼 is continuous everywhere except

possibly at 0. Also, 𝑡𝑟(𝑝) > 𝑡𝜕(𝑝) for all 𝑝 ∈ 𝑄∖{0}, so 𝛼 is continuous at 0 by Lemma 2.1.2(ii).
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Thus 𝛼 is a continuous bijection from a compact space to a Hausdorff space, so it is a

homeomorphism. This shows that 𝑄 is homeomorphic to a closed 𝑑-dimensional ball.

It remains to prove that 𝑄 ∖ 𝑄 is homeomorphic to a (𝑑 − 1)-dimensional sphere. We

claim that 𝛼 restricts to a homeomorphism from 𝑄 ∖ 𝑄 to 𝜕𝐵. We need to check that 𝛼

sends 𝑄 ∖ 𝑄 inside 𝜕𝐵, and 𝛽 sends 𝜕𝐵 inside 𝑄 ∖ 𝑄. To this end, let 𝑝 ∈ 𝑄 ∖ 𝑄. By

condition (2), we have 𝑝 = 𝑓(−𝑡𝜕(𝑝), 𝑓(𝑡𝜕(𝑝), 𝑝)). Hence if 𝑡𝜕(𝑝) < 0, then (2.1.1) implies

𝑝 ∈ 𝑄, a contradiction. Therefore 𝑡𝜕(𝑝) = 0, and 𝛼(𝑝) = 𝑓(𝑡𝑟(𝑝), 𝑝) ∈ 𝜕𝐵. Now let 𝑞 ∈ 𝜕𝐵.

We have 𝑡𝑟(𝑞) = 0, so 𝛽(𝑞) = 𝑓(𝑡𝜕(𝑞), 𝑞). If 𝛽(𝑞) ∈ 𝑄, then 𝑓(𝑡𝜕(𝑞) − 𝑡, 𝑞) ∈ 𝑄 for 𝑡 > 0

sufficiently small (as 𝑄 is open in 𝑅 from (2.1.2)), contradicting the definition of 𝑡𝜕(𝑞). Thus

𝛽(𝑞) ∈ 𝑄 ∖𝑄.

2.2 The totally nonnegative Grassmannian

Let Gr(𝑘, 𝑛) denote the real Grassmannian, the space of all 𝑘-dimensional subspaces of

R𝑛. We set [𝑛] := {1, . . . , 𝑛}, and let
(︀
[𝑛]
𝑘

)︀
denote the set of 𝑘-element subsets of [𝑛]. For

𝑋 ∈ Gr(𝑘, 𝑛), we denote by (Δ𝐼(𝑋))
𝐼∈([𝑛]

𝑘 )
∈ P(

𝑛
𝑘)−1 the Plücker coordinates of 𝑋: Δ𝐼(𝑋) is

the 𝑘× 𝑘 minor of 𝑋 (viewed as a 𝑘× 𝑛 matrix modulo row operations) with column set 𝐼.

Recall that Gr≥0(𝑘, 𝑛) is the subset of Gr(𝑘, 𝑛) where all Plücker coordinates are nonneg-

ative (up to a common scalar). We also define the totally positive Grassmannian Gr>0(𝑘, 𝑛)

as the subset of Gr≥0(𝑘, 𝑛) where all Plücker coordinates are positive.

2.2.1 Global coordinates for Gr≥0(𝑘, 𝑛)

For each 𝑘 and 𝑛, we introduce several distinguished linear operators on R𝑛. Define the

left cyclic shift 𝑆 ∈ gl𝑛(R) = End(R𝑛) by 𝑆(𝑣1, . . . , 𝑣𝑛) := (𝑣2, . . . , 𝑣𝑛, (−1)𝑘−1𝑣1). The sign

(−1)𝑘−1 can be explained as follows: if we pretend that 𝑆 is an element of GL𝑛(R), then the

action of 𝑆 on Gr(𝑘, 𝑛) preserves Gr≥0(𝑘, 𝑛) (it acts on Plücker coordinates by rotating the

index set [𝑛]).

Note that the transpose 𝑆𝑇 of 𝑆 is the right cyclic shift given by 𝑆𝑇 (𝑣1, . . . , 𝑣𝑛) =

((−1)𝑘−1𝑣𝑛, 𝑣1, . . . , 𝑣𝑛−1). Let 𝜏 := 𝑆 + 𝑆𝑇 ∈ End(R𝑛). We endow R𝑛 with the stan-

dard inner product, so that 𝜏 (being symmetric) has an orthogonal basis of eigenvectors
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𝑢1, . . . , 𝑢𝑛 ∈ R𝑛 corresponding to real eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛. Let 𝑋0 ∈ Gr(𝑘, 𝑛) be the

linear span of 𝑢1, . . . , 𝑢𝑘. The following lemma implies that 𝑋0 is totally positive and does

not depend on the choice of eigenvectors 𝑢1, . . . , 𝑢𝑛.

Lemma 2.2.1.

(i) The eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 are given as follows, depending on the parity of 𝑘:

∙ if 𝑘 is even, 𝜆1 = 𝜆2 = 2 cos(𝜋
𝑛
), 𝜆3 = 𝜆4 = 2 cos(3𝜋

𝑛
), 𝜆5 = 𝜆6 = 2 cos(5𝜋

𝑛
), . . . ;

∙ if 𝑘 is odd, 𝜆1 = 1, 𝜆2 = 𝜆3 = 2 cos(2𝜋
𝑛
), 𝜆4 = 𝜆5 = 2 cos(4𝜋

𝑛
), . . . .

In either case, we have

𝜆𝑘 = 2 cos
(︀
𝑘−1
𝑛
𝜋
)︀
> 2 cos

(︀
𝑘+1
𝑛
𝜋
)︀
= 𝜆𝑘+1.

(ii) [Sco79] The Plücker coordinates of 𝑋0 are given by

Δ𝐼(𝑋0) =
∏︁

𝑖,𝑗∈𝐼, 𝑖<𝑗

sin
(︀
𝑗−𝑖
𝑛
𝜋
)︀
> 0 for all 𝐼 ∈

(︀
[𝑛]
𝑘

)︀
. (2.2.1)

For an example in the case of Gr(2, 4), see Section 2.2.5. (We remark that in the example,

the Plücker coordinates of 𝑋0 are scaled by a factor of 2 compared to the formula above.)

Proof. In this proof, we work over C. Let 𝜁 ∈ C be an 𝑛th root of (−1)𝑘−1. There are 𝑛

such values of 𝜁, each of the form 𝜁 = 𝑒𝑖𝜋𝑚/𝑛 for some integer 𝑚 congruent to 𝑘 − 1 modulo

2. Let 𝑧𝑚 := (1, 𝜁, 𝜁2, . . . , 𝜁𝑛−1) ∈ C𝑛. We have 𝑆(𝑧𝑚) = 𝜁𝑧𝑚 and 𝑆𝑇 (𝑧𝑚) = 𝜁−1𝑧𝑚, so

𝜏(𝑧𝑚) = (𝜁 + 𝜁−1)𝑧𝑚 = 2 cos(𝜋𝑚
𝑛
)𝑧𝑚. (2.2.2)

The 𝑛 distinct 𝑧𝑚’s are linearly independent (they form an 𝑛× 𝑛 Vandermonde matrix with

nonzero determinant), so they give a basis of C𝑛 of eigenvectors of 𝜏 .

We deduce part (i) from (2.2.2). For part (ii), we apply Vandermonde’s determinantal

identity, following an argument outlined by Scott [Sco79]. That is, by (2.2.2), the C-linear
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span of 𝑢1, . . . , 𝑢𝑘 is the same as the span of 𝑧−𝑘+1, 𝑧−𝑘+3, 𝑧−𝑘+5, . . . , 𝑧𝑘−1. Let 𝑀 be the

matrix whose rows are 𝑧−𝑘+1, 𝑧−𝑘+3, 𝑧−𝑘+5, . . . , 𝑧𝑘−1, i.e.

𝑀𝑟,𝑗 = 𝑒𝑖𝜋(−𝑘−1+2𝑟)(𝑗−1)/𝑛 for 1 ≤ 𝑟 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛.

Then the Plücker coordinates of 𝑋0 are the 𝑘 × 𝑘 minors of 𝑀 (up to a common nonzero

complex scalar), which can be computed explicitly by Vandermonde’s identity after appro-

priately rescaling the columns. We refer the reader to [Kar18] for details.

Denote by Mat(𝑘, 𝑛 − 𝑘) the vector space of real 𝑘 × (𝑛 − 𝑘) matrices. Define a map

𝜑 : Mat(𝑘, 𝑛− 𝑘) → Gr(𝑘, 𝑛) by

𝜑(𝐴) := span(𝑢𝑖 +
∑︀𝑛−𝑘

𝑗=1 𝐴𝑖,𝑗𝑢𝑘+𝑗 : 1 ≤ 𝑖 ≤ 𝑘). (2.2.3)

In other words, the entries of 𝐴 are the usual coordinates on the big Schubert cell of Gr(𝑘, 𝑛)

with respect to the basis 𝑢1, . . . , 𝑢𝑛 of R𝑛, this Schubert cell being

𝜑(Mat(𝑘, 𝑛− 𝑘)) = {𝑋 ∈ Gr(𝑘, 𝑛) : 𝑋 ∩ span(𝑢𝑘+1, . . . , 𝑢𝑛) = 0}.

In particular, 𝜑 is a smooth embedding, and it sends the zero matrix to 𝑋0. For an example

in the case of Gr(2, 4), see Section 2.2.5.

Proposition 2.2.2. The image 𝜑(Mat(𝑘, 𝑛− 𝑘)) contains Gr≥0(𝑘, 𝑛).

Proof. Let 𝑋 ∈ Gr≥0(𝑘, 𝑛) be a totally nonnegative subspace. We need to show that 𝑋 ∩

span(𝑢𝑘+1, . . . , 𝑢𝑛) = 0. Suppose otherwise that there exists a nonzero vector 𝑣 in this

intersection. Extend 𝑣 to a basis of 𝑋, and write this basis as the rows of a 𝑘×𝑛 matrix 𝑀 .

Because 𝑋 is totally nonnegative, the nonzero 𝑘×𝑘 minors of 𝑀 all have the same sign (and

at least one minor is nonzero, since 𝑀 has rank 𝑘). Also let 𝑀0 be the 𝑘 × 𝑛 matrix with

rows 𝑢1, . . . , 𝑢𝑘. By Lemma 2.2.1(ii), all 𝑘 × 𝑘 minors of 𝑀0 are nonzero and have the same

sign. The vectors 𝑢1, . . . , 𝑢𝑛 are orthogonal, so 𝑣 is orthogonal to the rows of 𝑀0. Hence

the first column of 𝑀0𝑀
𝑇 is zero, and we obtain det(𝑀0𝑀

𝑇 ) = 0. On the other hand, the
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Cauchy–Binet identity implies

det(𝑀0𝑀
𝑇 ) =

∑︁
𝐼∈([𝑛]

𝑘 )

det((𝑀0)𝐼)det(𝑀𝐼),

where 𝐴𝐼 denotes the matrix 𝐴 restricted to the columns 𝐼. Each summand has the same

sign and at least one summand is nonzero, contradicting det(𝑀0𝑀
𝑇 ) = 0.

We have shown that the restriction of 𝜑−1 to Gr≥0(𝑘, 𝑛) yields an embedding

Gr≥0(𝑘, 𝑛) →˓ Mat(𝑘, 𝑛− 𝑘) ≃ R𝑘(𝑛−𝑘)

whose restriction to Gr>0(𝑘, 𝑛) is smooth.

2.2.2 Flows on Gr(𝑘, 𝑛)

For 𝑔 ∈ GL𝑛(R), we let 𝑔 act on Gr(𝑘, 𝑛) by taking the subspace 𝑋 to 𝑔 ·𝑋 := {𝑔(𝑣) : 𝑣 ∈ 𝑋}.

We let 1 ∈ GL𝑛(R) denote the identity matrix, and for 𝑥 ∈ gl𝑛(R) we let exp(𝑥) :=
∑︀∞

𝑗=0
𝑥𝑗

𝑗!
∈

GL𝑛(R) denote the matrix exponential of 𝑥.

We examine the action of exp(𝑡𝑆) and exp(𝑡𝜏) on Gr(𝑘, 𝑛).

Lemma 2.2.3. For 𝑋 ∈ Gr≥0(𝑘, 𝑛) and 𝑡 > 0, we have exp(𝑡𝑆) ·𝑋 ∈ Gr>0(𝑘, 𝑛).

Proof. We claim that it suffices to prove the following two facts:

(i) for 𝑋 ∈ Gr≥0(𝑘, 𝑛) and 𝑡 ≥ 0, we have exp(𝑡𝑆) ·𝑋 ∈ Gr≥0(𝑘, 𝑛); and

(ii) for 𝑋 ∈ Gr≥0(𝑘, 𝑛) ∖ Gr>0(𝑘, 𝑛), we have exp(𝑡𝑆) · 𝑋 /∈ Gr≥0(𝑘, 𝑛) for all 𝑡 < 0

sufficiently close to zero.

To see why this is sufficient, let 𝑋 ∈ Gr≥0(𝑘, 𝑛) and 𝑡 > 0. By part (i), we have exp(𝑡𝑆) ·𝑋 ∈

Gr≥0(𝑘, 𝑛), so we just need to show that exp(𝑡𝑆) ·𝑋 ∈ Gr>0(𝑘, 𝑛). Suppose otherwise that

exp(𝑡𝑆) · 𝑋 /∈ Gr>0(𝑘, 𝑛). Then applying part (ii) to exp(𝑡𝑆) · 𝑋, we get that exp((𝑡 +

𝑡′)𝑆) · 𝑋 /∈ Gr≥0(𝑘, 𝑛) for 𝑡′ < 0 sufficiently close to zero. But by part (i), we know that

exp((𝑡+ 𝑡′)𝑆) ·𝑋 ∈ Gr≥0(𝑘, 𝑛) for all 𝑡′ in the interval [−𝑡, 0]. This is a contradiction.
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Now we prove parts (i) and (ii). We will make use of the operator 1 + 𝑡𝑆, which belongs

to GL𝑛(R) for |𝑡| < 1. Note that if [𝑀1 | · · · | 𝑀𝑛] is a 𝑘 × 𝑛 matrix representing 𝑋, then a

𝑘 × 𝑛 matrix representing (1 + 𝑡𝑆) ·𝑋 is

𝑀 ′ = [𝑀1 + 𝑡𝑀2 |𝑀2 + 𝑡𝑀3 | · · · |𝑀𝑛−1 + 𝑡𝑀𝑛 |𝑀𝑛 + (−1)𝑘−1𝑡𝑀1].

We can evaluate the 𝑘× 𝑘 minors of 𝑀 ′ using multilinearity of the determinant. We obtain

Δ𝐼((1 + 𝑡𝑆) ·𝑋) =
∑︁

𝜖∈{0,1}𝑘
𝑡𝜖1+···+𝜖𝑘Δ{𝑖1+𝜖1,...,𝑖𝑘+𝜖𝑘}(𝑋) for 𝐼 = {𝑖1, . . . , 𝑖𝑘} ⊂ [𝑛], (2.2.4)

where 𝑖1 + 𝜖1, . . . , 𝑖𝑘 + 𝜖𝑘 are taken modulo 𝑛. Therefore (1 + 𝑡𝑆) · 𝑋 ∈ Gr≥0(𝑘, 𝑛) for

𝑋 ∈ Gr≥0(𝑘, 𝑛) and 𝑡 ∈ [0, 1). Since exp(𝑡𝑆) = lim𝑗→∞

(︁
1 + 𝑡𝑆

𝑗

)︁𝑗
and Gr≥0(𝑘, 𝑛) is closed,

we obtain exp(𝑡𝑆) ·𝑋 ∈ Gr≥0(𝑘, 𝑛) for 𝑡 ≥ 0. This proves part (i).

To prove part (ii), first note that exp(𝑡𝑆) = 1 + 𝑡𝑆 +𝑂(𝑡2). By (2.2.4), we have

Δ𝐼(exp(𝑡𝑆) ·𝑋) = Δ𝐼(𝑋) + 𝑡
∑︁
𝐼′

Δ𝐼′(𝑋) +𝑂(𝑡2) for 𝐼 ∈
(︀
[𝑛]
𝑘

)︀
, (2.2.5)

where the sum is over all 𝐼 ′ ∈
(︀
[𝑛]
𝑘

)︀
obtained from 𝐼 by increasing exactly one element

by 1 modulo 𝑛. If we can find such 𝐼 and 𝐼 ′ with Δ𝐼(𝑋) = 0 and Δ𝐼′(𝑋) > 0, then

Δ𝐼(exp(𝑡𝑆) ·𝑋) < 0 for all 𝑡 < 0 sufficiently close to zero, thereby proving part (ii). In order

to do this, we introduce the directed graph 𝐷 with vertex set
(︀
[𝑛]
𝑘

)︀
, where 𝐽 → 𝐽 ′ is an edge

of 𝐷 if and only if we can obtain 𝐽 ′ from 𝐽 by increasing exactly one element by 1 modulo

𝑛. Note that for any two vertices 𝐾 and 𝐾 ′ of 𝐷, there exists a directed path from 𝐾 to 𝐾 ′:

∙ we can get from [𝑘] to any {𝑖1 < · · · < 𝑖𝑘} by shifting 𝑘 to 𝑖𝑘, 𝑘 − 1 to 𝑖𝑘−1, etc.;

∙ similarly, we can get from any {𝑖1 < · · · < 𝑖𝑘} to {𝑛− 𝑘 + 1, 𝑛− 𝑘 + 2, . . . , 𝑛};

∙ we can get from {𝑛− 𝑘 + 1, . . . , 𝑛} to [𝑘] by shifting 𝑛 to 𝑘, 𝑛− 1 to 𝑘 − 1, etc.

Now take 𝐾,𝐾 ′ ∈
(︀
[𝑛]
𝑘

)︀
with Δ𝐾(𝑋) = 0 and Δ𝐾′(𝑋) > 0, and consider a directed path from

𝐾 to 𝐾 ′. It goes through an edge 𝐼 → 𝐼 ′ with Δ𝐼(𝑋) = 0 and Δ𝐼′(𝑋) > 0, as desired.
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Now we consider exp(𝑡𝜏) = exp(𝑡(𝑆 + 𝑆𝑇 )). Recall that 𝑆 and 𝑆𝑇 are the left and right

cyclic shift maps, so by symmetry Lemma 2.2.3 holds with 𝑆 replaced by 𝑆𝑇 . Also, 𝑆 and

𝑆𝑇 commute, so exp(𝑡𝜏) = exp(𝑡𝑆) exp(𝑡𝑆𝑇 ). We obtain the following.

Corollary 2.2.4. For 𝑋 ∈ Gr≥0(𝑘, 𝑛) and 𝑡 > 0, we have exp(𝑡𝜏) ·𝑋 ∈ Gr>0(𝑘, 𝑛).

Let us see how exp(𝑡𝜏) acts on matrices 𝐴 ∈ Mat(𝑘, 𝑛 − 𝑘). Note that 𝜏(𝑢𝑖) = 𝜆𝑖𝑢𝑖 for

1 ≤ 𝑖 ≤ 𝑛, so exp(𝑡𝜏)(𝑢𝑖) = 𝑒𝑡𝜆𝑖𝑢𝑖. Therefore exp(𝑡𝜏) acts on the basis of 𝜑(𝐴) in (2.2.3) by

exp(𝑡𝜏)(𝑢𝑖 +
∑︀𝑛−𝑘

𝑗=1 𝐴𝑖,𝑗𝑢𝑘+𝑗) = 𝑒𝑡𝜆𝑖(𝑢𝑖 +
∑︀𝑛−𝑘

𝑗=1 𝑒
𝑡(𝜆𝑘+𝑗−𝜆𝑖)𝐴𝑖,𝑗𝑢𝑘+𝑗)

for all 1 ≤ 𝑖 ≤ 𝑘. Thus exp(𝑡𝜏)·𝜑(𝐴) = 𝜑(𝑓(𝑡, 𝐴)), where by definition 𝑓(𝑡, 𝐴) ∈ Mat(𝑘, 𝑛−𝑘)

is the matrix with entries

(𝑓(𝑡, 𝐴))𝑖,𝑗 := 𝑒𝑡(𝜆𝑘+𝑗−𝜆𝑖)𝐴𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛− 𝑘. (2.2.6)

2.2.3 Proof of Theorem 1.1.1

Consider the map 𝑓 : R×Mat(𝑘, 𝑛− 𝑘) → Mat(𝑘, 𝑛− 𝑘) defined by (2.2.6). We claim that

𝑓 is a contractive flow on Mat(𝑘, 𝑛− 𝑘) equipped with the Euclidean norm

‖𝐴‖2 =
𝑘∑︁
𝑖=1

𝑛−𝑘∑︁
𝑗=1

𝐴2
𝑖,𝑗.

Indeed, parts (1) and (2) of Definition 2.1.1 hold for 𝑓 . To see that part (3) holds, note that

for any 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛− 𝑘 with 𝐴𝑖,𝑗 ̸= 0, we have

|(𝑓(𝑡, 𝐴))𝑖,𝑗| = |𝑒𝑡(𝜆𝑘+𝑗−𝜆𝑖)𝐴𝑖,𝑗| = 𝑒𝑡(𝜆𝑘+𝑗−𝜆𝑖)|𝐴𝑖,𝑗| < |𝐴𝑖,𝑗| for 𝑡 > 0,

using the fact that 𝜆𝑖 ≥ 𝜆𝑘 > 𝜆𝑘+1 ≥ 𝜆𝑘+𝑗 from Lemma 2.2.1(i). Therefore ‖𝑓(𝑡, 𝐴)‖ < ‖𝐴‖

if 𝐴 ̸= 0, verifying part (3).

Let us now apply Lemma 2.1.3 with R𝑁 = Mat(𝑘, 𝑛 − 𝑘) and 𝑄 = 𝜑−1(Gr>0(𝑘, 𝑛)).

We need to know that Gr≥0(𝑘, 𝑛) is the closure of Gr>0(𝑘, 𝑛). This was proved by Post-

nikov [Pos07, Section 17]; it also follows directly from Corollary 2.2.4, since we can express
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any 𝑋 ∈ Gr≥0(𝑘, 𝑛) as a limit of totally positive subspaces:

𝑋 = lim
𝑡→0+

exp(𝑡𝜏) ·𝑋.

Therefore 𝑄 = 𝜑−1(Gr≥0(𝑘, 𝑛)). Moreover, Gr≥0(𝑘, 𝑛) is closed inside the compact space

P(
𝑛
𝑘)−1, and is therefore also compact. So, 𝑄 is compact (and hence bounded). Finally, the

property (2.1.1) in this case is precisely Corollary 2.2.4. We have verified all the hypotheses

of Lemma 2.1.3, and conclude that 𝑄 (and also Gr≥0(𝑘, 𝑛)) is homeomorphic to a 𝑘(𝑛− 𝑘)-

dimensional closed ball.

2.2.4 Related work

Lusztig [Lus98b, Section 4] used a flow similar to exp(𝑡𝜏) to show that (𝐺/𝑃 )≥0 is con-

tractible. In fact, we used his flow to show that (𝐺/𝑃 )≥0 is a ball in [GKL18]. Our flow can

be thought of as an affine (or loop group) analogue of his flow, and is closely related to the

whirl matrices of [LP12]. We also remark that Ayala, Kliemann, and San Martin [AKSM04]

used the language of control theory to give an alternative development in type 𝐴 of Lusztig’s

theory of total positivity. In that context, exp(𝑡𝜏) (𝑡 > 0) lies in the interior of the compres-

sion semigroup of Gr≥0(𝑘, 𝑛), and 𝑋0 is its attractor.

Marsh and Rietsch defined and studied a superpotential on the Grassmannian in the

context of mirror symmetry [MR15, Section 6]. It follows from results of Rietsch [Rie08]

(as explained in [Kar18]) that 𝑋0 is, rather surprisingly, also the unique totally nonnegative

critical point of the 𝑞 = 1 specialization of the superpotential. However, the superpotential

is not defined on the boundary of Gr≥0(𝑘, 𝑛). The precise relationship between 𝜏 and the

gradient flow of the superpotential remains mysterious.
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2.2.5 Example: the case Gr(2, 4)

The matrix 𝜏 = 𝑆 + 𝑆𝑇 ∈ gl4(R) and an orthogonal basis of real eigenvectors 𝑢1, 𝑢2, 𝑢3, 𝑢4

are

𝜏 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
𝑢1 = (0, 1,

√
2, 1), 𝜆1 =

√
2,

𝑢2 = (−
√
2,−1, 0, 1), 𝜆2 =

√
2,

𝑢3 = (
√
2,−1, 0, 1), 𝜆3 = −

√
2,

𝑢4 = (0, 1,−
√
2, 1), 𝜆4 = −

√
2.

The embedding 𝜑 : Mat(2, 2) →˓ Gr(2, 4) sends the matrix 𝐴 =

⎡⎣𝑎 𝑏

𝑐 𝑑

⎤⎦ to

𝜑(𝐴) = 𝑋 =

⎡⎣𝑢1 + 𝑎𝑢3 + 𝑏𝑢4

𝑢2 + 𝑐𝑢3 + 𝑑𝑢4

⎤⎦ =

⎡⎣ √
2𝑎 1− 𝑎+ 𝑏

√
2−

√
2𝑏 1 + 𝑎+ 𝑏

−
√
2 +

√
2𝑐 −1− 𝑐+ 𝑑 −

√
2𝑑 1 + 𝑐+ 𝑑

⎤⎦ .
Above we are identifying 𝑋 ∈ Gr(2, 4) with a 2 × 4 matrix whose rows form a basis of 𝑋.

In terms of Plücker coordinates Δ𝑖𝑗 = Δ{𝑖,𝑗}(𝑋), the map 𝜑 is given by

Δ12 =
√
2(1− 2𝑎+ 𝑏− 𝑐+ 𝑎𝑑− 𝑏𝑐),

Δ23 =
√
2(1− 2𝑑− 𝑏+ 𝑐+ 𝑎𝑑− 𝑏𝑐),

Δ34 =
√
2(1 + 2𝑑− 𝑏+ 𝑐+ 𝑎𝑑− 𝑏𝑐),

Δ14 =
√
2(1 + 2𝑎+ 𝑏− 𝑐+ 𝑎𝑑− 𝑏𝑐),

Δ13 = 2(1− 𝑏− 𝑐− 𝑎𝑑+ 𝑏𝑐),

Δ24 = 2(1 + 𝑏+ 𝑐− 𝑎𝑑+ 𝑏𝑐),
(2.2.7)

and its inverse is given by

𝑎 = (2Δ14 − 2Δ12)/𝛿, 𝑏 = (Δ12 −Δ23 −Δ34 +Δ14 −
√
2Δ13 +

√
2Δ24)/𝛿,

𝑑 = (2Δ34 − 2Δ23)/𝛿, 𝑐 = (−Δ12 +Δ23 +Δ34 −Δ14 −
√
2Δ13 +

√
2Δ24)/𝛿,

where 𝛿 = Δ12 +Δ23 +Δ34 +Δ14 +
√
2Δ13 +

√
2Δ24.
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The point 𝑋0 = 𝜑(0) = span(𝑢1, 𝑢2) ∈ Gr>0(2, 4) has Plücker coordinates

Δ12 = Δ23 = Δ34 = Δ14 =
√
2, Δ13 = Δ24 = 2,

which agrees with Lemma 2.2.1(ii). The image of 𝜑 is the subset of Gr(2, 4) where 𝛿 ̸= 0,

which we see includes Gr≥0(2, 4), verifying Proposition 2.2.2 in this case. Restricting 𝜑−1

to Gr≥0(2, 4) gives a homeomorphism onto the subset of R4 of points (𝑎, 𝑏, 𝑐, 𝑑) where the

6 polynomials Δ𝑖𝑗 in (2.2.7) are nonnegative. By Theorem 1.1.1, these spaces are both

homeomorphic to 4-dimensional closed balls. The closures of cells in the cell decomposition

of Gr≥0(2, 4) are obtained in R4 by taking an intersection with the zero locus of some subset

of the 6 polynomials. The 0-dimensional cells (corresponding to points of Gr≥0(2, 4) with

only one nonzero Plücker coordinate) are

(𝑎, 𝑏, 𝑐, 𝑑) = (−2, 1,−1, 0), (0,−1, 1,−2), (0,−1, 1, 2), (2, 1,−1, 0), (0,−1,−1, 0), (0, 1, 1, 0).

In general, using the embedding 𝜑 we can describe Gr≥0(𝑘, 𝑛) as the subset of R𝑘(𝑛−𝑘) where

some
(︀
𝑛
𝑘

)︀
polynomials of degree at most 𝑘 are nonnegative.

2.3 The cyclically symmetric amplituhedron

Let 𝑘,𝑚, 𝑛 be nonnegative integers with 𝑘 + 𝑚 ≤ 𝑛 and 𝑚 even, and let 𝑆, 𝜏 ∈ gl𝑛(R)

be the operators from Section 2.2.1. Let 𝜆1 ≥ · · · ≥ 𝜆𝑛 ∈ R be the eigenvalues of 𝜏

corresponding to orthogonal eigenvectors 𝑢1, . . . , 𝑢𝑛. In this section, we assume that these

eigenvectors have norm 1. Recall from Lemma 2.2.1(i) that 𝜆𝑘 > 𝜆𝑘+1. Since 𝑚 is even, we

have (−1)𝑘+𝑚−1 = (−1)𝑘−1 and 𝜆𝑘+𝑚 > 𝜆𝑘+𝑚+1.

Let 𝑍0 denote the (𝑘+𝑚)×𝑛matrix whose rows are 𝑢1, . . . , 𝑢𝑘+𝑚. By Lemma 2.2.1(ii), the

(𝑘+𝑚)×(𝑘+𝑚) minors of 𝑍0 are all positive (perhaps after replacing 𝑢1 with −𝑢1). We may

also think of 𝑍0 as a linear map R𝑛 → R𝑘+𝑚. Since the vectors 𝑢1, . . . , 𝑢𝑛 are orthonormal,

this map takes 𝑢𝑖 to the 𝑖th unit vector 𝑒𝑖 ∈ R𝑘+𝑚 if 𝑖 ≤ 𝑘+𝑚, and to 0 if 𝑖 > 𝑘+𝑚. Recall

from Section 1.4 that 𝑍0 induces a map (𝑍0)Gr : Gr≥0(𝑘, 𝑛) → Gr(𝑘, 𝑘 +𝑚), whose image

is the cyclically symmetric amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍0). We remark that if 𝑔 ∈ GL𝑘+𝑚(R),
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then 𝒜𝑛,𝑘,𝑚(𝑔𝑍0) and 𝒜𝑛,𝑘,𝑚(𝑍0) are related by the automorphism 𝑔 of Gr(𝑘, 𝑘 +𝑚), so the

topology of 𝒜𝑛,𝑘,𝑚(𝑍0) depends only on the row span of 𝑍0 in Gr(𝑘 +𝑚,𝑛).

Proof of Theorem 1.4.1. We consider the map 𝜑 : Mat(𝑘, 𝑛−𝑘) → Gr(𝑘, 𝑛) defined in (2.2.3).

We write each 𝑘×(𝑛−𝑘) matrix 𝐴 ∈ Mat(𝑘, 𝑛−𝑘) as [𝐴′ | 𝐴′′], where 𝐴′ and 𝐴′′ are the 𝑘×𝑚

and 𝑘 × (𝑛− 𝑘 −𝑚) submatrices of 𝐴 with column sets {1, . . . ,𝑚} and {𝑚+ 1, . . . , 𝑛− 𝑘},

respectively. We introduce a projection map

𝜋 : Mat(𝑘, 𝑛− 𝑘) → Mat(𝑘,𝑚), 𝐴 = [𝐴′ | 𝐴′′] ↦→ 𝐴′.

We claim that there exists an embedding 𝛾 : 𝒜𝑛,𝑘,𝑚(𝑍0) →˓ Mat(𝑘,𝑚) making the following

diagram commute:
Mat(𝑘, 𝑛− 𝑘) Mat(𝑘,𝑚)

Gr≥0(𝑘, 𝑛) 𝒜𝑛,𝑘,𝑚(𝑍0)

𝜋

𝜑−1

(𝑍0)Gr

𝛾 . (2.3.1)

Let 𝐴 = [𝐴′ | 𝐴′′] ∈ Mat(𝑘, 𝑛 − 𝑘) be a matrix such that 𝜑(𝐴) ∈ Gr≥0(𝑘, 𝑛). Then the

element (𝑍0)Gr(𝜑(𝐴)) of Gr(𝑘, 𝑘 +𝑚) is the row span of the 𝑘 × (𝑘 +𝑚) matrix [Id𝑘 | 𝐴′],

where Id𝑘 denotes the 𝑘 × 𝑘 identity matrix. Thus 𝒜𝑛,𝑘,𝑚(𝑍0) = (𝑍0)Gr(Gr≥0(𝑘, 𝑛)) lies

inside the Schubert cell

{𝑌 ∈ Gr(𝑘, 𝑘 +𝑚) : Δ[𝑘](𝑌 ) ̸= 0}.

Every element 𝑌 of this Schubert cell is the row span of [Id𝑘 | 𝐴′] for a unique 𝐴′, and we

define 𝛾(𝑌 ) := 𝐴′. Thus 𝛾 embeds 𝒜𝑛,𝑘,𝑚(𝑍0) inside Mat(𝑘,𝑚), and (2.3.1) commutes.

Now we define

𝑄0 := 𝜋(𝜑−1(Gr>0(𝑘, 𝑛))) ⊂ Mat(𝑘,𝑚).

We know from Section 2.2.3 that 𝜑−1(Gr>0(𝑘, 𝑛)) is an open subset of Mat(𝑘, 𝑛) whose closure

𝜑−1(Gr≥0(𝑘, 𝑛)) is compact. Note that 𝜋 is an open map (since it is essentially a projection

R𝑘(𝑛−𝑘) → R𝑘𝑚), so 𝑄0 is an open subset of Mat(𝑘,𝑚). Note that any open subset of R𝑁 is

a smooth embedded submanifold of dimension 𝑁 . The closure 𝑄0 = 𝜋(𝜑−1(Gr≥0(𝑘, 𝑛))) of

𝑄0 is compact. By (2.3.1), 𝑄0 is homeomorphic to 𝒜𝑛,𝑘,𝑚(𝑍0).

Let 𝑓 : R ×Mat(𝑘, 𝑛 − 𝑘) → Mat(𝑘, 𝑛 − 𝑘) be the map defined by (2.2.6), and define a
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similar map 𝑓0 : R×Mat(𝑘,𝑚) → Mat(𝑘,𝑚) by

𝑓0(𝑡, 𝐴
′)𝑖,𝑗 := 𝑒𝑡(𝜆𝑘+𝑗−𝜆𝑖)𝐴′

𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑚.

That is, 𝑓0(𝑡, 𝜋(𝐴)) = 𝜋(𝑓(𝑡, 𝐴)) for all 𝑡 ∈ R and 𝐴 ∈ Mat(𝑘, 𝑛 − 𝑘). We showed in

Section 2.2.3 that 𝑓 is a contractive flow, so 𝑓0 is also a contractive flow. We also showed

that

𝑓(𝑡, 𝜑−1(Gr≥0(𝑘, 𝑛))) ⊂ 𝜑−1(Gr>0(𝑘, 𝑛)) for 𝑡 > 0,

and applying 𝜋 to both sides shows that

𝑓0(𝑡, 𝑄0) ⊂ 𝑄0 for 𝑡 > 0.

Thus Lemma 2.1.3 applies to 𝑄0 and 𝑓0, showing that 𝑄0 (and hence 𝒜𝑛,𝑘,𝑚(𝑍0)) is homeo-

morphic to a 𝑘𝑚-dimensional closed ball.

Example 2.3.1. Let 𝑘 = 1, 𝑛 = 4, 𝑚 = 2. We have

𝜏 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
𝑢1 =

(︀
1
2
, 1
2
, 1
2
, 1
2

)︀
, 𝜆1 = 2,

𝑢2 =
(︁

1√
2
, 0,− 1√

2
, 0
)︁
, 𝜆2 = 0,

𝑢3 =
(︁
0, 1√

2
, 0,− 1√

2

)︁
, 𝜆3 = 0,

𝑢4 =
(︀
1
2
,−1

2
, 1
2
,−1

2

)︀
, 𝜆4 = −2,

𝑍0 =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

1
2

1
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

⎤⎥⎥⎥⎥⎥⎦ .

Note that this 𝜏 differs in the top-right and bottom-left entries from the one in Section 2.2.5,

because 𝑘 is odd rather than even. Also, here the eigenvectors are required to have norm 1.

The embedding 𝜑 : Mat(1, 3) →˓ Gr(1, 4) sends a matrix 𝐴 :=
[︁
𝑎 𝑏 𝑐

]︁
to the line 𝜑(𝐴) in

Gr(1, 4) spanned by the vector

𝑣 = 𝑢1 + 𝑎𝑢2 + 𝑏𝑢3 + 𝑐𝑢4 =
1

2

(︁
1 +

√
2𝑎+ 𝑐, 1 +

√
2𝑏− 𝑐, 1−

√
2𝑎+ 𝑐, 1−

√
2𝑏− 𝑐

)︁
.

This line gets sent by (𝑍0)Gr to the row span of the matrix 𝑣 · 𝑍𝑇
0 =

[︁
1 𝑎 𝑏

]︁
. Finally, 𝛾

sends this element of Gr(1, 3) to the matrix
[︁
𝑎 𝑏

]︁
, so (2.3.1) indeed commutes.
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In order for 𝜑(𝐴) to land in Gr≥0(1, 4), the coordinates of 𝑣 must all have the same sign,

and since their sum is 2, they must all be nonnegative:

1 +
√
2𝑎+ 𝑐 ≥ 0, 1 +

√
2𝑏− 𝑐 ≥ 0, 1−

√
2𝑎+ 𝑐 ≥ 0, 1−

√
2𝑏− 𝑐 ≥ 0.

These linear inequalities define a tetrahedron in R3 ≃ Mat(1, 3) with the four vertices(︀
0,±

√
2,−1

)︀
,
(︀
±
√
2, 0, 1

)︀
. The projection 𝜋 = 𝛾 ∘ (𝑍0)Gr ∘ 𝜑 sends this tetrahedron to a

square in R2 ≃ Mat(1, 2) with vertices
(︀
0,±

√
2
)︀
,
(︀
±
√
2, 0

)︀
. This square is a 𝑘𝑚-dimensional

ball, as implied by Theorem 1.4.1. We note that when 𝑘 = 1, the amplituhedron 𝒜𝑛,𝑘,𝑚(𝑍)

(for any (𝑘+𝑚)×𝑛 matrix 𝑍 with positive maximal minors) is a cyclic polytope in the pro-

jective space Gr(1,𝑚+1) = P𝑚 [Stu88], and is therefore homeomorphic to a 𝑘𝑚-dimensional

closed ball. The case of 𝑘 ≥ 2 and 𝑍 ̸= 𝑍0 remains open.

2.4 The space of planar electrical networks

2.4.1 A slice of the totally nonnegative Grassmannian

We recall some background on electrical networks, and refer the reader to [Lam18] and

Example 2.4.3 for details. Let R(
2𝑛
𝑛−1) have basis vectors 𝑒𝐼 for 𝐼 ∈

(︀
[2𝑛]
𝑛−1

)︀
, and let P(

2𝑛
𝑛−1)−1

denote the corresponding projective space. We define

[2𝑛]odd := {2𝑖− 1 : 𝑖 ∈ [𝑛]}, [2𝑛]even := {2𝑖 : 𝑖 ∈ [𝑛]}.

Let 𝒩𝒞𝑛 denote the set of non-crossing partitions of [2𝑛]odd. Each 𝜎 ∈ 𝒩𝒞𝑛 comes with

a dual non-crossing partition (or Kreweras complement) �̃� of [2𝑛]even. We call a subset

𝐼 ∈
(︀
[2𝑛]
𝑛−1

)︀
concordant with 𝜎 if every part of 𝜎 and every part of �̃� contains exactly one

element not in 𝐼. Let 𝐴𝜎 ∈ R(
2𝑛
𝑛−1) be the sum of 𝑒𝐼 over all 𝐼 concordant with 𝜎, and let ℋ

be the linear subspace of P(
2𝑛
𝑛−1)−1 spanned by the images of 𝐴𝜎 for 𝜎 ∈ 𝒩𝒞𝑛.

Identifying Gr(𝑛 − 1, 2𝑛) with its image under the Plücker embedding, we consider the

34



subvariety 𝒳𝑛 := Gr(𝑛− 1, 2𝑛) ∩ℋ. In [Lam18, Theorem 5.8], an embedding

𝜄 : 𝐸𝑛 ≃ 𝒳𝑛 ∩Gr≥0(𝑛− 1, 2𝑛) →˓ Gr≥0(𝑛− 1, 2𝑛) (2.4.1)

was constructed, identifying the compactification of the space of planar electrical networks

with 𝑛 boundary vertices 𝐸𝑛 with the compact space 𝒳𝑛 ∩Gr≥0(𝑛− 1, 2𝑛). We will need the

following property of (𝐸𝑛)>0 := 𝒳𝑛 ∩Gr>0(𝑛− 1, 2𝑛).

Proposition 2.4.1. The space (𝐸𝑛)>0 is diffeomorphic to R(
𝑛
2)
>0 , and the inclusion (𝐸𝑛)>0 →˓

Gr>0(𝑛− 1, 2𝑛) is a smooth embedding.

Here Gr>0(𝑛−1, 2𝑛) ⊂ Gr(𝑛−1, 2𝑛) is an open submanifold diffeomorphic to R(𝑛−1)(𝑛+1)
>0 .

Proof. We recall from [CIM98, Theorem 4] that each point in (𝐸𝑛)>0 = Ω+
𝑛 is uniquely

represented by assigning a positive real number (the conductance) to each edge of a well-

connected electrical network Γ with
(︀
𝑛
2

)︀
edges. This gives a parametrization (𝐸𝑛)>0 ≃ R(

𝑛
2)
>0 .

The construction Γ ↦→ 𝑁(Γ) of [Lam18, Section 5] sends Γ to a weighted bipartite graph

𝑁(Γ) embedded into a disk compatibly with the inclusion (2.4.1). The edge weights of 𝑁(Γ)

are monomials in the edge weights of Γ. Furthermore, the underlying bipartite graph 𝐺 of

𝑁(Γ) parametrizes Gr>0(𝑛−1, 2𝑛). That is, we can choose a set of (𝑛−1)(𝑛+1) edges of 𝐺,

so that assigning arbitrary positive edge weights to these edges and weight 1 to the remaining

edges induces a parametrization Gr>0(𝑛 − 1, 2𝑛) ≃ R(𝑛−1)(𝑛+1)
>0 (see [Pos07] or [Tal11]). It

follows that the inclusion R(
𝑛
2)
>0 ≃ (𝐸𝑛)>0 →˓ Gr>0(𝑛 − 1, 2𝑛) ≃ R(𝑛−1)(𝑛+1)

>0 is a monomial

map, and in particular a homomorphism of Lie groups. The result follows.

2.4.2 Operators acting on non-crossing partitions

For each 𝑖 ∈ [2𝑛], we define 𝑢𝑖 and 𝑑𝑖 in gl( 2𝑛
𝑛−1)

(R) by

𝑢𝑖(𝑒𝐼) :=

⎧⎪⎨⎪⎩𝑒𝐼∪{𝑖+1}∖{𝑖}, if 𝑖 ∈ 𝐼, 𝑖+ 1 /∈ 𝐼,

0, otherwise,
𝑑𝑖(𝑒𝐼) :=

⎧⎪⎨⎪⎩𝑒𝐼∪{𝑖−1}∖{𝑖}, if 𝑖 ∈ 𝐼, 𝑖− 1 /∈ 𝐼,

0, otherwise.

Here the indices are taken modulo 2𝑛.
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For 𝑖 ∈ [2𝑛]odd, we let 𝜅(𝑖) ∈ 𝒩𝒞𝑛 be the non-crossing partition which has two parts,

namely {𝑖} and [2𝑛]odd∖{𝑖}. For 𝑖 ∈ [2𝑛]even, we let 𝜇(𝑖) ∈ 𝒩𝒞𝑛 be the non-crossing partition

with 𝑛− 1 parts, one of which is {𝑖− 1, 𝑖+1} and the rest being singletons. Given 𝜎 ∈ 𝒩𝒞𝑛
and 𝑖 ∈ [2𝑛], we define the noncrossing partition 𝜎′(𝑖) ∈ 𝒩𝒞𝑛 as the common refinement of

𝜎 and 𝜅(𝑖) if 𝑖 is odd, and the common coarsening of 𝜎 and 𝜇(𝑖) if 𝑖 is even. The following

combinatorial lemma is essentially [Lam18, Proposition 5.15], and can be verified directly.

Lemma 2.4.2. For all 𝑖 ∈ [2𝑛], we have

(𝑢𝑖 + 𝑑𝑖)(𝐴𝜎) =

⎧⎪⎨⎪⎩0, if 𝜎 = 𝜎′(𝑖),

𝐴𝜎′(𝑖), otherwise.

Example 2.4.3. Let 𝑛 := 3 and 𝜎 := {{1, 3}, {5}} ∈ 𝒩𝒞𝑛, so that �̃� = {{2}, {4, 6}}, 𝜎′(1) =

𝜎′(3) = {{1}, {3}, {5}}, 𝜎′(2) = 𝜎′(5) = 𝜎, and 𝜎′(4) = 𝜎′(6) = {{1, 3, 5}}. Abbreviating

𝑒{𝑎,𝑏} by 𝑒𝑎𝑏, we have

𝐴𝜎 = 𝑒14 + 𝑒16 + 𝑒34 + 𝑒36.

Note that 𝜎 ̸= 𝜎′(1) and

(𝑢1 + 𝑑1)(𝐴𝜎) = (𝑒24 + 𝑒26) + (𝑒46) = 𝐴𝜎′(1),

in agreement with Lemma 2.4.2 (since the dual of 𝜎′(1) is {{2, 4, 6}}). Similarly, we have

𝜎 = 𝜎′(2) and

(𝑢2 + 𝑑2)(𝐴𝜎) = 0 + 0 = 0.

We define the operator Φ :=
∑︀2𝑛

𝑖=1 𝑢𝑖 + 𝑑𝑖 ∈ gl( 2𝑛
𝑛−1)

(R).

Lemma 2.4.4. Let 𝑋 ∈ 𝐸𝑛. We have exp(𝑡𝜏) ·𝑋 ∈ (𝐸𝑛)>0 for all 𝑡 > 0.

Proof. This follows from Corollary 2.2.4, once we show that exp(𝑡𝜏) · 𝑋 ∈ ℋ for 𝑋 ∈ 𝒳𝑛

and 𝑡 ∈ R. To do this, we identify Gr(𝑛 − 1, 2𝑛) with its image in P(
2𝑛
𝑛−1)−1 under the

Plücker embedding sending 𝑋 ∈ Gr(𝑛 − 1, 2𝑛) to
∑︀

𝐼∈( [2𝑛]
𝑛−1)

Δ𝐼(𝑋)𝑒𝐼 ∈ P(
2𝑛
𝑛−1)−1. Then for
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any 𝑋 ∈ 𝒳𝑛, we have a smooth curve 𝑡 ↦→ exp(𝑡𝜏) ·𝑋 in P(
2𝑛
𝑛−1)−1. As in (2.2.5), we find that

exp(𝑡𝜏) ·𝑋 = 𝑋 + 𝑡Φ(𝑋) +𝑂(𝑡2) in P(
2𝑛
𝑛−1)−1

as 𝑡 → 0. Therefore exp(𝑡𝜏) ·𝑋 is an integral curve for the smooth vector field on P(
2𝑛
𝑛−1)−1

defined by the infinitesimal action of Φ. By Lemma 2.4.2, this vector field is tangent to ℋ,

so exp(𝑡𝜏) ·𝑋 ∈ ℋ for all 𝑡 ∈ R.

Proof of Theorem 1.5.1. We are identifying (𝐸𝑛)>0 as a subset Gr>0(𝑛−1, 2𝑛) via the smooth

embedding of Proposition 2.4.1. In turn, Gr>0(𝑛 − 1, 2𝑛) is smoothly embedded inside

Mat(𝑛 − 1, 𝑛 + 1) by the map 𝜑−1 defined in (2.2.3). Thus 𝑄 := 𝜑−1((𝐸𝑛)>0) ⊂ Mat(𝑛 −

1, 𝑛+1) is a smoothly embedded submanifold of Mat(𝑛−1, 𝑛+1) of dimension
(︀
𝑛
2

)︀
. The map

𝜑−1 sends the compact set 𝐸𝑛 homeomorphically onto its image 𝜑−1(𝐸𝑛). Since (𝐸𝑛)>0 is

dense in 𝐸𝑛, we have that 𝜑−1(𝐸𝑛) equals the closure 𝑄 of 𝑄. Let 𝑓 : R×Mat(𝑛−1, 𝑛+1) →

Mat(𝑛 − 1, 𝑛 + 1) be the map defined by (2.2.6). We showed in Section 2.2.3 that 𝑓 is a

contractive flow, and Lemma 2.4.4 implies that (2.1.1) holds for our choice of 𝑄 and 𝑓 . Thus

Lemma 2.1.3 applies, completing the proof.
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3

Regularity theorem for totally

nonnegative flag varieties

The goal of this chapter is to prove Theorem 1.2.1 and its special case Theorem 1.1.2. We

start by giving a quick explanation of the proof idea in Section 3.1, and then give an outline of

the rest of this chapter. A more detailed description of the proof can be found in Section 3.2.

3.1 Stars, links, and the Fomin–Shapiro atlas

Rietsch [Rie06] defined a certain poset (𝑄𝐽 ,⪯) and proved the decomposition (𝐺/𝑃 )≥0 =⨆︀
𝑔∈𝑄𝐽

Π>0
𝑔 . She showed that for ℎ ∈ 𝑄𝐽 , the closure Π≥0

ℎ of Π>0
ℎ is given by Π≥0

ℎ =
⨆︀
𝑔⪯ℎΠ

>0
ℎ .

When (𝐺/𝑃 )≥0 is the totally nonnegative Grassmannian Gr≥0(𝑘, 𝑛), this gives the positroid

cell decomposition of [Pos07].

Given 𝑔 ∈ 𝑄𝐽 , define the star of 𝑔 in (𝐺/𝑃 )≥0 by

Star≥0
𝑔 :=

⨆︁
ℎ⪰𝑔

Π>0
ℎ . (3.1.1)

In Section 3.3.1, we define another space Lk≥0
𝑔 stratified as Lk≥0

𝑔 =
⨆︀
ℎ≻𝑔 Lk

>0
𝑔,ℎ. We later

show in Theorem 3.3.11 that Lk≥0
𝑔 is a regular CW complex homeomorphic to a closed ball.
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id

𝑠1 𝑠2

𝑠1𝑠2𝑠2𝑠1

𝑤0

Π>0
𝑔

𝜈𝑔−→

𝑠1𝑠2𝑠1 Π>0
𝑔

𝑤0

𝑠2 id

𝑠1𝑠2

Figure 3-1: The map 𝜈𝑔 for the case 𝐺 = SL3 and 𝑃 = 𝐵 from Example 3.1.1.

For each 𝑔 ∈ 𝑄𝐽 , we construct a (stratification-preserving) homeomorphism

𝜈𝑔 : Star
≥0
𝑔

∼−→ Π>0
𝑔 × Cone(Lk≥0

𝑔 ), (3.1.2)

Here for a topological space 𝐴, we denote by Cone(𝐴) := (𝐴×R≥0)/(𝐴×{0}) the open cone

over 𝐴.

Example 3.1.1. When 𝐺 = SL𝑛 and 𝑃 = 𝐵 is the standard Borel subgroup, 𝐺/𝐵 is the

complete flag variety consisting of flags in C𝑛, and the Weyl group 𝑊 is the group 𝑆𝑛 of

permutations of 𝑛 elements. The face poset 𝑄𝐽 of (𝐺/𝐵)≥0 is the set of Bruhat intervals

{(𝑣, 𝑤) ∈ 𝑆𝑛 × 𝑆𝑛 | 𝑣 ≤ 𝑤} in 𝑆𝑛, and the cell Π>0
(𝑣,𝑤) ⊂ (𝐺/𝐵)≥0 indexed by (𝑣, 𝑤) has

dimension ℓ(𝑤) − ℓ(𝑣). For example, when 𝑛 = 3, this gives a cell decomposition of a 3-

dimensional ball, see Figure 3-1 (left). For 𝑔 := (𝑠1, 𝑠2𝑠1), Π>0
𝑔 is an open line segment, and

Star≥0
𝑔 consists of 4 cells: a line segment Π>0

𝑔 = Π>0
(𝑠1,𝑠2𝑠1)

, two open square faces Π>0
(𝑠1,𝑤0)

and

Π>0
(id,𝑠2𝑠1)

, and an open 3-dimensional ball Π>0
(id,𝑤0)

. This union is indeed homeomorphic to

Π>0
𝑔 × Cone(Lk≥0

𝑔 ) shown in Figure 3-1 (right). Here Lk≥0
𝑔 is a closed line segment whose

endpoints are Lk>0
𝑔,(𝑠1,𝑤0)

and Lk>0
𝑔,(id,𝑠2𝑠1)

, and whose interior is Lk>0
𝑔,(id,𝑤0)

.

At the core of our construction lies the notion of a Fomin–Shapiro atlas, which is essen-

tially the collection of homeomorphisms 𝜈𝑔 for all 𝑔 ∈ 𝑄𝐽 . For technical reasons, we require

𝜈𝑔 to be a smooth map defined on an open neighborhood 𝒪𝑔 of Star≥0
𝑔 , see Section 3.2.1.

Our maps are analogous to those introduced in [FS00] for the unipotent radical 𝑈≥0.

In Section 3.3, we prove that constructing a Fomin–Shapiro atlas is sufficient to deduce
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that (𝐺/𝑃 )≥0 is a regular CW complex. Our topological argument proceeds by induction

on the dimension of a cell. It relies on the generalized Poincaré conjecture [Sma61, Fre82,

Per02, Per03a, Per03b] combined with the result of Williams [Wil07] that the face poset 𝑄𝐽

of (𝐺/𝑃 )≥0 is shellable.

In order to construct the Fomin–Shapiro atlas, for each 𝑔 ∈ 𝑄𝐽 we give an isomorphism

𝜙𝑢 between an open dense subset 𝒪𝑔 ⊂ 𝐺/𝑃 and a certain subset of the affine flag variety

𝒢/ℬ of the loop group 𝒢 associated with 𝐺. The map 𝜙𝑢 sends the projected Richardson

stratification [KLS14] of 𝐺/𝑃 to the affine Richardson stratification of its image inside 𝒢/ℬ.

The hardest part of the proof consists of showing that the subset 𝒪𝑔 ⊂ 𝐺/𝑃 contains Star≥0
𝑔 .

See Section 3.2.2 for a more in-depth overview of our proof.

Remark 3.1.2. The map 𝜙𝑢 generalizes (up to changing signs of some entries) the map

of Snider [Sni10] from Gr(𝑘, 𝑛) to all 𝐺/𝑃 , see Remark 3.9.9. A different approach to give

such a generalization is due to He–Knutson–Lu [HKL19], which led them to the notion of a

Bruhat atlas. See [Ele16] for the definition. We call our map 𝜙𝑢 an affine Bruhat atlas since

its target space is always an affine flag variety, while Bruhat atlases of [HKL19] necessarily

involve more general Kac–Moody flag varieties.

Outline

In Section 3.2, we introduce (abstract) totally nonnegative spaces and define Fomin–Shapiro

atlases. We state in Theorem 3.2.4 that every totally nonnegative space that admits a

Fomin–Shapiro atlas is a regular CW complex, and prove it in Section 3.3. We give back-

ground on 𝐺/𝑃 in Section 3.4, and study subtraction-free Marsh–Rietsch parametrizations

in Section 3.5. We then apply our results on such parametrizations to prove Theorem 3.6.4

that will later imply that the above open subset 𝒪𝑔 contains Star≥0
𝑔 . We introduce affine

Bruhat atlases in Section 3.7 and use them to construct a Fomin–Shapiro atlas for 𝐺/𝑃 in

Section 3.8. Theorem 3.2.5 (which implies our main result Theorem 1.2.1) is proved in Sec-

tion 3.8.3. Section 3.9 is devoted to specializing our construction to type 𝐴 (when 𝐺 = SL𝑛),

with a special focus on the totally nonnegative Grassmannian Gr≥0(𝑘, 𝑛). We illustrate many

of our constructions by examples in Section 3.9, and we encourage the reader to consult this
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section while studying other parts of the paper. We discuss some conjectures and further di-

rections in Section 3.10. Finally, we give additional background on Kac–Moody flag varieties

in Section 3.A.

3.2 Overview of the proof

We formulate our results in the abstract language of totally nonnegative spaces, since we

expect that they can be applied in other contexts, see Section 3.10.

3.2.1 Totally nonnegative spaces

We refer the reader to Section 3.3.2 for background on posets and regular CW complexes.

For a finite poset (𝑄,⪯), we denote by ̂︀𝑄 := 𝑄⊔{0̂} the poset obtained from 𝑄 by adjoining

a minimum 0̂. Björner showed [Bjö84, Prop. 4.5(a)] that if ̂︀𝑄 is graded, thin, and shellable,

then 𝑄 is isomorphic to the face poset of some regular CW complex. If ̂︀𝑄 is a graded poset,

we let dim : 𝑄→ Z≥0 denote the rank function of 𝑄.

Definition 3.2.1. We say that a triple (𝒴 ,𝒴≥0, 𝑄) is a totally nonnegative space (or TNN

space for short) if the following conditions are satisfied.

(TNN1) ( ̂︀𝑄,⪯) is graded, thin, shellable, and contains a unique maximal element 1̂ ∈ 𝑄.

(TNN2) 𝒴 is a smooth manifold, stratified into embedded submanifolds 𝒴 =
⨆︀
𝑔∈𝑄

∘
𝒴𝑔, and

for each ℎ ∈ 𝑄,
∘
𝒴ℎ has dimension dim(ℎ) and closure 𝒴ℎ :=

⨆︀
𝑔⪯ℎ

∘
𝒴𝑔.

(TNN3) 𝒴≥0 is a compact subset of 𝒴 .

(TNN4) For 𝑔 ∈ 𝑄, 𝒴>0
𝑔 :=

∘
𝒴𝑔∩𝒴≥0 is a connected component of

∘
𝒴𝑔 diffeomorphic to Rdim(𝑔)

>0 .

(TNN5) The closure of 𝒴>0
ℎ inside 𝒴 equals 𝒴≥0

ℎ :=
⨆︀
𝑔⪯ℎ 𝒴>0

𝑔 .

For the case 𝒴 = 𝐺/𝑃 , the smooth submanifolds
∘
𝒴𝑔 are the open projected Richardson

varieties of [KLS14].
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Definition 3.2.2. Let 𝑁 ≥ 0, and denote by ‖ ·‖ the Euclidean norm on R𝑁 . We say that a

pair (𝑍, 𝜗) is a smooth cone if 𝑍 ⊂ R𝑁 is a closed embedded submanifold and 𝜗 : R>0×𝑍 → 𝑍

a smooth map such that

(SC1) 𝜗 gives an (R>0, ·)-action on R𝑁 that restricts to an (R>0, ·)-action on 𝑍.

(SC2) 𝜕
𝜕𝑡
‖𝜗(𝑡, 𝑥)‖ > 0 for all 𝑡 ∈ R>0 and 𝑥 ∈ R𝑁 ∖ {0}.

The map 𝜗 is a smooth analog of a contractive flow from Definition 2.1.1.

For 𝑔 ∈ 𝑄, define Star𝑔 :=
⨆︀
ℎ⪰𝑔

∘
𝒴ℎ and Star≥0

𝑔 :=
⨆︀
ℎ⪰𝑔 𝒴>0

ℎ , cf. (3.1.1).

Definition 3.2.3. We say that a TNN space (𝒴 ,𝒴≥0, 𝑄) admits a Fomin–Shapiro atlas if

for each 𝑔 ∈ 𝑄, there exists an open subset 𝒪𝑔 ⊂ Star𝑔, a smooth cone (𝑍𝑔, 𝜗𝑔), and a

diffeomorphism

𝜈𝑔 : 𝒪𝑔
∼−→ (

∘
𝒴𝑔 ∩ 𝒪𝑔)× 𝑍𝑔 (3.2.1)

satisfying the following conditions.

(FS1) For each ℎ ⪰ 𝑔 we are given
∘
𝑍𝑔,ℎ ⊂ 𝑍𝑔 such that 𝑍𝑔 =

⨆︀
ℎ⪰𝑔

∘
𝑍𝑔,ℎ and

∘
𝑍𝑔,𝑔 = {0}.

(FS2) For all ℎ ⪰ 𝑔 and 𝑡 ∈ R>0, we have 𝜗𝑔(𝑡,
∘
𝑍𝑔,ℎ) =

∘
𝑍𝑔,ℎ.

(FS3) For all ℎ ⪰ 𝑔, we have 𝜈𝑔(
∘
𝒴ℎ ∩ 𝒪𝑔) = (

∘
𝒴𝑔 ∩ 𝒪𝑔)×

∘
𝑍𝑔,ℎ.

(FS4) For all 𝑦 ∈
∘
𝒴𝑔 ∩ 𝒪𝑔, we have 𝜈𝑔(𝑦) = (𝑦, 0).

(FS5) Star≥0
𝑔 ⊂ 𝒪𝑔.

Theorem 3.2.4. Suppose that a TNN space (𝒴 ,𝒴≥0, 𝑄) admits a Fomin–Shapiro atlas.

Then 𝒴≥0 =
⨆︀
ℎ∈𝑄 𝒴>0

ℎ is a regular CW complex. In particular, for each ℎ ∈ 𝑄, 𝒴≥0
ℎ is

homeomorphic to a closed ball of dimension dim(ℎ).

Thus Theorem 1.2.1 follows as a corollary of the following result.

Theorem 3.2.5. (𝐺/𝑃, (𝐺/𝑃 )≥0, 𝑄𝐽) is a TNN space that admits a Fomin–Shapiro atlas.
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3.2.2 Plan of the proof

We give a brief outline of the proof of Theorem 3.2.5. See Section 3.4 for background on 𝐺/𝑃

and see Sections 3.A and 3.7 for background on 𝒢/ℬ. We deduce that (𝐺/𝑃, (𝐺/𝑃 )≥0, 𝑄𝐽) is

a TNN space from known results in Corollary 3.4.20. In order to construct a Fomin–Shapiro

atlas, we consider the (infinite-dimensional) affine flag variety 𝒢/ℬ associated to 𝐺. It is

stratified into (finite-dimensional) affine Richardson varieties 𝒢/ℬ =
⨆︀
ℎ̃≤𝑓∈�̃�

∘
ℛ𝑓

ℎ̃
, where �̃�

is the affine Weyl group and ≤ denotes its Bruhat order. There exists an order-reversing

injective map 𝜓 : 𝑄𝐽 → �̃� , defined by [HL15], see (3.7.7). The set of minimal elements

of 𝑄𝐽 equals {(𝑢, 𝑢) | 𝑢 ∈ 𝑊 𝐽}, where 𝑊 𝐽 is the set of minimal length parabolic coset

representatives of the Weyl group, see Section 3.4.6. For each minimal element 𝑓 := (𝑢, 𝑢) ∈

𝑄𝐽 , 𝜓 identifies the interval [𝑓, 1̂] of 𝑄𝐽 with (the dual of) a certain interval [𝜏𝐽𝜆 , 𝜏𝑢𝜆] ⊂ �̃� .

For the case 𝐺/𝑃 = Gr(𝑘, 𝑛), elements of 𝑄𝐽 are in bijection with Le diagrams of [Pos07],

and 𝜓 sends a Le diagram indexing a positroid cell to the corresponding bounded affine

permutation of [KLS14], see Example 3.9.6.

In Section 3.7.3, we lift 𝜓 to the geometric level: given a minimal element 𝑓 := (𝑢, 𝑢) ∈

𝑄𝐽 , we introduce a map 𝜙𝑢 : 𝐶
(𝐽)
𝑢 → 𝒢/ℬ defined on an open dense subset 𝐶(𝐽)

𝑢 ⊂ 𝐺/𝑃 . We

show in Theorem 3.7.2 that for 𝑔 ∈ 𝑄𝐽 such that 𝑔 ⪰ 𝑓 , 𝜙𝑢 sends 𝐶(𝐽)
𝑢 ∩

∘
Π𝑔 isomorphically

to the affine Richardson cell
∘
ℛ𝜓(𝑓)
𝜓(𝑔) .

For every 𝑔 ∈ �̃� , we consider an open dense subset 𝒞𝑔 ⊂ 𝒢/ℬ defined by 𝒞𝑔 := 𝑔 ·ℬ− ·ℬ/ℬ,

as well as affine Schubert and opposite Schubert cells
∘
𝒳 𝑔 =

⨆︀
ℎ̃≤𝑔

∘
ℛ𝑔

ℎ̃
,

∘
𝒳𝑔 =

⨆︀
𝑔≤𝑓

∘
ℛ𝑓
𝑔 . In

Proposition 3.8.2, we give a natural isomorphism

𝒞𝑔
∼−→

∘
𝒳𝑔 ×

∘
𝒳 𝑔, which restricts to (𝒞𝑔 ∩

∘
ℛ𝑓

ℎ̃
)

∼−→
∘
ℛ𝑓
𝑔 ×

∘
ℛ𝑔

ℎ̃
for all ℎ̃ ≤ 𝑔 ≤ 𝑓 . (3.2.2)

A finite-dimensional analog of this map is due to [KWY13], and similar maps have been

considered by [KL79, FS00]. The action of 𝜗 on
∘
𝒳 𝑔 essentially amounts to multiplying by

an element of the affine torus, and thus preserves
∘
ℛ𝑔

ℎ̃
for all ℎ̃ ≤ 𝑔.

Let us now fix 𝑔 ∈ 𝑄𝐽 , and choose some minimal element 𝑓 := (𝑢, 𝑢) ∈ 𝑄𝐽 such that

𝑓 ⪯ 𝑔. Then the map 𝜙𝑢 is defined on an open dense subset 𝐶(𝐽)
𝑢 ⊂ 𝐺/𝑃 , and let us denote

by 𝒪𝑔 ⊂ 𝐶
(𝐽)
𝑢 the preimage of 𝒞𝜓(𝑔) under 𝜙𝑢. The diffeomorphism (3.2.1) is obtained by
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conjugating the isomorphism (3.2.2) by the map 𝜙𝑢. The smooth cone (𝑍𝑔, 𝜗𝑔) is extracted

from the corresponding structure on
∘
𝒳 𝜓(𝑔). As we have already mentioned, the hardest

step in the proof consists of showing (FS5). To achieve this, we study subtraction-free

parametrizations of partial flag varieties in Section 3.5, and then use them to show that some

generalized minors of a particular group element 𝜁(𝐽)𝑢,𝑣 (𝑥) from Section 3.6 do not vanish for all

𝑥 ∈ Star≥0
𝑔 . The definition of 𝜁(𝐽)𝑢,𝑣 (𝑥) is quite technical, but we conjecture in Section 3.9 that

in the Grassmannian case, these generalized minors specialize to simple functions on Gr(𝑘, 𝑛)

that we call 𝑢-truncated minors. We complete the proof of Theorem 3.2.5 in Section 3.8.3.

3.3 Topological results

Throughout this section, we assume that (𝒴 ,𝒴≥0, 𝑄) is a TNN space that admits a Fomin–

Shapiro atlas. Thus for each 𝑔 ∈ 𝑄, we have the objects 𝒪𝑔, 𝑍𝑔, 𝜗𝑔, and 𝜈𝑔 from Defini-

tion 3.2.3. Additionally, we assume some familiarity with basic theory of smooth manifolds,

see e.g. [Lee13].

3.3.1 Links

Throughout, we denote the two components of the map 𝜈𝑔 from (3.2.1) by 𝜈𝑔 = (𝜈𝑔,1, 𝜈𝑔,2),

where 𝜈𝑔,1 : 𝒪𝑔 →
∘
𝒴𝑔∩𝒪𝑔 and 𝜈𝑔,2 : 𝒪𝑔 → 𝑍𝑔. We set Star≥0

𝑔,ℎ := 𝒴≥0
ℎ ∩Star≥0

𝑔 =
⨆︀
𝑔⪯𝑔′⪯ℎ 𝒴>0

𝑔′ .

Definition 3.3.1. Let 𝑔 ⪯ ℎ and assume that 𝑍𝑔 ⊂ R𝑁𝑔 . Denote

𝑍≥0
𝑔 := 𝜈𝑔,2

(︀
Star≥0

𝑔

)︀
, 𝑍≥0

𝑔,ℎ := 𝜈𝑔,2
(︀
Star≥0

𝑔,ℎ

)︀
, 𝑍>0

𝑔,ℎ := 𝑍≥0
𝑔 ∩

∘
𝑍𝑔,ℎ,

𝑆𝑔 := {𝑥 ∈ R𝑁𝑔 : ‖𝑥‖ = 1}, Lk≥0
𝑔,ℎ := 𝑍≥0

𝑔,ℎ ∩ 𝑆𝑔, Lk>0
𝑔,ℎ := 𝑍>0

𝑔,ℎ ∩ 𝑆𝑔.

Notice that Lk>0
𝑔,𝑔 ⊂ 𝑆𝑔 ∩

∘
𝑍𝑔,𝑔, but

∘
𝑍𝑔,𝑔 = {0} by (FS1), thus we have a stratification

Lk≥0
𝑔,ℎ =

⨆︁
𝑔≺𝑔′⪯ℎ

Lk>0
𝑔,𝑔′ . (3.3.1)

Recall that Cone(𝐴) := (𝐴 × R≥0)/(𝐴 × {0}) is the open cone over 𝐴. We denote by

𝑐 := (*, 0) ∈ Cone(𝐴) its cone point.
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Lemma 3.3.2. Let 𝑔 ≺ ℎ ∈ 𝑄.

(i) For all 𝑥 ∈ 𝒪𝑔, we have 𝑥 ∈ 𝒴>0
ℎ if and only if 𝜈𝑔(𝑥) ∈ 𝒴>0

𝑔 × 𝑍>0
𝑔,ℎ.

(ii) 𝑍>0
𝑔,ℎ is an embedded submanifold of 𝑍𝑔 that intersects 𝑆𝑔 transversely.

(iii) Lk>0
𝑔,ℎ is a contractible smooth manifold of dimension dim(ℎ)− dim(𝑔)− 1.

(iv) Lk≥0
𝑔,ℎ is a compact subset of 𝑍𝑔.

Before we prove these properties, let us state some simple preliminary results on smooth

manifolds. Given smooth manifolds 𝐴,𝐵 and a smooth map 𝑓 : 𝐴 → 𝐵, a point 𝑎 ∈ 𝐴

is called a regular point of 𝑓 if the differential of 𝑓 at 𝑎 is surjective. Similarly, 𝑏 ∈ 𝐵 is

called a regular value of 𝑓 if 𝑓−1(𝑏) consists of regular points. In this case 𝑓−1(𝑏) is a closed

embedded submanifold of 𝐴 of dimension dim(𝐴)− dim(𝐵).

Lemma 3.3.3. Suppose that 𝐴,𝐵 are smooth manifolds and 𝐵′ ⊂ 𝐵 is such that 𝐴×𝐵′ is

an embedded submanifold of 𝐴×𝐵. Then 𝐵′ is an embedded submanifold of 𝐵.

Proof. Choose 𝑎 ∈ 𝐴. Clearly 𝑎 is a regular value of the projection map 𝐴×𝐵′ → 𝐴, therefore

{𝑎} × 𝐵′ is an embedded submanifold of {𝑎} × 𝐵. The projection map {𝑎} × 𝐵 → 𝐵 is a

diffeomorphism.

Proof of Lemma 3.3.2. (i): We prove this more generally for 𝑔 ⪯ ℎ. The set Star≥0
𝑔 is

connected since it contains a connected dense subset 𝒴>0
1̂

. Therefore 𝜈𝑔,1(Star
≥0
𝑔 ) is a

connected subset of
∘
𝒴𝑔 ∩ 𝒪𝑔. By (FS4), it contains 𝒴>0

𝑔 , therefore 𝜈𝑔,1(Star
≥0
𝑔 ) = 𝒴>0

𝑔

by (TNN4). By definition, 𝜈𝑔,2(Star≥0
𝑔,ℎ) = 𝑍≥0

𝑔,ℎ, thus 𝜈𝑔(Star≥0
𝑔,ℎ) ⊂ 𝒴>0

𝑔 × 𝑍≥0
𝑔,ℎ. By (FS3),

we get 𝜈𝑔(𝒴>0
ℎ ) ⊂ 𝒴>0

𝑔 × 𝑍>0
𝑔,ℎ. In particular, 𝑍>0

𝑔,ℎ = 𝜈𝑔,2(𝒴>0
ℎ ) is a connected subset of

∘
𝑍𝑔,ℎ.

Let 𝐶 be the connected component of
∘
𝑍𝑔,ℎ containing 𝑍>0

𝑔,ℎ. By (FS3), 𝜈−1
𝑔 (𝒴>0

𝑔 × 𝐶) is a

connected subset of
∘
𝒴ℎ ∩𝒪𝑔, which contains 𝒴>0

ℎ as we have just shown. Therefore we must

have 𝜈−1
𝑔 (𝒴>0

𝑔 ×𝐶) = 𝒴>0
ℎ by (TNN4), which shows that 𝑍>0

𝑔,ℎ = 𝐶 is a connected component

of
∘
𝑍𝑔,ℎ. Thus indeed 𝜈𝑔(𝒴>0

ℎ ) = 𝒴>0
𝑔 × 𝑍>0

𝑔,ℎ.

(ii): Applying Lemma 3.3.3 to 𝐴 := 𝒴>0
𝑔 and 𝐵 := 𝑍𝑔, and 𝐵′ := 𝑍>0

𝑔,ℎ, we get that 𝑍>0
𝑔,ℎ is

an embedded submanifold of 𝑍𝑔 by (i). Moreover, it follows from (FS2) that 𝜗𝑔(𝑡, 𝑍>0
𝑔,ℎ) = 𝑍>0

𝑔,ℎ

for all 𝑡 ∈ R>0 since 𝑍>0
𝑔,ℎ is a connected component of

∘
𝑍𝑔,ℎ. Thus 1 is a regular value of the

restriction ‖ · ‖ : 𝑍>0
𝑔,ℎ → R>0, so the manifolds 𝑆𝑔 and 𝑍>0

𝑔,ℎ intersect transversely inside R𝑁𝑔 .
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(iii): By (ii), Lk>0
𝑔,ℎ = 𝑍>0

𝑔,ℎ ∩ 𝑆𝑔 is an embedded submanifold of 𝑍𝑔 of dimension dim(ℎ)−

dim(𝑔) − 1. To show that it is contractible, note that 𝒴>0
ℎ is contractible, therefore so is

𝜈𝑔(𝒴>0
ℎ ) = 𝒴>0

𝑔 × 𝑍>0
𝑔,ℎ. We see that 𝑍>0

𝑔,ℎ is contractible since {𝑥} × 𝑍>0
𝑔,ℎ is a retract of

𝒴>0
𝑔 × 𝑍>0

𝑔,ℎ for any 𝑥 ∈ 𝒴>0
𝑔 , cf. [Hat02, Ex. 0.9].

For each 𝑥 ∈ R𝑁𝑔 ∖ {0}, the function 𝑡 ↦→ ‖𝜗𝑔(𝑡, 𝑥)‖ is a diffeomorphism R>0
∼−→ R>0

by Lemma 2.1.2, so there exists a unique 𝑡𝑥 ∈ R>0 such that ‖𝜗𝑔(𝑡𝑥, 𝑥)‖ = 1, and we get a

continuous map R𝑁𝑔 ∖ {0} → 𝑆𝑔 sending 𝑥 ↦→ 𝜗𝑔(𝑡𝑥, 𝑥). It gives a retraction 𝑍>0
𝑔,ℎ → Lk>0

𝑔,ℎ,

finishing the proof of (iii).

(iv): Clearly Star≥0
𝑔,ℎ = 𝒴≥0

ℎ ∩Star≥0
𝑔 = 𝒴≥0

ℎ ∩𝒪𝑔 is a closed subset of 𝒪𝑔. Thus 𝜈𝑔(Star≥0
𝑔,ℎ)

is a closed subset of 𝒴>0
𝑔 × 𝑍𝑔. Since 𝜈𝑔(Star≥0

𝑔,ℎ) = 𝒴>0
𝑔 × 𝑍≥0

𝑔,ℎ, we get that 𝑍≥0
𝑔,ℎ is a closed

subset of 𝑍𝑔. It follows that Lk≥0
𝑔,ℎ = 𝑍≥0

𝑔,ℎ ∩ 𝑆𝑔 is a closed bounded subset of 𝑍𝑔, which is

closed in R𝑁𝑔 by Definition 3.2.2.

Proposition 3.3.4. Let 𝑔 ≺ ℎ ∈ 𝑄.

(i) There exists a homeomorphism 𝑍≥0
𝑔,ℎ

∼−→ Cone(Lk≥0
𝑔,ℎ) sending 0 to the cone point 𝑐. For

𝑔 ≺ 𝑔′ ⪯ ℎ, it sends 𝑍>0
𝑔,𝑔′ to Lk>0

𝑔,𝑔′ ×R>0.

(ii) We have a homeomorphism

Star≥0
𝑔,ℎ

∼−→ 𝒴>0
𝑔 × Cone(Lk≥0

𝑔,ℎ). (3.3.2)

Proof. (i): Consider the map 𝜉 : 𝑍≥0
𝑔,ℎ → Cone(Lk≥0

𝑔,ℎ) sending 0 ↦→ 𝑐 and 𝑥 ↦→
(︁
𝜗𝑔(𝑡𝑥, 𝑥),

1
𝑡𝑥

)︁
for 𝑥 ∈ 𝑍≥0

𝑔,ℎ ∖{0}, where 𝑡𝑥 was defined in the proof of Lemma 3.3.2(iii). We claim that 𝜉 is a

homeomorphism. We have already shown that 𝜗𝑔(𝑡, 𝑍>0
𝑔,𝑔′) = 𝑍>0

𝑔,𝑔′ for all 𝑔 ⪯ 𝑔′. In particular,

for 𝑥 ∈ 𝑍≥0
𝑔,ℎ, we find that 𝜉(𝑡𝑥, 𝑥) ∈ Cone(Lk≥0

𝑔,ℎ). It is easy to see that 𝜉 is a bijection whose

inverse sends 𝑐 ↦→ 0 and (𝑦, 𝑡) ↦→ 𝜗𝑔(𝑡, 𝑦) for (𝑦, 𝑡) ∈ Cone(Lk≥0
𝑔,ℎ)∖{𝑐} = Lk≥0

𝑔,ℎ×R>0. Clearly

𝜉 is continuous on 𝑍≥0
𝑔,ℎ ∖ {0} while its inverse is continuous on Lk≥0

𝑔,ℎ×R>0.

Suppose that (𝑥𝑛)𝑛≥0 is a sequence of elements of 𝑍≥0
𝑔,ℎ ∖ {0} converging to 0. We claim

that 𝑡𝑥𝑛 → ∞ as 𝑛 → ∞. Otherwise, after passing to a subsequence, we may assume that

𝑡𝑥𝑛 ≤ 𝑅 for some 𝑅 ∈ R>0 and all 𝑛 ≥ 0. The limit of 𝜗𝑔(𝑅, 𝑥𝑛) is 𝜗𝑔(𝑅, 0) = 0, which gives

a contradiction since ‖𝜗𝑔(𝑅, 𝑥𝑛)‖ ≥ ‖𝜗𝑔(𝑡𝑥𝑛 , 𝑥𝑛)‖ = 1 for all 𝑛 ≥ 0. This shows that 𝜉 is

continuous at 0.
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Suppose now that ((𝑦𝑛, 𝑡𝑛))𝑛≥0 is a sequence of elements of Lk≥0
𝑔,ℎ×R>0 that converges

to 𝑐, which is equivalent to 𝑡𝑛 → 0. Let 𝑥𝑛 := 𝜗𝑔(𝑡𝑛, 𝑦𝑛) = 𝜉−1(𝑦𝑛, 𝑡𝑛). Suppose that ‖𝑥𝑛‖

does not converge to 0. The function 𝐷(𝑡) := max𝑥∈𝑆𝑔 ‖𝜗𝑔(𝑡, 𝑥)‖ is strictly increasing in 𝑡 by

compactness of 𝑆𝑔 and (SC2). Since for each 𝑥 ∈ 𝑆𝑔, lim𝑡→0+ ‖𝜗𝑔(𝑡, 𝑥)‖ = 0 by Lemma 2.1.2,

we get lim𝑡→0+𝐷(𝑡) = 0 by compactness of 𝑆𝑔 (more precisely, by Dini’s theorem). This

gives a contradiction, showing that 𝜉−1 is continuous at 𝑐.

(ii): By Lemma 3.3.2(i), 𝜈𝑔 restricts to a homeomorphism Star≥0
𝑔,ℎ

∼−→ 𝒴>0
𝑔 × 𝑍≥0

𝑔,ℎ. By (i),

𝑍≥0
𝑔,ℎ is homeomorphic to Cone(Lk≥0

𝑔,ℎ).

Our next aim is to analyze the local structure of the space Lk≥0
𝑔,ℎ. For two topological

spaces 𝐴 and 𝐵 and 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, we say that there is a local homeomorphism between (𝐴, 𝑎)

and (𝐵, 𝑏) if there exist open neighborhoods 𝑎 ∈ 𝑈 ⊂ 𝐴, 𝑏 ∈ 𝑉 ⊂ 𝐵, and a homeomorphism

𝑈
∼−→ 𝑉 sending 𝑎 to 𝑏.

Lemma 3.3.5. Let 𝑔 ≺ 𝑝 ⪯ ℎ ∈ 𝑄, 𝑥𝑝 ∈ Lk>0
𝑔,𝑝, and 𝑑 := dim(𝑝) − dim(𝑔) − 1. Then there

exists a local homeomorphism between
(︀
Lk≥0

𝑔,ℎ, 𝑥𝑝
)︀

and
(︀
𝑍≥0
𝑝,ℎ × R𝑑, (0, 0)

)︀
.

Proof. Choose some 𝑥𝑔 ∈ 𝒴>0
𝑔 and consider the open subset 𝐻𝑝 ⊂ 𝑍𝑔 defined by 𝐻𝑝 := {𝑥 ∈

𝑍𝑔 | 𝜈−1
𝑔 (𝑥𝑔, 𝑥) ∈ 𝒪𝑝}. Introduce a map

𝜃𝑔,𝑝 : 𝐻𝑝 ∩ 𝑆𝑔 → 𝑍𝑝, 𝑥 ↦→ 𝜈𝑝,2(𝜈
−1
𝑔 (𝑥𝑔, 𝑥)). (3.3.3)

Since 𝑥𝑝 ∈ Lk>0
𝑔,𝑝 ⊂ 𝑍>0

𝑔,𝑝 and 𝑥𝑔 ∈ 𝒴>0
𝑔 , we get �̄�𝑝 := 𝜈−1

𝑔 (𝑥𝑔, 𝑥𝑝) ∈ 𝒴>0
𝑝 by Lemma 3.3.2(i). By

(FS5), 𝒴>0
𝑝 ⊂ Star≥0

𝑝 ⊂ 𝒪𝑝, thus 𝑥𝑝 ∈ 𝐻𝑝. Since 𝐻𝑝 is open in 𝑍𝑔, 𝐻𝑝 ∩ 𝑆𝑔 is an open subset

of 𝑍𝑔 ∩ 𝑆𝑔, which is nonempty since it contains 𝑥𝑝. Moreover, since 𝜈𝑝,2(𝒴>0
𝑝 ) = 𝑍>0

𝑝,𝑝 = {0}

by Lemma 3.3.2(i), we find that 𝜃𝑔,𝑝(𝑥𝑝) = 0.

We claim that 𝑥𝑝 is a regular point of 𝜃𝑔,𝑝. Clearly the differential of 𝜈𝑝,2 : 𝒪𝑝 → 𝑍𝑝

is surjective at �̄�𝑝, and its kernel is the tangent space of
∘
𝒴𝑝 at �̄�𝑝. Recall from (TNN4)

and (FS5) that 𝒴>0
𝑝 is a connected component of

∘
𝒴𝑝∩𝒪𝑝, and it contains �̄�𝑝 = 𝜈−1

𝑔 (𝑥𝑔, 𝑥𝑝) as

we have shown above. Therefore 𝑥𝑝 is a regular point of 𝜃𝑔,𝑝 if and only if the manifolds 𝒴>0
𝑝

and 𝐹 := 𝜈−1
𝑔 ({𝑥𝑔} × (𝐻𝑝 ∩ 𝑆𝑔)) intersect transversely at �̄�𝑝. By Lemma 3.3.2(i), we have

𝜈𝑔(𝒴>0
𝑝 ) = 𝒴>0

𝑔 ×𝑍>0
𝑔,𝑝 , and clearly 𝜈𝑔(𝐹 ) = {𝑥𝑔} × (𝐻𝑝 ∩ 𝑆𝑔). These two manifolds intersect

transversely at (𝑥𝑔, 𝑥𝑝) by Lemma 3.3.2(ii). We have shown that 𝑥𝑝 is a regular point of 𝜃𝑔,𝑝.
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By the Submersion theorem (see e.g. [Kos93, Cor. A(1.3)]), there exist local coordi-

nates centered at 𝑥𝑝 ∈ 𝐻𝑝 ∩ 𝑆𝑔 and 0 ∈ 𝑍𝑝 in which 𝜃𝑔,𝑝 is just the canonical projec-

tion Rdim(𝐻𝑝∩𝑆𝑔) → Rdim(𝑍𝑝). Recall that 𝑄 contains a unique maximal element 1̂, and

we have dim(𝑍𝑔) = codim(𝑔) := dim(1̂) − dim(𝑔). Thus dim(𝐻𝑝 ∩ 𝑆𝑔) = codim(𝑔) − 1,

dim(𝑍𝑝) = codim(𝑝), and dim(𝐻𝑝∩𝑆𝑔)−dim(𝑍𝑝) = 𝑑. We have shown that there exist open

neighborhoods 𝑥𝑝 ∈ 𝑈 ⊂ 𝐻𝑝 ∩ 𝑆𝑔 and 0 ∈ 𝑉 ⊂ 𝑍𝑝 and a diffeomorphism 𝛽 : 𝑈
∼−→ 𝑉 × R𝑑

sending 𝑥𝑝 to (0, 0).

In order to complete the proof, we need to show that the image 𝛽(𝑈 ∩ Lk≥0
𝑔,ℎ) equals

(𝑉 ∩ 𝑍≥0
𝑝,ℎ) × R𝑑. We may assume that 𝑈 is connected. Suppose we are given 𝑥 ∈ 𝑈 and

let 𝑟 ∈ 𝑄 be such that 𝑥′ := 𝜈−1
𝑔 (𝑥𝑔, 𝑥) ∈

∘
𝒴𝑟. Since 𝑈 ⊂ 𝐻𝑝, 𝑥′ belongs to 𝒪𝑝 ⊂ Star𝑝 by

Definition 3.2.3, and therefore 𝑝 ⪯ 𝑟. By Lemma 3.3.2(i), we have 𝑥 ∈ 𝑈 ∩ Lk>0
𝑔,𝑟 if and only

if 𝑥′ ∈ 𝒴>0
𝑟 . On the other hand, 𝜈𝑝,1(𝜈−1

𝑔 ({𝑥𝑔} × 𝑈)) is a connected subset of
∘
𝒴𝑝 ∩ 𝒪𝑝 that

contains 𝜈𝑝,1(�̄�𝑝) ∈ 𝒴>0
𝑝 . Thus 𝜈𝑝,1(𝜈−1

𝑔 (𝑥𝑔, 𝑈)) ⊂ 𝒴>0
𝑝 by (TNN4). It follows that 𝑥′ ∈ 𝒴>0

𝑟

if and only if 𝜃𝑔,𝑝(𝑥) = 𝜈𝑝,2(𝑥
′) belongs to 𝑍>0

𝑝,𝑟 . The result follows by taking the union over

all 𝑝 ⪯ 𝑟 ⪯ ℎ.

3.3.2 Topological background

Regular CW complexes

We refer to [Hat02, LW69] for background on CW complexes.

Definition 3.3.6. Let 𝑋 be a Hausdorff space. We call a finite disjoint union 𝑋 =
⨆︀
𝛼∈𝑃 𝑋𝛼

a regular CW complex if it satisfies the following two properties.

(CW1) For each 𝛼 ∈ 𝑃 , there exists a homeomorphism from the closure 𝑋𝛼 to a closed ball

𝐵 which sends 𝑋𝛼 to the interior of 𝐵;

(CW2) For each 𝛽 ∈ 𝑃 , 𝑋𝛽 equals
⨆︀
𝛼∈𝑃 ′ 𝑋𝛼 for some 𝑃 ′ ⊂ 𝑃 .

The property (CW2) is often omitted from the definition of a regular CW complex, but is

necessary in order to apply the arguments of [Bjö84]. We remark that the cell decomposition

of 𝒴≥0 satisfies (CW2) by (TNN5).
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Posets

We review the notions of thinness and shellability (see e.g. [Bjö80]), though we will not need

them in our arguments. Let (𝑃,≤) be a finite poset. We say that 𝑃 is thin if for all 𝑥l𝑦l𝑧

in 𝑃 (where l denotes a covering relation of 𝑃 ), there exists a unique 𝑦′ ̸= 𝑦 with 𝑥 < 𝑦′ < 𝑧.

We say that a pure 𝑑-dimensional simplicial complex Δ is shellable if its maximal faces can

be ordered as 𝐹1, . . . , 𝐹𝑛 so that for 2 ≤ 𝑘 ≤ 𝑛, 𝐹𝑘 ∩
(︀⋃︀

1≤𝑖<𝑘 𝐹𝑖
)︀

is a nonempty union of

(𝑑− 1)-dimensional faces of 𝐹𝑘. We say that 𝑃 is graded if all maximal chains in 𝑃 have the

same length 𝑙, in which case we denote by ht(𝑃 ) := 𝑙 the height of 𝑃 . Each graded poset 𝑃

gives rise to a pure (ht(𝑃 )− 1)-dimensional simplicial complex called the order complex Δ𝑃

of 𝑃 . The vertices of Δ𝑃 are the elements of 𝑃 and the faces of Δ𝑃 are the chains in 𝑃 . We

say that 𝑃 is shellable if its order complex Δ𝑃 is shellable. For 𝑥 ≤ 𝑧 ∈ 𝑃 , we denote by

[𝑥, 𝑧] := {𝑦 ∈ 𝑃 | 𝑥 ≤ 𝑦 ≤ 𝑧} the corresponding interval.

Proposition 3.3.7 ([Bjö80, Prop. 4.2]). If a poset is shellable then so are each of its inter-

vals.

See [Bjö84, §2,3] for the proof of the following result.

Theorem 3.3.8 ([LW69, DK74, Bjö84]). Suppose that 𝑋 is a regular CW complex with face

poset 𝑃 . If 𝑃 ⊔ {0̂, 1̂} is graded, thin, and shellable, then 𝑋 is homeomorphic to a sphere of

dimension ht(𝑃 )− 1.

Poincaré conjecture

Recall that an 𝑛-dimensional topological manifold 𝐶 with boundary is a Hausdorff space

such that every point 𝑥 ∈ 𝐶 has an open neighborhood homeomorphic either to R𝑛 or to

R≥0 × R𝑛−1. In the latter case, we say that 𝑥 belongs to the boundary 𝜕𝐶 of 𝐶.

The following is a well known consequence of the (generalized) Poincaré conjecture due to

Smale [Sma61], Freedman [Fre82], and Perelman [Per02, Per03a, Per03b]. We refer to [Dav08,

Thm. 10.3.3(ii)] for this formulation.

Theorem 3.3.9 ([Sma61, Fre82, Per02, Per03a, Per03b]). Let 𝐶 be a compact contractible 𝑛-

dimensional topological manifold with boundary, such that its boundary 𝜕𝐶 is homeomorphic

to an (𝑛− 1)-dimensional sphere. Then 𝐶 is homeomorphic to a closed 𝑛-dimensional ball.
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For 𝑛 ≥ 6, Theorem 3.3.9 can be proved using the topological ℎ-cobordism theorem [Mil65,

KS77]. We sketch another standard argument for deducing Theorem 3.3.9 from the Poincaré

conjecture when 𝑛 is arbitrary. The boundary of 𝐶 is collared by [Bro62, Thm. 2]. Thus we

can attach the (collared) boundary of a closed 𝑛-dimensional ball to the (collared) boundary

of 𝐶, obtaining a topological manifold 𝐶 ′. By van Kampen’s theorem, 𝐶 ′ is simply connected.

It is easy to see from the Mayer–Vietoris sequence that 𝐶 ′ is a homology sphere. Thus 𝐶 ′

must be homeomorphic to a sphere by the Poincaré conjecture. Therefore 𝐶 is homeomorphic

to a closed ball by Brown’s Schoenflies theorem [Bro60].

Proposition 3.3.10. Suppose that 𝐶 is a topological manifold with boundary 𝜕𝐶. Then 𝐶

is homotopy equivalent to its interior int(𝐶) := 𝐶 ∖ 𝜕𝐶.

Proof. By [Bro62, Thm. 2], there exists an open subset 𝜕𝐶 ⊂ 𝑈 ⊂ 𝐶 that is homeomorphic

to 𝜕𝐶 × [0, 1), which shows the result.

3.3.3 Link induction

Theorem 3.3.11. Let (𝒴 ,𝒴≥0, 𝑄) be a TNN space that admits a Fomin–Shapiro atlas.

Suppose that 𝑔 ≺ ℎ ∈ 𝑄. Then Lk≥0
𝑔,ℎ is homeomorphic to a closed ball of dimension 𝑑 :=

dim(ℎ)− dim(𝑔)− 1.

Proof. We proceed by induction on 𝑑. For the base case 𝑑 = 0, we see by (3.3.1) that

Lk≥0
𝑔,ℎ = Lk>0

𝑔,ℎ, which is a 0-dimensional contractible manifold by Lemma 3.3.2(iii). Thus

Lk≥0
𝑔,ℎ is a point and we are done with the base case.

Assume now that 𝑑 > 0. We claim that Lk≥0
𝑔,ℎ is a topological manifold with boundary

𝜕 Lk≥0
𝑔,ℎ =

⨆︁
𝑔≺𝑔′≺ℎ

Lk>0
𝑔,𝑔′ . (3.3.4)

Let 𝑥 ∈ Lk≥0
𝑔,ℎ. By (3.3.1), we have 𝑥 ∈ Lk>0

𝑔,𝑔′ for a unique 𝑔 ≺ 𝑔′ ⪯ ℎ. If 𝑔′ = ℎ, then

𝑥 has an open neighborhood in Lk≥0
𝑔,ℎ homeomorphic to R𝑑 by Lemma 3.3.2(iii). If 𝑔′ ≺ ℎ,

then by Lemma 3.3.5 we have a local homeomorphism (Lk≥0
𝑔,ℎ, 𝑥)

∼−→ (𝑍≥0
𝑔′,ℎ × R𝑑′ , (0, 0)),

where 𝑑′ := dim(𝑔′) − dim(𝑔) − 1. By Proposition 3.3.4(i), we have a homeomorphism

𝑍≥0
𝑔′,ℎ

∼−→ Cone(Lk≥0
𝑔′,ℎ) which sends 0 to the cone point 𝑐. By the induction hypothesis, Lk≥0

𝑔′,ℎ
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is homeomorphic to a (𝑑−𝑑′−1)-dimensional closed ball, and so we have a homeomorphism

Cone(Lk≥0
𝑔′,ℎ)

∼−→ R≥0 × R𝑑−𝑑′−1 which sends 𝑐 to (0, 0). Composing gives a local homeo-

morphism (Lk≥0
𝑔,ℎ, 𝑥)

∼−→ (R≥0 × R𝑑−𝑑′−1 × R𝑑′ , (0, 0, 0)). Thus indeed Lk≥0
𝑔,ℎ is a topological

manifold with boundary given by (3.3.4).

By Lemma 3.3.2(iv), Lk≥0
𝑔,ℎ is compact. By Lemma 3.3.2(iii) and Proposition 3.3.10, Lk≥0

𝑔,ℎ

is contractible. Thus Lk≥0
𝑔,ℎ is a compact contractible topological manifold with boundary.

In addition, the boundary 𝜕 Lk≥0
𝑔,ℎ is a regular CW complex by the induction hypothesis.

Its face poset is the interval (𝑔, ℎ) := [𝑔, ℎ] ∖ {𝑔, ℎ} in 𝑄. The interval [𝑔, ℎ] is graded,

thin, and shellable by (TNN1) and Proposition 3.3.7, thus 𝜕 Lk≥0
𝑔,ℎ is homeomorphic to a

(𝑑− 1)-dimensional sphere by Theorem 3.3.8. We are done by Theorem 3.3.9.

Proof of Theorem 3.2.4. The proof follows the same structure as the proof of Theorem 3.3.11.

We proceed by induction on dim(ℎ). If dim(ℎ) = 0 then 𝒴≥0
ℎ = 𝒴>0

ℎ is a point by (TNN4),

which finishes the base case.

Let dim(ℎ) > 0. We want to show that 𝒴≥0
ℎ is a topological manifold with boundary

𝜕𝒴≥0
ℎ =

⨆︁
𝑔≺ℎ

𝒴>0
𝑔 . (3.3.5)

Let 𝑥 ∈ 𝒴≥0
ℎ . By (TNN5), we have 𝑥 ∈ 𝒴>0

𝑔 for a unique 𝑔 ⪯ ℎ. If 𝑔 = ℎ then 𝑥 has an open

neighborhood in 𝒴≥0
ℎ homeomorphic to Rdim(ℎ) by (TNN4).

If 𝑔 ≺ ℎ then Star≥0
𝑔 is an open subset of 𝒴≥0, since its complement is

⋃︀
𝑔′ ̸⪰𝑔 𝒴

≥0
𝑔′ , which

is closed by (TNN5). Thus Star≥0
𝑔,ℎ is an open neighborhood of 𝑥 in 𝒴≥0

ℎ . By Proposi-

tion 3.3.4(ii), (TNN4), and Theorem 3.3.11, Star≥0
𝑔,ℎ is homeomorphic to R≥0 × Rdim(ℎ)−1.

This shows that 𝒴≥0
ℎ is a topological manifold with boundary given by (3.3.5).

By (TNN3) and (TNN5), 𝒴≥0
ℎ is compact. By (TNN4) and Proposition 3.3.10, 𝒴≥0

ℎ is

contractible. Thus 𝒴≥0
ℎ is a compact contractible topological manifold with boundary. In

addition, the boundary 𝜕𝒴≥0
ℎ is a regular CW complex by the induction hypothesis. Its face

poset is the interval (0̂, ℎ) in ̂︀𝑄. The interval [0̂, ℎ] is graded, thin, and shellable by (TNN1)

and Proposition 3.3.7, thus 𝜕𝒴≥0
ℎ is a (𝑑− 1)-dimensional sphere by Theorem 3.3.8. We are

done by Theorem 3.3.9.
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Remark 3.3.12. We note that Theorems 3.2.5 and 3.3.11 imply the result of Hersh [Her14]

(see Corollary 1.3.1) that the link of the identity in the Bruhat decomposition of 𝑈≥0 is a

regular CW complex. (Recall that 𝑈 is the unipotent radical of the standard Borel subgroup

𝐵 ⊂ 𝐺.) Indeed, let 𝐵− ⊂ 𝐺 denote the opposite Borel subgroup. Then the natural inclusion

𝑈 →˓ 𝐺/𝐵− sends 𝑈 to the opposite Schubert cell Star(id,id) indexed by id ∈ 𝑊 , and the

composition of this map with 𝜈(id,id) sends the link of the identity in 𝑈𝑤
>0 homeomorphically

to Lk≥0
(id,id),(id,𝑤) for all 𝑤 ∈ 𝑊 .

3.4 𝐺/𝑃 : preliminaries

We give some background on partial flag varieties. Throughout, K denotes an algebraically

closed field of characteristic 0, and K* := K ∖ {0} denotes its multiplicative group. We work

with a simple algebraic group 𝐺; the case of a general semisimple group reduces to the simple

case by taking products.

3.4.1 Pinnings

We recall some standard notions that can be found in e.g. [Lus94, §1]. Suppose that 𝐺 is

a simple and simply connected algebraic group over K, with 𝑇 ⊂ 𝐺 a maximal torus. Let

𝐵,𝐵− be opposite Borel subgroups satisfying 𝑇 = 𝐵 ∩ 𝐵−. We identify 𝐺 with its set of

K-valued points. When K = C, we assume that 𝐺 and 𝑇 are split over R, and denote by

𝐺(R) ⊂ 𝐺 and 𝑇 (R) ⊂ 𝑇 the sets of their R-valued points. (Thus what was denoted by 𝐺

in Section 1.2 is from now on denoted by 𝐺(R).)

Let 𝑋(𝑇 ) := Hom(𝑇,K*) be weight lattice, and for a weight 𝛾 ∈ 𝑋(𝑇 ) and 𝑎 ∈ 𝑇 , we

denote the value of 𝛾 on 𝑎 by 𝑎𝛾. Let Φ ⊂ 𝑋(𝑇 ) be the set of roots. We have a decomposition

Φ = Φ+ ⊔ Φ− of Φ as a union of positive and negative roots corresponding to the choice of

𝐵, see [Hum75, §27.3]. For 𝛼 ∈ Φ, we write 𝛼 > 0 if 𝛼 ∈ Φ+ and 𝛼 < 0 if 𝛼 ∈ Φ−. Let

{𝛼𝑖}𝑖∈𝐼 be the simple roots corresponding to the choice of Φ+. For every 𝑖 ∈ 𝐼, we have a

homomorphism 𝜑𝑖 : SL2 → 𝐺, and denote
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𝑥𝑖(𝑡) := 𝜑𝑖

⎛⎝1 𝑡

0 1

⎞⎠ , 𝑦𝑖(𝑡) := 𝜑𝑖

⎛⎝1 0

𝑡 1

⎞⎠ , �̇�𝑖 := 𝜑𝑖

⎛⎝0 −1

1 0

⎞⎠ = 𝑦𝑖(1)𝑥𝑖(−1)𝑦𝑖(1).

(3.4.1)

The data (𝑇,𝐵,𝐵−, 𝑥𝑖, 𝑦𝑖; 𝑖 ∈ 𝐼) is called a pinning for 𝐺. Let 𝑊 := 𝑁𝐺(𝑇 )/𝑇 be the

Weyl group, and for 𝑖 ∈ 𝐼, let 𝑠𝑖 ∈ 𝑊 be represented by �̇�𝑖 above. Then 𝑊 is generated

by {𝑠𝑖}𝑖∈𝐼 , and (𝑊, {𝑠𝑖}𝑖∈𝐼) is a finite Coxeter group. For 𝑤 ∈ 𝑊 , we denote by ℓ(𝑤) the

minimal 𝑛 such that 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑛 for some 𝑖1, . . . , 𝑖𝑛 ∈ 𝐼. When 𝑛 = ℓ(𝑤), i := (𝑖1, . . . , 𝑖𝑛)

is called a reduced word for 𝑤. The representatives {�̇�𝑖}𝑖∈𝐼 satisfy the braid relations, so we

set �̇� := �̇�𝑖1 · · · �̇�𝑖𝑛 ∈ 𝐺, and this representative does not depend on the choice of i.

Let 𝑌 (𝑇 ) := Hom(K*, 𝑇 ) be the coweight lattice. For 𝑖 ∈ 𝐼, we have a simple coroot

𝛼∨
𝑖 (𝑡) := 𝜑𝑖

⎛⎝𝑡 0

0 𝑡−1

⎞⎠ ∈ 𝑌 (𝑇 ). Denote by ⟨·, ·⟩ : 𝑋(𝑇 ) × 𝑌 (𝑇 ) → Z the natural pairing so

that for 𝛾 ∈ 𝑋(𝑇 ), 𝛽 ∈ 𝑌 (𝑇 ), and 𝑡 ∈ K*, we have (𝛽(𝑡))𝛾 = 𝑡⟨𝛾,𝛽⟩. Let {𝜔𝑖}𝑖∈𝐼 ⊂ 𝑋(𝑇 ) be

the fundamental weights. They form a dual basis to {𝛼∨
𝑖 }𝑖∈𝐼 : ⟨𝜔𝑖, 𝛼∨

𝑗 ⟩ = 𝛿𝑖𝑗 for 𝑖, 𝑗 ∈ 𝐼.

The Weyl group 𝑊 acts on 𝑇 by conjugation, which induces an action on 𝑌 (𝑇 ), 𝑋(𝑇 ),

and Φ. For 𝛾 ∈ 𝑋(𝑇 ), 𝑡 ∈ K*, 𝑎 ∈ 𝑇 , and 𝑤 ∈ 𝑊 , we have [FZ99, Eqns. (1.2) and (2.5)]

(�̇�−1𝑎�̇�)𝛾 = 𝑎𝑤𝛾, 𝑎𝑥𝑖(𝑡)𝑎
−1 = 𝑥𝑖(𝑎

𝛼𝑖𝑡), 𝑎𝑦𝑖(𝑡)𝑎
−1 = 𝑦𝑖(𝑎

−𝛼𝑖𝑡).𝑏 (3.4.2)

Following [BZ97, Eqns. (1.6) and (1.7)] (see also [FZ99, Eqns. (2.1) and (2.2)]), we define

two involutive anti-automorphisms 𝑥 ↦→ 𝑥𝑇 and 𝑥 ↦→ 𝑥𝜄 of 𝐺 by

(𝑥𝑖(𝑡))
𝑇 = 𝑦𝑖(𝑡), (𝑦𝑖(𝑡))

𝑇 = 𝑥𝑖(𝑡), �̇�𝑇 = �̇�−1, 𝑎𝑇 = 𝑎 (3.4.3)

(𝑥𝑖(𝑡))
𝜄 = 𝑥𝑖(𝑡), (𝑦𝑖(𝑡))

𝜄 = 𝑦𝑖(𝑡), �̇�𝜄 = �̇�, 𝑎𝜄 = 𝑎−1, (3.4.4)

for all 𝑖 ∈ 𝐼, 𝑡 ∈ K*, 𝑎 ∈ 𝑇 , and 𝑤 ∈ 𝑊 , where 𝑧 := 𝑤−1. We note that when 𝑧 = 𝑤−1 ∈ 𝑊

and i = (𝑖1, . . . , 𝑖𝑛) is a reduced word for 𝑤 then �̇�−1 = �̇�−1
𝑖𝑛

· · · �̇�−1
𝑖1

while �̇� = �̇�𝑖𝑛 · · · �̇�𝑖1 .

54



3.4.2 Subgroups of 𝑈

We say that a subset Θ ⊂ Φ is bracket closed if whenever 𝛼, 𝛽 ∈ Θ are such that 𝛼+ 𝛽 ∈ Φ,

we have 𝛼+𝛽 ∈ Θ. For a bracket closed subset Θ ⊂ Φ+, define 𝑈(Θ) ⊂ 𝑈 to be the subgroup

generated by {𝑈𝛼 | 𝛼 ∈ Θ}, where 𝑈𝛼 is a root subgroup of 𝐺, see [Hum75, Theorem 26.3].

For a bracket closed subset Θ ⊂ Φ−, let 𝑈−(Θ) := 𝑈(−Θ)𝑇 ⊂ 𝑈−.

Given closed subgroups 𝐻1, . . . , 𝐻𝑛 of an algebraic group 𝐻, we say that 𝐻1, · · · , 𝐻𝑛

directly span 𝐻 if the multiplication map 𝐻1 × · · · ×𝐻𝑛 → 𝐻 is a biregular isomorphism.

Lemma 3.4.1 ([Hum75, Prop. 28.1]). Let Θ ⊂ Φ+ be a bracket closed subset.

(i) If Θ =
⨆︀𝑛
𝑖=1Θ𝑖 and Θ,Θ1, . . . ,Θ𝑛 ⊂ Φ+ are bracket closed then 𝑈(Θ) is directly

spanned by 𝑈(Θ1), . . . , 𝑈(Θ𝑛).

(ii) In particular, 𝑈(Θ) is directly spanned by {𝑈𝛼 | 𝛼 ∈ Θ} in any order, and therefore

𝑈(Θ) ∼= K|Θ|.

For 𝛼 ∈ Φ and 𝑤 ∈ 𝑊 , we have �̇�𝑈𝛼�̇�
−1 = 𝑈𝑤𝛼. For 𝑤 ∈ 𝑊 , define Inv(𝑤) :=

(𝑤−1Φ−)∩Φ+. The subsets Inv(𝑤) and Φ+ ∖ Inv(𝑤) are bracket closed [Hum75, §28.1], and

𝑈(Inv(𝑤)) = �̇�−1𝑈−�̇� ∩ 𝑈. (3.4.5)

3.4.3 Bruhat projections

Let Θ ⊂ Φ+ be bracket closed, and let 𝑤 ∈ 𝑊 . Define Θ1 := Θ∩Inv(𝑤) and Θ2 := Θ∖Inv(𝑤).

Thus both sets are bracket closed and

�̇�𝑈(Θ)�̇�−1 ∩ 𝑈− = 𝑈−(𝑤Θ1), �̇�𝑈(Θ)�̇�−1 ∩ 𝑈 = 𝑈(𝑤Θ2).

Denote 𝑈1 := 𝑈−(𝑤Θ1) and 𝑈2 := 𝑈(𝑤Θ2). Then by Lemma 3.4.1(i), the multiplication map

gives isomorphisms 𝜇12 : 𝑈1 × 𝑈2 → �̇�𝑈(Θ)�̇�−1 and 𝜇21 : 𝑈2 × 𝑈1 → �̇�𝑈(Θ)�̇�−1. Denote

by 𝜈1 : �̇�𝑈(Θ)�̇�−1 → 𝑈1 and 𝜈2 : �̇�𝑈(Θ)�̇�−1 → 𝑈2 the second component of 𝜇−1
21 and 𝜇−1

12 ,

respectively. In other words, given 𝑔 ∈ �̇�𝑈(Θ)�̇�−1, 𝜈1(𝑔) is the unique element in 𝑈1 ∩ 𝑈2𝑔

and 𝜈2(𝑔) is the unique element in 𝑈2 ∩ 𝑈1𝑔.
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Lemma 3.4.2 ([KWY13, Lemma 2.2]). The map (𝜈1, 𝜈2) : �̇�𝑈(Θ)�̇�−1 → 𝑈1 × 𝑈2 is a

biregular isomorphism.

3.4.4 Commutation relations

Let 𝑎, 𝑏 ∈ 𝑊 be such that ℓ(𝑎𝑏) = ℓ(𝑎) + ℓ(𝑏). Then

Inv(𝑏) ⊂ Inv(𝑎𝑏), 𝑏−1Inv(𝑎) ⊂ Φ+, and Inv(𝑎𝑏) =
(︀
𝑏−1Inv(𝑎)

)︀
⊔ Inv(𝑏). (3.4.6)

Thus by Lemma 3.4.1(i), the multiplication map gives an isomorphism

�̇�−1𝑈(Inv(𝑎))�̇�× 𝑈(Inv(𝑏))
∼−→ 𝑈(Inv(𝑎𝑏)). (3.4.7)

We will later need the following trivial consequences of (3.4.7): if ℓ(𝑎𝑏) = ℓ(𝑎) + ℓ(𝑏) then

�̇�−1 · (𝑈− ∩ �̇�−1𝑈�̇�) ⊂ (𝑈− ∩ (�̇��̇�)−1𝑈�̇��̇�) · �̇�−1, (3.4.8)

(𝑈 ∩ �̇�−1𝑈−�̇�) · �̇� ⊂ �̇� · (𝑈 ∩ (�̇��̇�)−1𝑈−�̇��̇�). (3.4.9)

Multiplying both sides of (3.4.9) by �̇�−1 on the left, we get �̇�−1𝑈(Inv(𝑎))�̇� ⊂ 𝑈(Inv(𝑎𝑏)),

which follows from (3.4.6). Eq. (3.4.8) follows from (3.4.9) by applying the map 𝑥 ↦→ 𝑥𝑇 ,

see (3.4.3).

Lemma 3.4.3. Let 𝛼 ∈ Φ+ and 𝑖 ∈ 𝐼 be such that 𝛼 ̸= 𝛼𝑖. Let Ψ ⊂ Φ denote the set of all

roots of the form 𝑚𝛼 − 𝑟𝛼𝑖 for integers 𝑚 > 0, 𝑟 ≥ 0. Then Ψ is a bracket closed subset of

Φ+, and for all 𝑡 ∈ K we have 𝑦𝑖(𝑡)𝑈𝛼𝑦𝑖(−𝑡) ⊂ 𝑈(Ψ).

Proof. Let 𝑥 ∈ 𝑈𝛼 and 𝑥′ := �̇�−1
𝑖 𝑥�̇�𝑖 ∈ 𝑈𝑠𝑖𝛼. Recall from [BB05, Lemma 4.4.3] that 𝑠𝑖

permutes Φ+ ∖ {𝛼𝑖} (in particular, 𝑠𝑖𝛼 > 0). Write

𝑦𝑖(𝑡) · 𝑥 · 𝑦𝑖(−𝑡) = �̇�𝑖𝑥𝑖(−𝑡)�̇�−1
𝑖 · 𝑥 · �̇�𝑖𝑥𝑖(𝑡)�̇�−1

𝑖 = �̇�𝑖𝑥𝑖(−𝑡) · 𝑥′ · 𝑥𝑖(𝑡)�̇�−1
𝑖 .

Denote by Ψ′ ⊂ Φ the set of all roots of the form 𝑚𝑠𝑖𝛼 + 𝑟𝛼𝑖 for integers 𝑚, 𝑟 > 0. It is

clear that Ψ′ ⊂ Φ+ ∖ {𝛼𝑖, 𝑠𝑖𝛼} is a bracket closed subset. By [Hum75, Lemma 32.5], we have
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𝑥𝑖(−𝑡)𝑥′𝑥𝑖(𝑡)𝑥′−1 ∈ 𝑈(Ψ′), so 𝑥𝑖(−𝑡)𝑥′𝑥𝑖(𝑡) ∈ 𝑈(Ψ′)𝑥′. Thus Ψ′′ := 𝑠𝑖Ψ
′ is also a bracket

closed subset of Φ+ ∖ {𝛼𝑖, 𝛼}, and we have �̇�𝑖𝑈(Ψ′)𝑥′�̇�−1
𝑖 = 𝑈(Ψ′′)𝑥. Clearly, Ψ = Ψ′′ ⊔ {𝛼}.

We thus have 𝑦𝑖(𝑡)𝑈𝛼𝑦𝑖(−𝑡) ⊂ 𝑈(Ψ′′)𝑈𝛼 = 𝑈(Ψ).

3.4.5 Flag variety and Bruhat decomposition

Let 𝐺/𝐵 be the flag variety of 𝐺 (over K). We recall some standard properties of the Bruhat

decomposition that can be found in e.g. [Hum75, §28]. Define open Schubert, opposite

Schubert, and Richardson varieties:

𝒳𝑤 = 𝐵�̇�𝐵/𝐵, 𝒳𝑣 = 𝐵−�̇�𝐵/𝐵,
∘
𝑅𝑣,𝑤 := 𝒳𝑣 ∩ 𝒳𝑤 (for 𝑣 ≤ 𝑤 ∈ 𝑊 ). (3.4.10)

Recall the Bruhat and Birkhoff decompositions:

𝐺 =
⨆︁
𝑤∈𝑊

𝐵�̇�𝐵 =
⨆︁
𝑣∈𝑊

𝐵−�̇�𝐵, where (3.4.11)

𝐵−�̇�𝐵 ∩𝐵�̇�𝐵 = ∅ and 𝒳𝑣 ∩ 𝒳𝑤 = ∅ for 𝑣 ̸≤ 𝑤 ∈ 𝑊. (3.4.12)

Let 𝑋𝑣 denote the (Zariski) closure of 𝒳𝑣. Similarly, let 𝑋𝑤 denote the closure of 𝒳𝑤,

and then 𝑅𝑣,𝑤 = 𝑋𝑣 ∩𝑋𝑤 is the closure of
∘
𝑅𝑣,𝑤 in 𝐺/𝐵. We have

𝑋𝑣 =
⨆︁
𝑣≤𝑣′

𝒳𝑣′ , 𝑋𝑤 =
⨆︁
𝑤′≤𝑤

𝒳𝑤′
, (3.4.13)

𝐺/𝐵 =
⨆︁
𝑣≤𝑤

∘
𝑅𝑣,𝑤, 𝑅𝑣,𝑤 =

⨆︁
𝑣≤𝑣′≤𝑤′≤𝑤

∘
𝑅𝑣′,𝑤′ . (3.4.14)
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For any 𝑤 ∈ 𝑊 , 𝑖 ∈ 𝐼, and 𝑡 ∈ K*, we have

𝑥𝑖(𝑡) ∈ 𝐵−�̇�𝑖𝐵−, 𝑦𝑖(𝑡) ∈ 𝐵�̇�𝑖𝐵, (3.4.15)

𝐵�̇�𝑖𝐵 ·𝐵�̇�𝐵 ⊂

⎧⎪⎨⎪⎩𝐵�̇�𝑖�̇�𝐵, if 𝑠𝑖𝑤 > 𝑤,

𝐵�̇�𝑖�̇�𝐵 ⊔𝐵�̇�𝐵, if 𝑠𝑖𝑤 < 𝑤,
(3.4.16)

𝐵−�̇�𝑖𝐵− ·𝐵−�̇�𝐵 ⊂

⎧⎪⎨⎪⎩𝐵−�̇�𝑖�̇�𝐵, if 𝑠𝑖𝑤 < 𝑤,

𝐵−�̇�𝑖�̇�𝐵 ⊔𝐵−�̇�𝐵, if 𝑠𝑖𝑤 > 𝑤,
(3.4.17)

𝐵�̇�𝐵 ·𝐵�̇�𝐵 ⊂ 𝐵�̇��̇�𝐵 for 𝑣 ∈ 𝑊 such that ℓ(𝑣𝑤) = ℓ(𝑣) + ℓ(𝑤). (3.4.18)

For t = (𝑡1, . . . , 𝑡𝑛) ∈ (K*)𝑛 and a reduced word i = (𝑖1, . . . , 𝑖𝑛) for 𝑤 ∈ 𝑊 , define

xi(t) := 𝑥𝑖1(𝑡1) · · ·𝑥𝑖𝑛(𝑡𝑛), and yi(t) := 𝑦𝑖1(𝑡1) · · · 𝑦𝑖𝑛(𝑡𝑛). (3.4.19)

It follows from (3.4.15), (3.4.16), and (3.4.3) that

xi(t) ∈ 𝐵−�̇�𝐵−, yi(t) ∈ 𝐵�̇�𝐵. (3.4.20)

3.4.6 Parabolic subgroup 𝑊𝐽 of 𝑊

Let 𝐽 ⊂ 𝐼, and denote by 𝑊𝐽 ⊂ 𝑊 the subgroup generated by {𝑠𝑖}𝑖∈𝐽 . Let 𝑤𝐽 be the

longest element of 𝑊𝐽 , and 𝑤𝐽 := 𝑤0𝑤𝐽 be the maximal element of 𝑊 𝐽 . Let Φ𝐽 ⊂ Φ consist

of roots that are linear combinations of {𝛼𝑖}𝑖∈𝐽 . Define

Φ+
𝐽 := Φ𝐽 ∩ Φ+, Φ−

𝐽 := Φ𝐽 ∩ Φ−, Φ
(𝐽)
+ := Φ+ ∖ Φ+

𝐽 , Φ
(𝐽)
− := Φ− ∖ Φ−

𝐽 .

The sets Φ+
𝐽 , Φ(𝐽)

+ , Φ−
𝐽 , Φ(𝐽)

− are clearly bracket closed, so consider subgroups

𝑈𝐽 = 𝑈(Φ+
𝐽 ), 𝑈−

𝐽 = 𝑈−(Φ
−
𝐽 ), 𝑈 (𝐽) = 𝑈(Φ

(𝐽)
+ ), 𝑈

(𝐽)
− = 𝑈−(Φ

(𝐽)
− ).
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In fact, we have

Φ+
𝐽 = Inv(𝑤𝐽), Φ

(𝐽)
+ = Inv(𝑤𝐽), �̇�𝐽𝑈

−
𝐽 �̇�

−1
𝐽 = 𝑈𝐽 . (3.4.21)

Let 𝑊 𝐽
max := {𝑤𝑤𝐽 | 𝑤 ∈ 𝑊 𝐽}. By [BB05, Prop. 2.4.4], every 𝑤 ∈ 𝑊 admits a unique

parabolic factorization 𝑤 = 𝑤1𝑤2 for 𝑤1 ∈ 𝑊 𝐽 and 𝑤2 ∈ 𝑊𝐽 , and this factorization is

length-additive. We state some standard facts on parabolic factorizations for later use.

Lemma 3.4.4.

(i) If 𝑢 ∈ 𝑊 𝐽 and 𝑠𝑖𝑢 < 𝑢 then 𝑠𝑖𝑢 ∈ 𝑊 𝐽 .

(ii) Given 𝑢 ∈ 𝑊 𝐽 and 𝑟, 𝑟′ ∈ 𝑊𝐽 , we have 𝑢𝑟 ≤ 𝑢𝑟′ if and only if 𝑟 ≤ 𝑟′.

Proof. Part (i) follows since if 𝑠𝑖𝑢 /∈ 𝑊 𝐽 then 𝑠𝑖𝑢𝑠𝑗 < 𝑠𝑖𝑢 for some 𝑗 ∈ 𝐽 , therefore 𝑠𝑖𝑢𝑠𝑗 <

𝑠𝑖𝑢 < 𝑢 < 𝑢𝑠𝑗, which contradicts ℓ(𝑢𝑠𝑗) = ℓ(𝑠𝑖𝑢𝑠𝑗)±1. For (ii), see [BB05, Exercise 2.21].

Lemma 3.4.5. For any 𝑤 ∈ 𝑊 𝐽 , we have Inv(𝑤) ⊂ Φ
(𝐽)
+ . In particular, 𝑤Φ+

𝐽 ⊂ Φ+,

�̇�𝑈𝐽�̇�
−1 ⊂ 𝑈 , and �̇�𝑈−

𝐽 �̇�
−1 ⊂ 𝑈−.

Proof. Let 𝛼 ∈ Φ+ be a positive root. Then it can be written as 𝛼 =
∑︀

𝑖∈𝐼 𝑐𝑖𝛼𝑖 for 𝑐𝑖 ∈ Z≥0.

Since 𝑤 ∈ 𝑊 𝐽 , we have 𝑤𝛼𝑖 > 0 for all 𝑖 ∈ 𝐽 . Thus if 𝑤𝛼 < 0, we must have 𝑐𝑖 ̸= 0 for some

𝑖 /∈ 𝐽 , so 𝛼 ∈ Φ
(𝐽)
+ .

Lemma 3.4.6 ([He09]). Let 𝑥, 𝑦 ∈ 𝑊 .

(i) The set {𝑢𝑣 | 𝑢 ≤ 𝑥, 𝑣 ≤ 𝑦} contains a unique maximal element, denoted 𝑥 * 𝑦. The

set {𝑥𝑣 | 𝑣 ≤ 𝑦} contains a unique minimal element, denoted 𝑥 ▷ 𝑦.

(ii) There exist elements 𝑢′ ≤ 𝑥 and 𝑣′ ≤ 𝑦 such that 𝑥 * 𝑦 = 𝑥𝑣′ = 𝑢′𝑦, and these

factorizations are both length-additive.

(iii) If 𝑥′ ≤ 𝑥, then 𝑥′ * 𝑦 ≤ 𝑥 * 𝑦 and 𝑥′ ▷ 𝑦 ≤ 𝑥 ▷ 𝑦.

(iv) If 𝑥𝑦 is length-additive, then 𝑥 * 𝑦 = 𝑥𝑦 and (𝑥𝑦) ▷ 𝑦−1 = 𝑥.

The operation * is known as the Demazure product.

Proof. The first three parts were shown in [He09, §1.3], with the caveat that our ▷ is the

‘mirror image’ of his ◁. Part (iv) follows from the definitions of * and ▷.
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Definition 3.4.7. Let 𝑄𝐽 = {(𝑣, 𝑤) ∈ 𝑊 ×𝑊 𝐽 | 𝑣 ≤ 𝑤}. We define an order relation ⪯ on

𝑄𝐽 as follows: for (𝑣, 𝑤), (𝑣′, 𝑤′) ∈ 𝑄𝐽 , we write (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) if and only if there exists

𝑟 ∈ 𝑊𝐽 such that 𝑣𝑟 is length-additive and 𝑣′ ≤ 𝑣𝑟 ≤ 𝑤𝑟 ≤ 𝑤′. For (𝑣, 𝑤) ∈ 𝑄𝐽 , denote

𝑄
⪰(𝑣,𝑤)
𝐽 := {(𝑣′, 𝑤′) ∈ 𝑄𝐽 | (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′)}, 𝑄

⪯(𝑣,𝑤)
𝐽 := {(𝑣′, 𝑤′) ∈ 𝑄𝐽 | (𝑣′, 𝑤′) ⪯ (𝑣, 𝑤)}.

Lemma 3.4.8.

(i) Suppose that (𝑣, 𝑤), (𝑣′, 𝑤′) ∈ 𝑄𝐽 , 𝑟 ∈ 𝑊𝐽 , and 𝑣′ ≤ 𝑣𝑟 ≤ 𝑤𝑟 ≤ 𝑤′. Then (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′).

(ii) Let (𝑢, 𝑢), (𝑣, 𝑤), (𝑣′, 𝑤′) ∈ 𝑄𝐽 . Then (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) if and only if

𝑣′ ≤ 𝑣𝑟′ ≤ 𝑢𝑟 ≤ 𝑤𝑟′ ≤ 𝑤′ for some 𝑟, 𝑟′ ∈ 𝑊𝐽 such that 𝑣𝑟′ is length-additive.

(3.4.22)

Proof. (i): By Lemma 3.4.6, there exists 𝑟′ ≤ 𝑟 such that 𝑣 * 𝑟 = 𝑣𝑟′ ≥ 𝑣𝑟, and 𝑣𝑟′ is

length-additive. We have 𝑣𝑟′ ≤ 𝑤𝑟′ by Lemma 3.4.6(iii), and 𝑤𝑟′ ≤ 𝑤𝑟 by Lemma 3.4.4(ii).

Therefore 𝑣′ ≤ 𝑣𝑟 ≤ 𝑣𝑟′ ≤ 𝑤𝑟′ ≤ 𝑤𝑟 ≤ 𝑤′, so (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′).

(ii) (⇒): Suppose that (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′). Then by Definition 3.4.7, there exist

𝑟′, 𝑟′′ ∈ 𝑊𝐽 such that 𝑣𝑟′ is length-additive, 𝑣′ ≤ 𝑣𝑟′ ≤ 𝑤𝑟′ ≤ 𝑤′, and 𝑣 ≤ 𝑢𝑟′′ ≤ 𝑤. Define

𝑟 ∈ 𝑊𝐽 by the equality (𝑢𝑟′′) * 𝑟′ = 𝑢𝑟. Then applying *𝑟′ on the right to 𝑣 ≤ 𝑢𝑟′′ ≤ 𝑤, by

Lemma 3.4.6(iii)–(iv), we obtain 𝑣𝑟′ ≤ 𝑢𝑟 ≤ 𝑤𝑟′. Therefore (3.4.22) holds.

(ii) (⇐): Suppose that (3.4.22) holds. Then (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′). Define 𝑟′′ ∈ 𝑊𝐽 by the

equality (𝑢𝑟) ▷ 𝑟′−1 = 𝑢𝑟′′. Then applying ▷(𝑟′)−1 on the right to 𝑣𝑟′ ≤ 𝑢𝑟 ≤ 𝑤𝑟′, by

Lemma 3.4.6(iii)–(iv), we obtain 𝑣 ≤ 𝑢𝑟′′ ≤ 𝑤. Therefore (𝑢, 𝑢) ⪯ (𝑣, 𝑤).

Remark 3.4.9. By Lemma 3.4.8(i), Definition 3.4.7 remains unchanged if we omit the

condition that 𝑣𝑟 is length-additive. It follows that 𝑄𝐽 coincides with the poset studied

in [HL15, §2.4]. Therefore by [HL15, Appendix], 𝑄𝐽 is also isomorphic to the posets studied

in [Rie06, GY09, KLS13].
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3.4.7 The partial flag variety 𝐺/𝑃

Fix 𝐽 ⊂ 𝐼 as before. Let 𝑃 ⊂ 𝐺 be the subgroup generated by 𝐵 and {𝑦𝑖(𝑡) | 𝑡 ∈ K*, 𝑖 ∈ 𝐽}.

We denote by 𝐺/𝑃 the partial flag variety corresponding to 𝐽 , and let 𝜋𝐽 : 𝐺/𝐵 → 𝐺/𝑃

be the natural projection map. Let 𝐿𝐽 ⊂ 𝑃 be the Levi subgroup of 𝑃 . It is generated by

𝑇 and {𝑥𝑖(𝑡), 𝑦𝑖(𝑡) | 𝑖 ∈ 𝐽, 𝑡 ∈ K*}. Let 𝑃− be the parabolic subgroup opposite to 𝑃 , with

𝐿𝐽 = 𝑃 ∩ 𝑃−.

For (𝑣, 𝑤) ∈ 𝑄𝐽 we introduce
∘
Π𝑣,𝑤 := 𝜋𝐽(

∘
𝑅𝑣,𝑤) ⊂ 𝐺/𝑃 , and define the projected Richard-

son variety Π𝑣,𝑤 ⊂ 𝐺/𝑃 to be the closure of
∘
Π𝑣,𝑤 in the Zariski topology. By [KLS14,

Prop. 3.6], we have

𝐺/𝑃 =
⨆︁

(𝑣,𝑤)∈𝑄𝐽

∘
Π𝑣,𝑤, and Π𝑣,𝑤 =

⨆︁
(𝑣′,𝑤′)∈𝑄⪯(𝑣,𝑤)

𝐽

∘
Π𝑣′,𝑤′ . (3.4.23)

Let now K = C. The varieties 𝒳𝑤, 𝒳𝑣, 𝑋𝑤, 𝑋𝑤,
∘
𝑅𝑣,𝑤, and 𝑅𝑣,𝑤 are defined over R.

The map 𝜋𝐽 is defined over R as well, thus so are
∘
Π𝑣,𝑤 and Π𝑣,𝑤. We let (𝐺/𝐵)R := {𝑔𝐵 |

𝑔 ∈ 𝐺(R)} ⊂ 𝐺/𝐵,
∘
𝑅R
𝑣,𝑤 := (𝐺/𝐵)R ∩

∘
𝑅𝑣,𝑤, and 𝑅R

𝑣,𝑤 := (𝐺/𝐵)R ∩ 𝑅𝑣,𝑤. Additionally, set

(𝐺/𝑃 )R := {𝑥𝑃 | 𝑥 ∈ 𝐺(R)} ⊂ 𝐺/𝑃 ,
∘
ΠR
𝑣,𝑤 :=

∘
Π𝑣,𝑤 ∩ (𝐺/𝑃 )R, and ΠR

𝑣,𝑤 := Π𝑣,𝑤 ∩ (𝐺/𝑃 )R.

It follows that the decomposition (3.4.23) is valid over R:

(𝐺/𝑃 )R =
⨆︁

(𝑣,𝑤)∈𝑄𝐽

∘
ΠR
𝑣,𝑤, ΠR

𝑣,𝑤 =
⨆︁

(𝑣′,𝑤′)∈𝑄⪯(𝑣,𝑤)
𝐽

∘
ΠR
𝑣′,𝑤′ . (3.4.24)

3.4.8 Total positivity

Assume K = C in this subsection. Recall that for each 𝑖 ∈ 𝐼, we have one-parameter

subgroups 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝛼∨
𝑖 (𝑡) (for 𝑡 ∈ C), see (3.4.1).

Definition 3.4.10 ([Lus94]). Let𝐺≥0 ⊂ 𝐺(R) be the submonoid generated by 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝛼∨(𝑡)

for 𝑡 ∈ R>0. Define (𝐺/𝐵)≥0 to be the closure of (𝐺≥0/𝐵) ⊂ (𝐺/𝐵)R in the analytic topology.

For 𝑣 ≤ 𝑤 ∈ 𝑊 , let 𝑅≥0
𝑣,𝑤 denote the closure of 𝑅>0

𝑣,𝑤 :=
∘
𝑅𝑣,𝑤 ∩ (𝐺/𝐵)≥0 inside (𝐺/𝐵)≥0.

Definition 3.4.11 ([Lus98a, Rie99]). Set (𝐺/𝑃 )≥0 := 𝜋𝐽((𝐺/𝐵)≥0). For (𝑣, 𝑤) ∈ 𝑄𝐽 , let

Π≥0
𝑣,𝑤 denote the closure of Π>0

𝑣,𝑤 := 𝜋𝐽(𝑅
>0
𝑣,𝑤) inside (𝐺/𝑃 )≥0.
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Thus we denote by Π>0
𝑣,𝑤 what was denoted by Π>0

(𝑣,𝑤) in Example 3.1.1. We have decomposi-

tions

(𝐺/𝑃 )≥0 =
⨆︁

(𝑣,𝑤)∈𝑄𝐽

Π>0
𝑣,𝑤, Π≥0

𝑣,𝑤 =
⨆︁

(𝑣′,𝑤′)∈𝑄⪯(𝑣,𝑤)
𝐽

Π>0
𝑣′,𝑤′ . (3.4.25)

As a special case of (3.4.25) for 𝐽 = ∅, we have

(𝐺/𝐵)≥0 =
⨆︁
𝑣≤𝑤

𝑅>0
𝑣,𝑤, 𝑅≥0

𝑣,𝑤 =
⨆︁

𝑣≤𝑣′≤𝑤′≤𝑤

𝑅>0
𝑣′,𝑤′ . (3.4.26)

Lemma 3.4.12. (Assume K = C.) Let (𝑣, 𝑤) ∈ 𝑄𝐽 and 𝑟 ∈ 𝑊𝐽 be such that 𝑣𝑟 is length-

additive. Then

∘
Π𝑣,𝑤 = 𝜋𝐽(

∘
𝑅𝑣,𝑤) = 𝜋𝐽(

∘
𝑅𝑣𝑟,𝑤𝑟), Π>0

𝑣,𝑤 = 𝜋𝐽(𝑅
>0
𝑣,𝑤) = 𝜋𝐽(𝑅

>0
𝑣𝑟,𝑤𝑟), (3.4.27)

Π𝑣,𝑤 = 𝜋𝐽(𝑅𝑣,𝑤) = 𝜋𝐽(𝑅𝑣𝑟,𝑤𝑟), Π≥0
𝑣,𝑤 = 𝜋𝐽(𝑅

≥0
𝑣,𝑤) = 𝜋𝐽(𝑅

≥0
𝑣𝑟,𝑤𝑟). (3.4.28)

Proof. By [KLS13, Lemma 3.1], we have 𝜋𝐽(
∘
𝑅𝑣,𝑤) = 𝜋𝐽(

∘
𝑅𝑣𝑟,𝑤𝑟) =

∘
Π𝑣,𝑤, and 𝜋𝐽 restricts to

isomorphisms
∘
𝑅𝑣,𝑤

∼−→
∘
Π𝑣,𝑤,

∘
𝑅𝑣𝑟,𝑤𝑟

∼−→
∘
Π𝑣,𝑤. Thus 𝜋𝐽(𝑅>0

𝑣,𝑤) = 𝜋𝐽(𝑅
>0
𝑣𝑟,𝑤𝑟) = Π>0

𝑣,𝑤 follows from

the equality 𝜋𝐽((𝐺/𝐵)≥0) = (𝐺/𝑃 )≥0, proving (3.4.27). To show (3.4.28), note that 𝑅𝑎,𝑏

and 𝑅≥0
𝑎,𝑏 are compact for any 𝑎 ≤ 𝑏, and therefore their images under 𝜋𝐽 are closed.

Recall the definition of xi(t) and yi(t) from (3.4.19). Choose a reduced word i =

(𝑖1, . . . , 𝑖𝑛) for 𝑤 ∈ 𝑊 and define

𝑈>0(𝑤) := {xi(t) | t ∈ R𝑛
>0}, 𝑈−

>0(𝑤) := {yi(t) | t ∈ R𝑛
>0}.

Let 𝑈≥0 ⊂ 𝑈(R) (resp., 𝑈−
≥0 ⊂ 𝑈−(R)) be the submonoid generated by 𝑥𝑖(𝑡) (resp., by 𝑦𝑖(𝑡))

for 𝑡 ∈ R>0. Then 𝑈≥0 =
⨆︀
𝑤∈𝑊 𝑈>0(𝑤) and 𝑈−

≥0 =
⨆︀
𝑤∈𝑊 𝑈−

>0(𝑤). We have 𝑈>0(𝑤) =

𝑈≥0 ∩𝐵−�̇�𝐵− and 𝑈−
>0(𝑤) = 𝑈−

≥0 ∩𝐵�̇�𝐵, and these sets do not depend on the choice of the

reduced word i for 𝑤, see [Lus94, Prop. 2.7].
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3.4.9 MR-parametrizations

Assume that K is algebraically closed. Given 𝑤 ∈ 𝑊 , an expression w for 𝑤 is a sequence

w = (𝑤(0), . . . , 𝑤(𝑛)) such that 𝑤(0) = id, 𝑤(𝑛) = 𝑤, and for 𝑗 = 1, . . . , 𝑛, either 𝑤(𝑗) = 𝑤(𝑗−1)

or 𝑤(𝑗) = 𝑤(𝑗−1)𝑠𝑖𝑗 for some 𝑖𝑗 ∈ 𝐼. In the latter case we require 𝑤(𝑗−1) < 𝑤(𝑗), unlike [MR04].

We denote 𝐽+
w := {1 ≤ 𝑗 ≤ 𝑛 | 𝑤(𝑗−1) < 𝑤(𝑗)} and 𝐽∘

w := {1 ≤ 𝑗 ≤ 𝑛 | 𝑤(𝑗−1) = 𝑤(𝑗)} so that

𝐽+
w ⊔ 𝐽∘

w = {1, 2, . . . , 𝑛}. Every reduced word i = (𝑖1, . . . , 𝑖𝑛) for 𝑤 gives rise to a reduced

expression w = w(i) = (𝑤(0), . . . , 𝑤(𝑛)) with 𝑤(𝑗) = 𝑤(𝑗−1)𝑠𝑖𝑗 for 𝑗 = 1, . . . , 𝑛.

Lemma 3.4.13 ([MR04, Lemma 3.5]). Let 𝑣 ≤ 𝑤 ∈ 𝑊 , and consider a reduced expression

w = (𝑤(0), . . . , 𝑤(𝑛)) for 𝑤 corresponding to a reduced word i = (𝑖1, . . . , 𝑖𝑛). Then there exists

a unique positive subexpression v for 𝑣 inside w, i.e., an expression v = (𝑣(0), . . . , 𝑣(𝑛)) for

𝑣 such that for 𝑗 = 1, . . . , 𝑛, we have 𝑣(𝑗−1) < 𝑣(𝑗−1)𝑠𝑖𝑗 . This positive subexpression can be

constructed inductively by setting 𝑣(𝑛) := 𝑣 and

𝑣(𝑗−1) :=

⎧⎪⎨⎪⎩𝑣(𝑗)𝑠𝑖𝑗 , if 𝑣(𝑗)𝑠𝑖𝑗 < 𝑣(𝑗),

𝑣(𝑗), otherwise,
for 𝑗 = 𝑛, . . . , 1. (3.4.29)

Corollary 3.4.14. In the above setting, if 𝑣(1) = 𝑠𝑖 for some 𝑖 ∈ 𝐼 then 𝑣 ̸≤ 𝑠𝑖𝑤.

Proof. Indeed, if 𝑣 ≤ 𝑠𝑖𝑤 < 𝑤 then there exists a positive subexpression v′ = (𝑣′(0), . . . , 𝑣
′
(𝑛−1))

for 𝑣 inside w(i′), where i′ = (𝑖2, . . . , 𝑖𝑛). By (3.4.29), we have 𝑣′(𝑗) = 𝑣(𝑗+1) for 𝑗 =

0, 1, . . . , 𝑛− 1, which contradicts the fact that 𝑣′(0) = 1 while 𝑣(1) = 𝑠𝑖.

For 𝑤 ∈ 𝑊 , let Red(𝑤) := {w | w is a reduced expression for 𝑤}. For 𝑣 ≤ 𝑤 ∈ 𝑊 , let

Red(𝑣, 𝑤) := {(v,w) | w ∈ Red(𝑤), v is a positive subexpression for 𝑣 inside w}.

Thus for all 𝑣 ≤ 𝑤, the sets Red(𝑤) and Red(𝑣, 𝑤) have the same cardinality. Let 𝑣 ≤ 𝑤 ∈ 𝑊

and (v,w) ∈ Red(𝑣, 𝑤). Given a collection t = (𝑡𝑘)𝑘∈𝐽∘
v
∈ (K*)𝐽

∘
v , define

gv,w(t) := 𝑔1 · · · 𝑔𝑛, where 𝑔𝑘 :=

⎧⎪⎨⎪⎩𝑦𝑖𝑘(𝑡𝑘), if 𝑘 ∈ 𝐽∘
v,

�̇�𝑖𝑘 , if 𝑘 ∈ 𝐽+
v .

(3.4.30)
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MR-parametrizations of (𝐺/𝐵)≥0

In this section, we assume K = C. Let 𝑣, 𝑤, v, and w be as above. Define a subset

𝐺>0
v,w ⊂ 𝐺(R) by

𝐺>0
v,w := {gv,w(t) | t ∈ R𝐽∘

v
>0}.

Theorem 3.4.15 ([MR04, Theorem 11.3]). The map 𝐺(R) → (𝐺/𝐵)R sending 𝑔 ↦→ 𝑔𝐵

restricts to an isomorphism of real semialgebraic varieties

𝐺>0
v,w

∼−→ 𝑅>0
𝑣,𝑤.

Proposition 3.4.16 ([Lus94, Prop. 8.12]). We have 𝐺≥0 · (𝐺/𝐵)≥0 ⊂ (𝐺/𝐵)≥0.

Lemma 3.4.17. Suppose that 𝑔 ∈ 𝐺≥0 and 𝑥 ∈ 𝐺 are such that 𝑥𝐵 ∈ 𝑅>0
𝑣,𝑤 for some

𝑣 ≤ 𝑤 ∈ 𝑊 . Then 𝑔𝑥𝐵 ∈ 𝑅>0
𝑣′,𝑤′ for some 𝑣′ ≤ 𝑣 ≤ 𝑤 ≤ 𝑤′.

Proof. By Proposition 3.4.16, we have 𝑔𝑥𝐵 ∈ (𝐺/𝐵)≥0, so it suffices to show that 𝑔𝑥 ∈

𝐵�̇�′𝐵 ∩ 𝐵−�̇�
′𝐵 for some 𝑣′ ≤ 𝑣 ≤ 𝑤 ≤ 𝑤′. Note that we have 𝑥 ∈ 𝐵�̇�𝐵 ∩ 𝐵−�̇�𝐵. By

Definition 3.4.10, it is enough to consider the cases 𝑔 = 𝑥𝑖(𝑡) and 𝑔 = 𝑦𝑖(𝑡) for 𝑖 ∈ 𝐼 and

𝑡 ∈ R>0.

Suppose that 𝑔 = 𝑦𝑖(𝑡). We clearly have 𝑔𝑥 ∈ 𝐵−�̇�𝐵. If 𝑠𝑖𝑤 > 𝑤 then by (3.4.16) we

have 𝑔𝑥 ∈ 𝐵�̇�𝑖�̇�𝐵. Thus we may assume that 𝑠𝑖𝑤 < 𝑤. By Theorem 3.4.15, we can also

assume 𝑥 = gv,w(t) = 𝑔1 · · · 𝑔𝑛 for t ∈ R𝐽∘
v
>0 and some choice of (v,w) ∈ Red(𝑣, 𝑤) such that

w = (𝑤(0), . . . 𝑤(𝑛)) satisfies 𝑤(1) = 𝑠𝑖. Let v = (𝑣(0), . . . , 𝑣(𝑛)). If 𝑣(1) ̸= 𝑠𝑖 then 𝑔1 = 𝑦𝑖(𝑡
′) so

𝑔𝑥 ∈ 𝐺>0
v,w and we are done. If 𝑣(1) = 𝑠𝑖 then by Corollary 3.4.14 we have 𝑣 ̸≤ 𝑠𝑖𝑤. Recall

that 𝑔𝑥 ∈ 𝐵−�̇�𝐵 and by (3.4.16), 𝑔𝑥 ∈ 𝐵�̇�𝑖�̇�𝐵⊔𝐵�̇�𝐵. But 𝐵−�̇�𝐵∩𝐵�̇�𝑖�̇�𝐵 = ∅ by (3.4.12).

Therefore we must have 𝑔𝑥 ∈ 𝐵�̇�𝐵, finishing the proof in this case.

The case 𝑔 = 𝑥𝑖(𝑡) follows analogously using a “dual” Marsh–Rietsch parametrization [Rie06,

Section 3.4], where for (v,w) ∈ Red(𝑣, 𝑤), every element of 𝑅>0
𝑤𝑤0,𝑣𝑤0

is parametrized as

𝑔1 · · · 𝑔𝑛�̇�0𝐵, where 𝑔𝑘 :=

⎧⎪⎨⎪⎩𝑥𝑖𝑘(𝑡𝑘), if 𝑘 ∈ 𝐽∘
v,

�̇�−1
𝑖𝑘
, if 𝑘 ∈ 𝐽+

v .
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We will use the following consequence of Theorem 3.4.15 in Section 3.9.11

Corollary 3.4.18 (cf. [KLS14, Prop. 3.3]). Let 𝑢 ∈ 𝑊 𝐽 , 𝑟 ∈ 𝑊𝐽 , and 𝑣 ∈ 𝑊 be such that

𝑣 ≤ 𝑢𝑟. Then

𝜋𝐽(𝑅
>0
𝑣,𝑢𝑟) = 𝜋𝐽(𝑅

>0
𝑣▷𝑟−1,𝑢) = Π>0

𝑣▷𝑟−1,𝑢.

Proof. Let i = (𝑖1, . . . , 𝑖𝑛) be a reduced word for 𝑤 := 𝑢𝑟, such that (𝑖ℓ(𝑢)+1, . . . , 𝑖𝑛) is a

reduced word for 𝑟. Let (v,w) ∈ Red(𝑣, 𝑤) be such that w corresponds to i. Then it is clear

from Lemma 3.4.13 that after setting v′ := (𝑣(0), . . . , 𝑣(ℓ(𝑢))) and u := (𝑤(0), . . . , 𝑤(ℓ(𝑢))), we

get (v′,u) ∈ Red(𝑣 ▷ 𝑟−1, 𝑢). Moreover, the indices 𝑖ℓ(𝑢)+1, . . . , 𝑖𝑛 clearly belong to 𝐽 , so if

𝑔1 . . . 𝑔𝑛 ∈ 𝐺>0
v,w then 𝑔1 . . . 𝑔ℓ(𝑢) ∈ 𝐺>0

v′,u and 𝜋𝐽(𝑔1 . . . 𝑔𝑛𝐵) = 𝜋𝐽(𝑔1 . . . 𝑔ℓ(𝑢)𝐵). We are done

by Theorem 3.4.15.

3.4.10 𝐺/𝑃 is a TNN space

We show that the triple ((𝐺/𝑃 )R, (𝐺/𝑃 )≥0, 𝑄𝐽) is a TNN space in the sense of Defini-

tion 3.2.1. We start by recalling several well known facts.

Proposition 3.4.19.

(i) The poset ̂︀𝑄𝐽 := 𝑄𝐽 ⊔ {0̂} is graded, thin, and shellable.

(ii) (𝐺/𝑃 )R is a smooth manifold, and each
∘
ΠR
𝑣,𝑤 is a smooth embedded submanifold of (𝐺/𝑃 )R.

(iii) For (𝑣, 𝑤) ∈ 𝑄𝐽 , Π>0
𝑣,𝑤 is a connected component of

∘
ΠR
𝑣,𝑤.

Proof. For (i), see [Wil07]. For (ii), (𝐺/𝑃 )R is a smooth manifold because it is a homogeneous

space of a real Lie group, and
∘
ΠR
𝑣,𝑤 is a smooth embedded manifold because it is the set of real

points of a smooth algebraic subvariety
∘
Π𝑣,𝑤 of 𝐺/𝑃 , see [KLS14, Cor. 3.2] or [Lus98a, Rie06].

Part (iii) is due to [Rie99].

Corollary 3.4.20. ((𝐺/𝑃 )R, (𝐺/𝑃 )≥0, 𝑄𝐽) is a TNN space.

Proof. Let us check each part of Definition 3.2.1.

(TNN1): Follows from Proposition 3.4.19(i). The maximal element 1̂ ∈ 𝑄𝐽 is given by

(id, 𝑤𝐽), see Section 3.4.6.

(TNN2): Follows from Proposition 3.4.19(ii) and (3.4.24).
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(TNN3): Clear since (𝐺/𝑃 )R is compact and Π≥0
𝑣,𝑤 ⊂ 𝐺/𝑃 is closed.

(TNN4): Follows from Proposition 3.4.19(iii) combined with Theorem 3.4.15.

(TNN5): This result is due to [Rie06], see (3.4.25).

3.4.11 Gaussian decomposition

Assume K is algebraically closed. Let us define

𝐺∓
0 := 𝐵−𝐵, 𝐺±

0 := 𝐵𝐵−.

For 𝑖 ∈ 𝐼, let Δ∓
𝑖 : 𝐺∓

0 → K and Δ±
𝑖 : 𝐺±

0 → K be defined as follows. Given (𝑥−, 𝑥0, 𝑥+) ∈

𝑈− × 𝑇 × 𝑈 , we have 𝑥−𝑥0𝑥+ ∈ 𝐺∓
0 and 𝑥+𝑥0𝑥− ∈ 𝐺±

0 , and we set Δ∓
𝑖 (𝑥−𝑥0𝑥+) := 𝑥𝜔𝑖

0 ,

Δ±
𝑖 (𝑥+𝑥0𝑥−) := 𝑥𝑤0𝜔𝑖

0 . For a finite set 𝐴, let P(
2𝑛
𝑛−1)−1

𝐴

denote the (|𝐴| − 1)-dimensional

projective space over K, with coordinates indexed by elements of 𝐴.

Lemma 3.4.21.

(i) The multiplication map gives biregular isomorphisms:

𝑈− × 𝑇 × 𝑈
∼−→ 𝐺∓

0 , 𝑈 × 𝑇 × 𝑈−
∼−→ 𝐺±

0 .

(ii) The maps Δ∓
𝑖 and Δ±

𝑖 extend to regular functions 𝐺→ K.

(iii) We have 𝐺∓
0 = {𝑥 ∈ 𝐺 | Δ∓

𝑖 (𝑥) ̸= 0 ∀𝑖 ∈ 𝐼} and 𝐺±
0 = {𝑥 ∈ 𝐺 | Δ±

𝑖 (𝑥) ̸= 0 ∀𝑖 ∈ 𝐼}.

(iv) Fix 𝑖 ∈ 𝐼 and let 𝑊𝜔𝑖 := {𝑤𝜔𝑖 | 𝑤 ∈ 𝑊} denote the 𝑊 -orbit of the corresponding

fundamental weight. Then there exists a regular map Δflag
𝑖 : 𝐺/𝐵 → P(

2𝑛
𝑛−1)−1

𝑊𝜔𝑖

such

that for 𝑤 ∈ 𝑊 and 𝑥 ∈ 𝐺, the 𝑤𝜔𝑖-th coordinate of Δflag
𝑖 (𝑥𝐵) equals Δ∓

𝑖 (�̇�
−1𝑥).

Proof. For (i), see [Hum75, Prop. 28.5]. Parts (ii) and (iii) are well known when K = C,

see [FZ99, Prop. 2.4 and Cor. 2.5]. We give a proof for arbitrary algebraically closed K,

using a standard argument that relies on representation theory. We refer to [Hum75, §31]

for the necessary notation and background.

We have 𝐺±
0 = �̇�−1

0 𝐺∓
0 �̇�0 and Δ±

𝑖 (�̇�
−1
0 𝑔�̇�0) = Δ∓

𝑖 (𝑔) for all 𝑔 ∈ 𝐺∓
0 . Thus it suffices to

give a proof for Δ∓
𝑖 and 𝐺∓

0 . For 𝑖 ∈ 𝐼, there exists a regular function 𝑐𝜔𝑖
: 𝐺 → K that
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coincides with Δ∓
𝑖 on 𝐺∓

0 , see [Hum75, §31.4]. This shows (ii). Explicitly, 𝑐𝜔𝑖
is given as

follows: consider the highest weight module 𝑉𝜔𝑖
for 𝐺, and let 𝑣+ ∈ 𝑉𝜔𝑖

be its highest weight

vector. We have a direct sum of vector spaces 𝑉𝜔𝑖
= K𝑣+ ⊕ 𝑉 ′, where 𝑉 ′ is spanned by

weight vectors of weight other than 𝜔𝑖. Let 𝑟+ : 𝑉𝜔𝑖
→ K denote the linear function such

that 𝑟+(𝑣+) = 1 and 𝑟+(𝑉 ′) = {0}, then 𝑐𝜔𝑖
(𝑔) := 𝑟+(𝑔𝑣+) for all 𝑔 ∈ 𝐺. The decomposition

𝑉𝜔𝑖
= K𝑣+ ⊕ 𝑉 ′ is such that for (𝑥−, 𝑥0, 𝑥+) ∈ 𝑈− × 𝑇 ×𝑈 and 𝑤 ∈ 𝑊 , we have 𝑥+𝑣+ = 𝑣+,

𝑥0𝑣+ = 𝑀𝑣+ for some 𝑀 ∈ K*, 𝑥−𝑣+ ∈ 𝑣+ + 𝑉 ′, 𝑥−𝑉 ′ ⊂ 𝑉 ′, and �̇�𝑣+ ∈ 𝑉 ′ if 𝑤𝜔𝑖 ̸= 𝜔𝑖.

Thus if 𝑔 ∈ 𝐺∓
0 then 𝑐𝜔𝑖

(𝑔) ̸= 0 for all 𝑖 ∈ 𝐼. Conversely, if 𝑥 /∈ 𝐺±
0 then by (3.4.11), there

exists a unique 𝑤 ̸= id ∈ 𝑊 such that 𝑔 ∈ 𝑈−�̇�𝑇𝑈 . For 𝑖 ∈ 𝐼 such that 𝑤𝜔𝑖 ̸= 𝜔𝑖, we

get 𝑐𝜔𝑖
(𝑔) = 0. This proves (iii). For (iv), let 𝑉𝜔𝑖

= 𝑉1 ⊕ 𝑉2 where 𝑉1 is spanned by all

weight vectors of weight in 𝑊𝜔𝑖, and 𝑉2 is spanned by the remaining weight vectors. Let

𝜋1 : 𝑉𝜔𝑖
→ 𝑉1 denote the projection along 𝑉2. It follows that for all 𝑔 ∈ 𝐺, 𝜋1(𝑔𝑣+) ̸= 0.

Then Δflag
𝑖 is the natural morphism 𝐺/𝐵 → P(

2𝑛
𝑛−1)−1(𝑉1), sending 𝑔𝐵 to [𝜋1(𝑔𝑣+)].

Lemma 3.4.22. Define 𝐺(𝐽)
0 := 𝑃−𝑃 .

(i) We have 𝐺(𝐽)
0 = 𝑃−𝐵 and 𝑃 =

⨆︀
𝑟∈𝑊𝐽

𝐵�̇�𝐵.

(ii) For 𝑝 ∈ 𝑃 , we have 𝑝𝑈 (𝐽)𝑝−1 = 𝑈 (𝐽). Similarly, for 𝑝 ∈ 𝑃−, we have 𝑝𝑈 (𝐽)
− 𝑝−1 = 𝑈

(𝐽)
− .

In particular, for 𝑝 ∈ 𝐿𝐽 , we have 𝑝𝑈 (𝐽)𝑝−1 = 𝑈 (𝐽) and 𝑝𝑈 (𝐽)
− 𝑝−1 = 𝑈

(𝐽)
− .

(iii) The multiplication map gives a biregular isomorphism 𝑈
(𝐽)
− × 𝐿𝐽 × 𝑈 (𝐽) ∼−→ 𝐺

(𝐽)
0 . In

particular, every element 𝑥 ∈ 𝐺
(𝐽)
0 can be uniquely factorized as [𝑥](𝐽)− ·[𝑥]𝐽 ·[𝑥](𝐽)+ ∈ 𝑈

(𝐽)
− ·

𝐿𝐽 · 𝑈 (𝐽). The map 𝐺
(𝐽)
0 → 𝐿𝐽 sending 𝑥 ↦→ [𝑥]𝐽 satisfies [𝑝−𝑥𝑝+]𝐽 = [𝑝−]𝐽 [𝑥]𝐽 [𝑝+]𝐽

for all 𝑥 ∈ 𝐺
(𝐽)
0 , 𝑝− ∈ 𝑃−, and 𝑝+ ∈ 𝑃 .

(iv) The map 𝑏→ [𝑏]𝐽 gives group homomorphisms 𝑈 → 𝑈𝐽 and 𝑈− → 𝑈−
𝐽 , sending

𝑥𝑖(𝑡) ↦→ [𝑥𝑖(𝑡)]𝐽 =

⎧⎪⎨⎪⎩𝑥𝑖(𝑡), if 𝑖 ∈ 𝐽 ,

1, otherwise,
𝑦𝑖(𝑡) ↦→ [𝑦𝑖(𝑡)]𝐽 =

⎧⎪⎨⎪⎩𝑦𝑖(𝑡), if 𝑖 ∈ 𝐽 ,

1, otherwise.

Proof. By [Hum75, §30.2], 𝑈 (𝐽) is the unipotent radical (in particular, a normal subgroup) of

𝑃 and 𝑈 (𝐽)
− is the unipotent radical of 𝑃−. This shows (ii). It follows that 𝑃 = 𝐿𝐽𝑈

(𝐽) = 𝐿𝐽𝐵,

therefore 𝐺(𝐽)
0 = 𝑃−𝐵. By [Hum75, §30.1] and (3.4.11), 𝑃 =

⨆︀
𝑟∈𝑊𝐽

𝐵�̇�𝐵, which proves (i).

By [Bor91, Prop. 14.21(iii)], the multiplication map gives a biregular isomorphism 𝑈
(𝐽)
− ×
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𝑃 → 𝐺
(𝐽)
0 . By [Hum75, §30.2], the multiplication map gives a biregular isomorphism 𝐿𝐽 ×

𝑈 (𝐽) → 𝑃 . Thus we get a biregular isomorphism 𝑈
(𝐽)
− ×𝐿𝐽×𝑈 (𝐽) ∼−→ 𝐺

(𝐽)
0 . It is clear from the

definition that [𝑝−𝑥𝑝+]𝐽 = [𝑝−]𝐽 [𝑥]𝐽 [𝑝+]𝐽 , since we can factorize 𝑝− = [𝑝−]
(𝐽)
− [𝑝−]𝐽 and 𝑝+ =

[𝑝+]𝐽 [𝑝+]
(𝐽)
+ . Thus we are done with (iii), and (iv) follows by repeatedly applying (iii).

3.4.12 Affine charts

For 𝑢 ∈ 𝑊 𝐽 , denote 𝐶(𝐽)
𝑢 := �̇�𝐺

(𝐽)
0 /𝑃 ⊂ 𝐺/𝑃 . The following maps are biregular isomor-

phisms for 𝑢 ∈ 𝑊 𝐽 and 𝑣, 𝑤 ∈ 𝑊 , see [Bor91, Prop. 14.21(iii)], [Spr98, Prop. 8.5.1(ii)],

and [FH91, Cor. 23.60]:

�̇�𝑈
(𝐽)
− �̇�−1 ∼−→ 𝐶(𝐽)

𝑢 , 𝑔(𝐽) ↦→ 𝑔(𝐽)�̇�𝑃, (3.4.31)

�̇�𝑈−�̇�
−1 ∩ 𝑈−

∼−→ 𝒳𝑣, 𝑔 ↦→ 𝑔�̇�𝐵, (3.4.32)

�̇�𝑈−�̇�
−1 ∩ 𝑈 ∼−→ 𝒳𝑤, 𝑔 ↦→ 𝑔�̇�𝐵. (3.4.33)

As a consequence of (3.4.32) and (3.4.33), we get

𝐵−�̇�𝐵 = (�̇�𝑈− ∩ 𝑈−�̇�) ·𝐵, 𝐵�̇�𝐵 = (�̇�𝑈− ∩ 𝑈�̇�) ·𝐵. (3.4.34)

The isomorphism in (3.4.31) identifies an open dense subset 𝐶(𝐽)
𝑢 of 𝐺/𝑃 with the group

�̇�𝑈
(𝐽)
− �̇�−1. We now combine this with Lemma 3.4.2.

Definition 3.4.23. Let 𝑈 (𝐽)
1 := �̇�𝑈

(𝐽)
− �̇�−1 ∩ 𝑈 and 𝑈

(𝐽)
2 := �̇�𝑈

(𝐽)
− �̇�−1 ∩ 𝑈−. For 𝑥 ∈ �̇�𝐺

(𝐽)
0 ,

consider the element 𝑔(𝐽) ∈ �̇�𝑈
(𝐽)
− �̇�−1 such that 𝑔(𝐽)�̇� ∈ 𝑥𝑃 ∩ �̇�𝑈

(𝐽)
− , unique by (3.4.31).

Further, let ℎ(𝐽)1 , 𝑔
(𝐽)
1 ∈ 𝑈

(𝐽)
1 and ℎ

(𝐽)
2 , 𝑔

(𝐽)
2 ∈ 𝑈

(𝐽)
2 be the elements such that ℎ(𝐽)2 𝑔(𝐽) =

𝑔
(𝐽)
1 and ℎ

(𝐽)
1 𝑔(𝐽) = 𝑔

(𝐽)
2 . By (3.4.31), the map 𝑥 ↦→ 𝑔(𝐽) is regular, and the map 𝑔(𝐽) →

(𝑔
(𝐽)
1 , 𝑔

(𝐽)
2 , ℎ

(𝐽)
1 , ℎ

(𝐽)
2 ) is regular by Lemma 3.4.2. Let us denote by 𝜅 : �̇�𝐺

(𝐽)
0 → 𝑈

(𝐽)
2 the map

𝑥 ↦→ 𝜅𝑥 := ℎ
(𝐽)
2 . It descends to a regular map 𝜅 : 𝐶

(𝐽)
𝑢 → 𝑈

(𝐽)
2 sending 𝑥𝑃 ↦→ 𝜅𝑥.

3.5 Subtraction-free parametrizations

We study subtraction-free analogs of Marsh–Rietsch parametrizations of (𝐺/𝐵)≥0.
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3.5.1 Subtraction-free subsets

Given some fixed collection t of variables of size |t|, let R[t] be the ring of polynomials in t,

and R>0[t] ⊂ R[t] be the semiring of nonzero polynomials in t with positive real coefficients.

Let ℱ := R(t) be the field of rational functions in t. Define

ℱ*
sf := {𝑅(t)/𝑄(t) | 𝑅(t), 𝑄(t) ∈ R>0[t]}, ℱsf := {0} ⊔ ℱ*

sf ,

ℱ◇ := {𝑅(t)/𝑄(t) | 𝑅(t) ∈ R[t], 𝑄(t) ∈ R>0[t]}.

We call elements of ℱsf subtraction-free rational expressions in t. In this section, we assume

that K = ℱ is the algebraic closure of ℱ .

Definition 3.5.1. Let 𝑇 sf ⊂ 𝑇 be the submonoid generated by 𝛼∨
𝑖 (𝑡) for 𝑖 ∈ 𝐼 and 𝑡 ∈ ℱ*

sf .

Let 𝐺◇ ⊂ 𝐺 be the subgroup generated by

{𝑥𝑖(𝑡), 𝑦𝑖(𝑡) | 𝑖 ∈ 𝐼, 𝑡 ∈ ℱ◇} ∪ {�̇� | 𝑤 ∈ 𝑊} ∪ 𝑇 sf .

We define subgroups 𝑈◇ := 𝑈 ∩ 𝐺◇, 𝑈◇
− := 𝑈− ∩ 𝐺◇, 𝐵sf := 𝑇 sf𝑈◇ = 𝑈◇𝑇 sf and 𝐵sf

− =

𝑇 sf𝑈◇
− = 𝑈◇

−𝑇
sf (cf. Lemma 3.5.2 below). We also put 𝑈◇(Θ) := 𝑈◇∩𝑈(Θ) (resp., 𝑈◇

−(Θ) :=

𝑈◇
− ∩ 𝑈−(Θ)) for a bracket closed subset Θ of Φ+ (resp., of Φ−). Given a reduced word i for

𝑤 ∈ 𝑊 , define

𝑈sf(𝑤) := {xi(t
′) | t′ ∈ (ℱ*

sf)
𝑛}, 𝑈−

sf (𝑤) := {yi(t
′) | t′ ∈ (ℱ*

sf)
𝑛}. (3.5.1)

These subsets do not depend on the choice of i, see [BZ97].

For two subsets 𝐻1, 𝐻2 of 𝐺, we say that 𝐻1 commutes with 𝐻2 if 𝐻1 ·𝐻2 = 𝐻2 ·𝐻1. We

say that 𝐻1 commutes with 𝑔 ∈ 𝐺 if 𝐻1 · 𝑔 = 𝑔 ·𝐻1.

Lemma 3.5.2. 𝑇 sf commutes with 𝐵sf , 𝑈 , 𝑈−, 𝑈◇(Θ), 𝑈◇
−(Θ), 𝑈sf(𝑤), 𝑈−

sf (𝑤) and �̇�.

Proof. It follows from (3.4.2) that 𝑇 sf commutes with 𝐵sf , 𝑈 , 𝑈−, 𝑈sf(𝑤), 𝑈−
sf (𝑤) and �̇�.

For 𝑈◇(Θ), 𝑈◇
−(Θ), we use a generalization of (3.4.2): for 𝛼 ∈ Φ+, 𝑖 ∈ 𝐼, and 𝑤 ∈ 𝑊 such

that 𝑤𝛼𝑖 = 𝛼, write 𝑥𝛼(𝑡) := �̇�𝑥𝑖(𝑡)�̇�
−1 ∈ 𝑈◇({𝛼}) and 𝑦𝛼(𝑡) := �̇�𝑦𝑖(𝑡)�̇�

−1 ∈ 𝑈◇
−({−𝛼}) for

𝑡 ∈ ℱ◇. Then (3.4.2) implies 𝑎𝑥𝛼(𝑡)𝑎−1 = 𝑥𝛼(𝑎
𝛼𝑡) and 𝑎𝑦𝛼(𝑡)𝑎−1 = 𝑦𝛼(𝑎

−𝛼𝑡).
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Let us now introduce subtraction-free analogs of MR parametrizations. Let 𝑣 ≤ 𝑤 ∈ 𝑊

and (v,w) ∈ Red(𝑣, 𝑤). Recall that for t′ = (𝑡′𝑘)𝑘∈𝐽∘
v
∈ (K*)𝐽

∘
v , gv,w(t

′) = 𝑔1 · · · 𝑔𝑛 is defined

in (3.4.30). Define 𝐺sf
v,w := {gv,w(t

′) | t′ ∈ (ℱ*
sf)

𝐽∘
v} ⊂ 𝐺◇. The following result is closely

related to [MR04, Lemma 11.8].

Lemma 3.5.3. Let 𝑣 ≤ 𝑤 ∈ 𝑊 and (v,w) ∈ Red(𝑣, 𝑤). Let gv,w(t
′) be as in (3.4.30) for

t′ ∈ (ℱ*
sf)

𝐽∘
v . Then for each 𝑘 = 0, 1, . . . , 𝑛 and for all 𝑥 ∈ 𝑈◇ ∩ �̇�−1

(𝑘)𝑈−�̇�(𝑘), we have

𝑔1 · · · 𝑔𝑘 · 𝑥 · 𝑔𝑘+1 · · · 𝑔𝑛 ∈ 𝑔1 · · · 𝑔𝑛 · 𝑈◇. (3.5.2)

Proof. We prove this by induction on 𝑘. For 𝑘 = 𝑛, the result is trivial, so suppose that

𝑘 < 𝑛. Let 𝑥 ∈ 𝑈◇ ∩ �̇�−1
(𝑘)𝑈−�̇�(𝑘). If 𝑔𝑘+1 = �̇�𝑖 for some 𝑖 ∈ 𝐼 then ℓ(𝑣(𝑘+1)) = ℓ(𝑣(𝑘)) + ℓ(𝑠𝑖),

so we use (3.4.9) to show that 𝑥 · 𝑔𝑘+1 = 𝑔𝑘+1 · 𝑥′ for some 𝑥′ ∈ 𝑈 ∩ �̇�−1
(𝑘+1)𝑈−�̇�(𝑘+1). Since

𝑥′ = �̇�−1
𝑖 𝑥�̇�𝑖 and each term belongs to 𝐺◇, we see that 𝑥′ ∈ 𝑈◇ ∩ �̇�−1

(𝑘+1)𝑈−�̇�(𝑘+1), so we are

done by induction.

Suppose now that 𝑔𝑘+1 = 𝑦𝑖(𝑡) for some 𝑖 ∈ 𝐼 and 𝑡 ∈ ℱ*
sf . Write

𝑥 · 𝑔𝑘+1 = 𝑔𝑘+1 · 𝑔−1
𝑘+1𝑥𝑔𝑘+1 = 𝑔𝑘+1 · 𝑦𝑖(−𝑡)𝑥𝑦𝑖(𝑡).

By (3.4.5), 𝑈◇ ∩ �̇�−1
(𝑘)𝑈−�̇�(𝑘) = 𝑈◇(Inv(𝑣(𝑘))). Clearly again 𝑦𝑖(−𝑡)𝑥𝑦𝑖(𝑡) ∈ 𝐺◇, and we claim

that 𝑦𝑖(−𝑡)𝑥𝑦𝑖(𝑡) ∈ 𝑈(Inv(𝑣(𝑘))) for all 𝑥 ∈ 𝑈(Inv(𝑣(𝑘))). First, using Lemma 3.4.1(ii), we

can assume that 𝑥 ∈ 𝑈𝛼 for some 𝛼 ∈ Inv(𝑣(𝑘)). Since 𝑣(𝑘)𝑠𝑖 > 𝑣(𝑘), we have 𝛼𝑖 /∈ Inv(𝑣(𝑘)), so

𝛼 ̸= 𝛼𝑖. Let Ψ = {𝑚𝛼−𝑟𝛼𝑖} ⊂ Φ+ be the set of roots as in Lemma 3.4.3. Our goal is to show

that Ψ ⊂ Inv(𝑣(𝑘)). Let 𝛾 := 𝑚𝛼 − 𝑟𝛼𝑖 ∈ Ψ for some 𝑚 > 0 and 𝑟 ≥ 0. We now show that

𝛾 ∈ Inv(𝑣(𝑘)), which is equivalent to saying that 𝑣(𝑘)𝛾 < 0. Indeed, 𝑣(𝑘)𝛾 = 𝑚𝑣(𝑘)𝛼− 𝑟𝑣(𝑘)𝛼𝑖.

Since 𝛼 ∈ Inv(𝑣(𝑘)), 𝑣(𝑘)𝛼 < 0. Since 𝛼𝑖 /∈ Inv(𝑣(𝑘)), 𝑣(𝑘)𝛼𝑖 > 0. Thus 𝑣(𝑘)𝛾 < 0, because

−𝑣(𝑘)𝛾 is a positive linear combination of positive roots. We have shown that Ψ ⊂ Inv(𝑣(𝑘)),

thus by Lemma 3.4.3, we find 𝑦𝑖(−𝑡)𝑥𝑦𝑖(𝑡) ∈ 𝑈(Inv(𝑣(𝑘))). Since 𝑣(𝑘) = 𝑣(𝑘+1), we get

𝑦𝑖(−𝑡)𝑥𝑦𝑖(𝑡) ∈ 𝑈◇(Inv(𝑣(𝑘))) = 𝑈◇ ∩ �̇�−1
(𝑘)𝑈−�̇�(𝑘) = 𝑈◇ ∩ �̇�−1

(𝑘+1)𝑈−�̇�(𝑘+1),

and we are done by induction.

70



Proposition 3.5.4. For 𝑣 ≤ 𝑤 ∈ 𝑊 , the set 𝐺sf
v,w · 𝑈◇ ⊂ 𝐺◇ does not depend on the choice

of (v,w) ∈ Red(𝑣, 𝑤). In other words: let (v0,w0), (v1,w1) ∈ Red(𝑣, 𝑤). Then for any

t0 ∈ (ℱ*
sf)

𝐽∘
v0 there exists t1 ∈ (ℱ*

sf)
𝐽∘
v1 and 𝑥 ∈ 𝑈◇ such that gv0,w0(t0) = gv1,w1(t1) · 𝑥.

Proof. Recall that for each w0 ∈ Red(𝑤) there exists a unique positive subexpression v0

for 𝑣 such that (v0,w0) ∈ Red(𝑣, 𝑤). We need to show that choosing a different reduced

expression w1 for 𝑤 results in a subtraction-free coordinate change t0 ↦→ t1 of the parameters

in Theorem 3.4.15. Any two reduced expressions for 𝑤 are related by a sequence of braid

moves, so it suffices to assume that w0 and w1 differ in a single braid move.

The explicit formulae for the corresponding coordinate transformations can be found in

the proof of [Rie08, Prop. 7.2], however, an extra step is needed to show that those formulae

indeed give the correct coordinate transformations. More precisely, suppose that Φ′ is a root

subsystem of Φ of rank 2 (i.e., Φ′ is of type 𝐴1 ×𝐴1, 𝐴2, 𝐵2, or 𝐺2), and let 𝑊 ′ be its Weyl

group. Then it was checked in the proof of [Rie08, Prop. 7.2] that for any 𝑣′ ≤ 𝑤′ ∈ 𝑊 ′, any

(v′
0,w

′
0), (v

′
1,w

′
1) ∈ Red(𝑣′, 𝑤′), and any t′0 ∈ (ℱ*

sf)
𝐽∘
v′0 , there exists t′1 ∈ (ℱ*

sf)
𝐽∘
v′1 and 𝑥 ∈ 𝑈

such that gv′
0,w

′
0
(t′0) = gv′

1,w
′
1
(t′1) · 𝑥.

Since gv′
0,w

′
0
(t′0) and gv′

1,w
′
1
(t′1) belong to 𝐺◇, we must have 𝑥 ∈ 𝑈◇. Note that the only

non-trivial cases to check are the ones where 𝑤′ = (𝑠𝑖𝑠𝑗)
𝑚𝑖𝑗 is the longest element of 𝑊 ′ and

𝑣′ ∈ 𝑊 ′ is arbitrary. If Φ′ is of type 𝐺2 then we must have Φ = Φ′ and 𝑤′ = 𝑤 = 𝑤0, so we

are done. Using a computer algebra system [Sag16], we were able to additionally check in

each of the remaining cases (i.e. Φ′ being of type 𝐴1 × 𝐴1, 𝐴2, or 𝐵2) that 𝑥 ∈ �̇�′−1𝑈−�̇�
′.

Let us now complete the proof of Proposition 3.5.4 (as well as of [Rie08, Prop. 7.2]).

Suppose that w0 and w1 differ in a braid move along a subword 𝑔𝑘+1 · · · 𝑔𝑘+𝑚 of 𝑔1 · · · 𝑔𝑛.

Here 𝑔𝑘+1 · · · 𝑔𝑘+𝑚 = gv′
0,w

′
0
(t′0) as above. Applying a move from [Rie08], we transform

𝑔𝑘+1 · · · 𝑔𝑘+𝑚 into 𝑔′𝑘+1 · · · 𝑔′𝑘+𝑚𝑥 for some 𝑥 ∈ 𝑈 and 𝑔′𝑘+1 · · · 𝑔′𝑘+𝑚 = gv′
1,w

′
1
(t′1). Thus

𝑔1 · · · 𝑔𝑛 = 𝑔1 · · · 𝑔𝑘 · 𝑔′𝑘+1 · · · 𝑔′𝑘+𝑚 · 𝑥 · 𝑔𝑘+𝑚+1 · · · 𝑔𝑛.

We have checked that 𝑥 ∈ 𝑈◇, and if 𝑘 + 𝑚 < 𝑛 then 𝑥 ∈ 𝑈◇ ∩ 𝑣′−1𝑈−𝑣
′, where 𝑣′ ∈ 𝑊

satisfies 𝑣(𝑘+𝑚) = 𝑣(𝑘) · 𝑣′ and ℓ(𝑣(𝑘+𝑚)) = ℓ(𝑣(𝑘)) + ℓ(𝑣′). It follows by (3.4.6) that 𝑥 ∈
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𝑈◇ ∩ 𝑣−1
(𝑘+𝑚)𝑈−𝑣(𝑘+𝑚), so by Lemma 3.5.3, we have

𝑔1 · · · 𝑔𝑛 ∈ 𝑔1 · · · 𝑔𝑘 · 𝑔′𝑘+1 · · · 𝑔′𝑘+𝑚 · 𝑔𝑘+𝑚+1 · · · 𝑔𝑛 · 𝑈◇.

Definition 3.5.5. From now on we denote 𝑅sf
𝑣,𝑤 := 𝐺sf

v,w𝐵
sf ⊂ 𝐺◇. By Proposition 3.5.4, the

set 𝑅sf
𝑣,𝑤 does not depend on the choice of (v,w) ∈ Red(𝑣, 𝑤). As we discuss in Section 3.5.4,

𝑅sf
𝑣,𝑤 is the “subtraction-free” analog of 𝑅>0

𝑣,𝑤.

3.5.2 Collision moves

Assume K = ℱ . By [FZ99, Eq. (2.13)], for each 𝑡 ∈ ℱ*
sf there exist 𝑡+ ∈ ℱ*

sf , 𝑎+ ∈ 𝑇 sf , and

𝑡− ∈ ℱ◇ satisfying

�̇�𝑖𝑥𝑖(𝑡) = 𝑎+𝑥𝑖(𝑡−)𝑦𝑖(𝑡+), 𝑥𝑖(𝑡)�̇�𝑖 = 𝑦𝑖(𝑡+)𝑥𝑖(𝑡−)𝑎+, (3.5.3)

�̇�−1
𝑖 𝑦𝑖(𝑡) = 𝑎+𝑦𝑖(𝑡−)𝑥𝑖(𝑡+), 𝑦𝑖(𝑡)�̇�

−1
𝑖 = 𝑥𝑖(𝑡+)𝑦𝑖(𝑡−)𝑎+. (3.5.4)

(Here, each of the four moves yields different 𝑡+, 𝑎+, 𝑡−.) By [FZ99, Eq. (2.11)], for each

𝑡, 𝑡′ ∈ ℱ*
sf there exist 𝑡+, 𝑡′+ ∈ ℱ*

sf and 𝑎+ ∈ 𝑇 sf satisfying

𝑥𝑖(𝑡)𝑦𝑖(𝑡
′) = 𝑦𝑖(𝑡

′
+)𝑥𝑖(𝑡+)𝑎+, 𝑦𝑖(𝑡

′)𝑥𝑖(𝑡) = 𝑥𝑖(𝑡+)𝑦𝑖(𝑡
′
+)𝑎+. (3.5.5)

We also have [FZ99, Eq. (2.9)]

𝑥𝑖(𝑡)𝑦𝑗(𝑡
′) = 𝑦𝑗(𝑡

′)𝑥𝑖(𝑡), for 𝑖 ̸= 𝑗. (3.5.6)

As a direct consequence of (3.5.5), (3.5.6), and Lemma 3.5.2, for any 𝑣, 𝑤 ∈ 𝑊 we get

𝑈sf(𝑣) · 𝑈−
sf (𝑤) · 𝑇

sf = 𝑈−
sf (𝑤) · 𝑈sf(𝑣) · 𝑇 sf . (3.5.7)

Lemma 3.5.6.
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(i) Let 𝑤 ∈ 𝑊 . Then

𝐵sf
− · �̇�−1 · 𝑈−

sf (𝑤) = 𝐵sf
− · 𝑈sf(𝑤

−1) and 𝑈−
sf (𝑤) · �̇�

−1 ·𝐵sf
− = 𝑈sf(𝑤

−1) ·𝐵sf
− . (3.5.8)

(ii) If 𝑣, 𝑤 ∈ 𝑊 are such that ℓ(𝑣𝑤) = ℓ(𝑣) + ℓ(𝑤) then

�̇�−1�̇�−1 · 𝑈−
sf (𝑣) ⊂ 𝐵sf

− · �̇�−1 · 𝑈sf(𝑣
−1). (3.5.9)

(iii) Let 𝑤1, . . . , 𝑤𝑘 ∈ 𝑊 be such that ℓ(𝑤1 · · ·𝑤𝑘) = ℓ(𝑤1) + · · · + ℓ(𝑤𝑘). Then for any

ℎ ∈ 𝑈−
sf (𝑤1 · · ·𝑤𝑘) there exist 𝑏1 ∈ 𝑈sf(𝑤

−1
1 ), . . . , 𝑏𝑘 ∈ 𝑈sf(𝑤

−1
𝑘 ) such that for each

1 ≤ 𝑖 ≤ 𝑘, we have

�̇�−1
𝑖 · · · �̇�−1

1 · ℎ ∈ 𝐵sf
− · 𝑏𝑖 · · · 𝑏1. (3.5.10)

(iv) Let 𝑣 ≤ 𝑤 ∈ 𝑊 . Then

�̇�−1 · 𝑈−
sf (𝑤) ⊂ 𝐵sf

− · 𝑈sf(𝑣
−1). (3.5.11)

Proof. Let us prove the following claim: if 𝑣𝑣1 = 𝑤 and ℓ(𝑤) = ℓ(𝑣) + ℓ(𝑣1) then

�̇�−1𝑈−
sf (𝑤) ⊂ 𝑇 sf · (𝑈◇

− ∩ �̇�−1𝑈�̇�) · 𝑈−
sf (𝑣1) · 𝑈sf(𝑣

−1). (3.5.12)

We prove this by induction on ℓ(𝑣). If ℓ(𝑣) = 0 then 𝑣 = id and (3.5.12) is trivial. Otherwise

there exists an 𝑖 ∈ 𝐼 such that 𝑣′ := 𝑠𝑖𝑣 < 𝑣 and thus 𝑤′ := 𝑠𝑖𝑤 < 𝑤. Let yi(t
′) ∈ 𝑈−

sf (𝑤).

Using (3.5.4), we see that for some 𝑡1 ∈ ℱ*
sf , 𝑡+ ∈ ℱ*

sf and 𝑡− ∈ ℱ◇,

�̇�−1 · yi(t
′) ∈ �̇�′−1 · �̇�−1

𝑖 𝑦𝑖(𝑡1) · 𝑈−
sf (𝑤

′) ⊂ 𝑇 sf �̇�′−1 · 𝑦𝑖(𝑡−)𝑥𝑖(𝑡+) · 𝑈−
sf (𝑤

′).

By (3.5.7), 𝑥𝑖(𝑡+)·𝑈−
sf (𝑤

′) ⊂ 𝑇 sf ·𝑈−
sf (𝑤

′)·𝑈sf(𝑠𝑖). Clearly 𝑠𝑖𝑣′ > 𝑣′, so 𝑦′ := �̇�′−1𝑦𝑖(𝑡−)�̇�
′ ∈ 𝑈−.

On the other hand, �̇�𝑦′�̇�−1 = �̇�−1
𝑖 𝑦𝑖(𝑡−)�̇�𝑖 = 𝑥𝑖(−𝑡−) ∈ 𝑈 . Thus 𝑦′ ∈ 𝑈− ∩ �̇�−1𝑈�̇�, and it is

also clear that 𝑦′ ∈ 𝐺◇. We have shown that

�̇�−1 ·yi(t
′) ∈ 𝑇 sf ·𝑦′ · �̇�′−1 ·𝑈−

sf (𝑤
′) ·𝑈sf(𝑠𝑖) ⊂ 𝑇 sf ·(𝑈◇

−∩ �̇�−1𝑈�̇�) · �̇�′−1 ·𝑈−
sf (𝑤

′) ·𝑈sf(𝑠𝑖). (3.5.13)
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We have 𝑣′𝑣1 = 𝑤′, so by induction,

�̇�′−1 · 𝑈−
sf (𝑤

′) ⊂ 𝑇 sf · (𝑈◇
− ∩ �̇�′−1𝑈�̇�′) · 𝑈−

sf (𝑣1) · 𝑈sf(𝑣
′−1).

Since 𝑈sf(𝑣
′−1) · 𝑈sf(𝑠𝑖) = 𝑈sf(𝑣

−1), we have shown that

�̇�−1yi(t
′) ∈ 𝑇 sf · (𝑈◇

− ∩ �̇�−1𝑈�̇�) · (𝑈◇
− ∩ �̇�′−1𝑈�̇�′) · 𝑈−

sf (𝑣1) · 𝑈sf(𝑣
−1).

By (3.4.6) applied to 𝑎 = 𝑠𝑖, 𝑏 = 𝑣′, 𝑎𝑏 = 𝑣, we get Inv(𝑣′) ⊂ Inv(𝑣), so (𝑈◇
− ∩ �̇�′−1𝑈�̇�′) ⊂

(𝑈◇
− ∩ �̇�−1𝑈�̇�), and we have finished the proof of (3.5.12). Combining (3.5.12) with (3.4.8),

we obtain (3.5.9). Next, (3.5.10) can be shown by induction: the case 𝑘 = 0 is trivial. For

𝑘 ≥ 1, we can write ℎ = ℎ1 · · ·ℎ𝑘 ∈ 𝑈−
sf (𝑤1) · · ·𝑈−

sf (𝑤𝑘). By (3.5.9), we have

�̇�−1
𝑖 · · · �̇�−1

1 · ℎ1 · · ·ℎ𝑘 ∈ 𝐵sf
− · �̇�−1

𝑖 · · · �̇�−1
2 · 𝑏′1 · ℎ2 · · ·ℎ𝑘

for some 𝑏′1 ∈ 𝑈sf(𝑤1) that does not depend on 𝑖. Using (3.5.7), we write 𝑏′1 · ℎ2 · · ·ℎ𝑘 =

ℎ′2 · · ·ℎ′𝑘 ·𝑏1 ∈ 𝑈−
sf (𝑤2) · · ·𝑈−

sf (𝑤𝑘)·𝑈sf(𝑤1), and then proceed by induction.Let us state several

further corollaries of (3.5.12):

�̇�−1 · 𝑈−
sf (𝑤) ⊂ 𝑇 sf · (𝑈◇

− ∩ �̇�−1𝑈�̇�) · 𝑈sf(𝑤
−1), (3.5.14)

𝑈−
sf (𝑤) · �̇�

−1 ⊂ 𝑈sf(𝑤
−1) · (𝑈◇

− ∩ �̇�𝑈�̇�−1) · 𝑇 sf , (3.5.15)

�̇� · 𝑈sf(𝑤
−1) ⊂ (𝑈◇ ∩ �̇�𝑈−�̇�

−1) · 𝑈−
sf (𝑤) · 𝑇

sf . (3.5.16)

Indeed, specializing (3.5.12) to 𝑣 = 𝑤, we obtain (3.5.14). Eq. (3.5.15) is obtained from (3.5.14)

by replacing 𝑤 with 𝑧 := 𝑤−1 and then applying the involution 𝑥 ↦→ 𝑥𝜄 of (3.4.4), while (3.5.16)

is obtained from (3.5.15) by applying the involution 𝑥 ↦→ 𝑥𝑇 of (3.4.3).

To show (3.5.8), observe that the inclusion 𝐵sf
− · �̇�−1 · 𝑈−

sf (𝑤) ⊂ 𝐵sf
− · 𝑈sf(𝑤

−1) follows

from (3.5.14). To show the reverse inclusion, we use (3.5.16) to write

𝐵sf
− · 𝑈sf(𝑤

−1) = 𝐵sf
− · �̇�−1 · �̇� · 𝑈sf(𝑤

−1) ⊂ 𝐵sf
− · �̇�−1 · (𝑈◇ ∩ �̇�𝑈−�̇�

−1) · 𝑈−
sf (𝑤).
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Since �̇�−1 · (𝑈◇ ∩ �̇�𝑈−�̇�
−1) ⊂ 𝑈◇

−�̇�
−1, we obtain 𝐵sf

− · �̇�−1 ·𝑈−
sf (𝑤) = 𝐵sf

− ·𝑈sf(𝑤
−1), which is

the first part of (3.5.8). The second part follows by applying the involution 𝑥 ↦→ 𝑥𝜄 of (3.4.4).

It remains to show (3.5.11). We argue by induction on ℓ(𝑤), and the base case ℓ(𝑤) = 0

is clear. Suppose that 𝑣 ≤ 𝑤, and let 𝑤′ := 𝑠𝑖𝑤 < 𝑤 for some 𝑖 ∈ 𝐼. If 𝑣′ := 𝑠𝑖𝑣 < 𝑣 then by

the same argument as in the proof of (3.5.13), we get

�̇�−1 · 𝑈−
sf (𝑤) ⊂ 𝐵sf

− · �̇�′−1 · 𝑈−
sf (𝑤

′) · 𝑈sf(𝑠𝑖).

Since 𝑣′ ≤ 𝑤′, we can apply the induction hypothesis to write �̇�′−1 ·𝑈−
sf (𝑤

′) ⊂ 𝐵sf
− ·𝑈sf(𝑣

′−1).

We thus obtain

�̇�−1 · 𝑈−
sf (𝑤) ⊂ 𝐵sf

− · 𝑈sf(𝑣
′−1) · 𝑈sf(𝑠𝑖) = 𝐵sf

− · 𝑈sf(𝑣
−1),

finishing the induction step in the case 𝑠𝑖𝑣 < 𝑣. But if 𝑠𝑖𝑣 > 𝑣 then �̇�−1𝑦𝑖(𝑡1)�̇� ∈ 𝑈◇
−, so

in this case we have �̇�−1𝑈−
sf (𝑤) ⊂ 𝑈◇

− · �̇�−1 · 𝑈−
sf (𝑤

′), and the result follows by applying the

induction hypothesis to the pair 𝑣 ≤ 𝑤′.

3.5.3 Alternative parametrizations for the top cell

The following two lemmas are subtraction-free versions of [Rie06, Lemmas 4.2 and 4.3].

Lemma 3.5.7. Let 𝑣 ∈ 𝑊 . Then we have

𝑅sf
𝑣,𝑤0

= 𝑈sf(𝑣𝑤0) · �̇�0 ·𝐵sf .

Proof. Recall from Definition 3.5.5 that 𝑅sf
𝑣,𝑤 = 𝐺sf

v,w · 𝐵sf . We have 𝑤 = 𝑤0, so choose a

reduced expression w0 for 𝑤0 that ends with 𝑣. With this choice, 𝐺sf
v,w0

= 𝑈−
sf (𝑤0𝑣

−1) · �̇�.

Thus we can write

𝑅sf
𝑣,𝑤0

= 𝐺sf
v,w0

·𝐵sf = 𝑈−
sf (𝑤0𝑣

−1) · �̇� ·𝐵sf = 𝑈−
sf (𝑤0𝑣

−1) · �̇��̇�−1
0 · �̇�0 ·𝐵sf .
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Let 𝑧 := 𝑤0𝑣
−1. Using (3.5.8) and 𝐵sf

− · �̇�0 = �̇�0 ·𝐵sf , we have

𝑈−
sf (𝑤0𝑣

−1) · �̇��̇�−1
0 · �̇�0 ·𝐵sf = 𝑈−

sf (𝑧) · �̇�
−1 · �̇�0 ·𝐵sf = 𝑈sf(𝑧

−1) · �̇�0 ·𝐵sf .

Combining the above equations, we find 𝑅sf
𝑣,𝑤0

= 𝑈sf(𝑧
−1) · �̇�0 · 𝐵sf , and it remains to note

that 𝑧−1 = 𝑣𝑤−1
0 = 𝑣𝑤0.

Lemma 3.5.8. Let 𝑣 ≤ 𝑤 ∈ 𝑊 . Then we have

𝑈sf(𝑣
−1) · 𝑈−

sf (𝑤0𝑤
−1) ·𝑅sf

𝑣,𝑤 = 𝑅sf
id,𝑤0

= 𝑈−
sf (𝑤0) ·𝐵sf . (3.5.17)

Proof. It follows from the definition of 𝐺sf
v,w that if 𝑤′𝑤 is length-additive then 𝑈−

sf (𝑤
′)𝑅sf

𝑣,𝑤 =

𝑅sf
𝑣,𝑤′𝑤. Applying this to 𝑤′ = 𝑤0𝑤

−1, we get 𝑈−
sf (𝑤0𝑤

−1) · 𝑅sf
𝑣,𝑤 = 𝑅sf

𝑣,𝑤0
. By Lemma 3.5.7,

we have 𝑅sf
𝑣,𝑤0

·𝐵sf = 𝑈sf(𝑣𝑤0) · �̇�0 ·𝐵sf . Thus 𝑈sf(𝑣
−1) ·𝑈sf(𝑣𝑤0) · �̇�0 ·𝐵sf = 𝑈sf(𝑤0) · �̇�0 ·𝐵sf ,

so applying Lemma 3.5.7 again, we find 𝑈sf(𝑤0) · �̇�0 · 𝐵sf = 𝑅sf
id,𝑤0

· 𝐵sf . The result follows

since 𝑅sf
id,𝑤0

= 𝑈−
sf (𝑤0) ·𝐵sf .

3.5.4 Evaluation

We explain the relationship between 𝑅sf
𝑣,𝑤 and 𝑅>0

𝑣,𝑤. Given t′ ∈ R|t|
>0, we denote by evalt′ :

ℱsf → R>0 the evaluation homomorphism (of semifields) sending 𝑓(t) → 𝑓(t′). It extends to

a well defined group homomorphism evalt′ : 𝐺
◇ → 𝐺(R), and it follows from Theorem 3.4.15

that {evalt′(𝑔)𝐵 | 𝑔 ∈ 𝑅sf
𝑣,𝑤} = 𝑅>0

𝑣,𝑤 as subsets of (𝐺/𝐵)R. It is clear that the following

diagram is commutative.

ℱ 𝐺◇ ℱ

R 𝐺(R) R
evalt′

Δ±
𝑖Δ∓

𝑖

evalt′ evalt′

Δ±
𝑖Δ∓

𝑖

(3.5.18)

Here solid arrows denote regular maps, and dashed arrows denote maps defined on a sub-

set ℱ ′ ⊂ ℱ given by ℱ ′ := {𝑅(t)/𝑄(t) | 𝑅(t), 𝑄(t) ∈ R[t], 𝑄(t′) ̸= 0}. Since the dia-

gram (3.5.18) is commutative, it follows that the images Δ∓
𝑖 (𝐺

◇) and Δ±
𝑖 (𝐺

◇) belong to

ℱ ′.

Let t = (t′, t′′). Observe that any 𝑓(t′, t′′) ∈ ℱ*
sf gives rise to a continuous function
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R|t′|
>0 × R|t′′|

>0 → R>0.

Lemma 3.5.9. Suppose that 𝑓(t′, t′′) ∈ ℱ*
sf is such that the corresponding function R|t′|

>0 ×

R|t′′|
>0 → R>0 extends to a continuous function R|t′|

>0 ×R|t′′|
≥0 → R≥0. Then limt′′→0 𝑓(t

′, t′′) can

be represented (as a function R|t′|
>0 → R≥0) by a subtraction-free rational expression in t′.

Proof. By induction, it is enough to prove this when |t′′| = 1, where t′′ = 𝑡′′ is a single

variable. In this case, 𝑓(t′, 𝑡′′) = 𝑅(t′, 𝑡′′)/𝑄(t′, 𝑡′′) where 𝑅 and 𝑄 have positive coefficients.

Let us consider 𝑅 and 𝑄 as polynomials in 𝑡′′ only. After dividing 𝑅 and 𝑄 by (𝑡′′)𝑘 for some

𝑘, we may assume that one of them is not divisible by 𝑡′′. Then 𝑄 cannot be divisible by 𝑡′′,

otherwise 𝑓 would not give rise to a continuous function R|t′|
>0 × R|t′′|

≥0 → R≥0. We can write

𝑄(t′, 𝑡′′) = 𝑄1(t
′, 𝑡′′)𝑡′′ + 𝑄2(t

′) and 𝑅(t′, 𝑡′′) = 𝑅1(t
′, 𝑡′′)𝑡′ + 𝑅2(t

′), where 𝑅1, 𝑅2, 𝑄1, 𝑄2

are polynomials with nonnegative coefficients and 𝑄2(t
′) ̸= 0. Thus lim𝑡′′→0 𝑓(t

′, 𝑡′′) can be

represented by 𝑅2(t
′)/𝑄2(t

′), which is a subtraction free rational expression in t′.

Lemma 3.5.10. (Assume K = C.) Suppose that 𝑎 ≤ 𝑏 ≤ 𝑐 ∈ 𝑊 . Then we cannot have

Δ∓(�̇�−1𝑥) = 0 for all 𝑥 ∈ 𝐺(R) such that 𝑥𝐵 ∈ 𝑅>0
𝑎,𝑏.

Proof. Suppose that Δ∓(�̇�−1𝑥) = 0 for all 𝑥 ∈ 𝐺(R) such that 𝑥𝐵 ∈ 𝑅>0
𝑎,𝑏. Consider the

map Δflag
𝑖 : 𝐺/𝐵 → P(

2𝑛
𝑛−1)−1

𝑊𝜔𝑖

from Lemma 3.4.21(iv). We get that the 𝑏𝜔𝑖-th coordinate

of Δflag
𝑖 is identically zero on 𝑅>0

𝑎,𝑐. Therefore it must be zero on the Zariski closure of 𝑅>0
𝑎,𝑐

inside 𝐺/𝐵. It is well known that 𝑅>0
𝑎,𝑐 is Zariski dense in

∘
𝑅𝑎,𝑐, so the closure of 𝑅>0

𝑎,𝑐 is 𝑅𝑎,𝑐.

By (3.4.14), 𝑅𝑎,𝑐 contains �̇�𝐵 =
∘
𝑅𝑏,𝑏, thus Δ∓

𝑖 (�̇�
−1�̇�) must be zero. We get a contradiction

since by definition Δ∓
𝑖 (�̇�

−1�̇�) = 1.

3.5.5 Applications to the flag variety

We use the machinery developed in the previous sections to obtain some natural statements

about (𝐺/𝐵)≥0.

Lemma 3.5.11. (Assume K = ℱ .) Suppose that 𝑎 ≤ 𝑐 ∈ 𝑊 and 𝑏 ∈ 𝑊 . Then for any

𝑥 ∈ 𝑅sf
𝑎,𝑐 and 𝑖 ∈ 𝐼,

Δ∓
𝑖 (�̇�

−1𝑥) ∈ ℱsf . (3.5.19)
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Moreover, if 𝑎 ≤ 𝑏 ≤ 𝑐 then

Δ∓
𝑖 (�̇�

−1𝑥) ∈ ℱ*
sf , and 𝑥 ∈ �̇�𝐵−𝐵. (3.5.20)

Proof. Let t = (t1, t2, t3) for |t1| = ℓ(𝑎), |t2| = ℓ(𝑤0)−ℓ(𝑐), |t3| = ℓ(𝑐)−ℓ(𝑎). Choose reduced

words i for 𝑎−1 and j for 𝑤0𝑐
−1, and let (a, c) ∈ Red(𝑎, 𝑐). Suppose that 𝑥 ∈ ga,c(t3)𝐵

sf and

let

𝑔 := xi(t1) · yj(t2) · ga,c(t3) ∈ 𝑈sf(𝑎
−1) · 𝑈−

sf (𝑤0𝑐
−1) ·𝑅sf

𝑎,𝑐.

By Lemma 3.5.8, 𝑔 ∈ 𝑈−
sf (𝑤0)·𝐵sf = 𝑈−

sf (𝑏)·𝑈
−
sf (𝑏

−1𝑤0)·𝐵sf . By (3.5.8), we have �̇�−1 ·𝑈−
sf (𝑏) ⊂

𝐵sf
− · 𝑈sf(𝑏

−1). Therefore

�̇�−1𝑔 ∈ 𝐵sf
− · 𝑈sf(𝑏

−1) · 𝑈−
sf (𝑏

−1𝑤0) ·𝐵sf .

By (3.5.7), we get �̇�−1𝑔 ∈ 𝐵sf
− ·𝑈−

sf (𝑏
−1𝑤0)·𝑈sf(𝑏

−1)·𝐵sf = 𝐵sf
− ·𝐵sf , and by definition, Δ∓

𝑖 (𝑦) ∈

ℱ*
sf for any 𝑦 ∈ 𝐵sf

− ·𝐵sf . Since Δ∓
𝑖 is a regular function on𝐺 by Lemma 3.4.21(ii), the function

𝑓(t1, t2, t3) := Δ∓
𝑖 (�̇�

−1𝑔) ∈ ℱ*
sf extends to a continuous function on R|t1|

≥0 × R|t2|
≥0 × R|t3|

>0 .

Therefore by Lemma 3.5.9, limt1,t2→0 𝑓(t1, t2, t3) is a subtraction-free rational expression in

t3. Since limt1,t2→0 𝑔 = ga,c(t3), we get that Δ∓
𝑖 (�̇�

−1ga,c(t3)) ∈ ℱsf . Since 𝑥 ∈ ga,c(t3)𝐵
sf ,

(3.5.19) follows.

Suppose now that 𝑎 ≤ 𝑏 ≤ 𝑐. We would like to show (3.5.20), thus let us assume that for

some 𝑖 ∈ 𝐼 and for 𝑥 ∈ 𝑅sf
𝑎,𝑐, we have Δ∓

𝑖 (�̇�
−1𝑥) = 0. Let t′ ∈ (ℱ*

sf)
|t| and (a, c) ∈ Red(𝑎, 𝑐)

be such that 𝑥 ∈ ga,c(t
′)𝐵sf , and let 𝑦(t) := ga,c(t). Then we have Δ∓

𝑖 (�̇�
−1𝑦(t)) ∈ ℱsf

by (3.5.19). If Δ∓
𝑖 (�̇�

−1𝑦(t)) was a nonzero rational function in t then clearly substituting

t ↦→ t′ for t′ ∈ (ℱ*
sf)

|t| would also produce a nonzero rational function. Since substituting

t ↦→ t′ yields Δ∓
𝑖 (�̇�

−1𝑥) = 0, we must have Δ∓
𝑖 (�̇�

−1𝑦(t)) = 0. Therefore Δ∓
𝑖 (�̇�

−1𝑥′) = 0 for

all 𝑥′ ∈ 𝑅sf
𝑎,𝑐.

Let now t′ ∈ R|t|
>0. Recall from Section 3.5.4 that the image of 𝑅sf

𝑎,𝑐 in (𝐺/𝐵)R under

the map evalt′ equals 𝑅>0
𝑎,𝑐, thus by (3.5.18), Δ∓

𝑖 (�̇�
−1𝑥′) = 0 for all 𝑥′ ∈ 𝐺(R) such that

𝑥′𝐵 ∈ 𝑅>0
𝑎,𝑐. This contradicts Lemma 3.5.10, hence Δ∓

𝑖 (�̇�
−1𝑥) ∈ ℱ*

sf , and therefore 𝑥 ∈ �̇�𝐵−𝐵

follows from Lemma 3.4.21(iii), finishing the proof of (3.5.20).
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Corollary 3.5.12. (Assume K = C.) Suppose that 𝑎 ≤ 𝑐 ∈ 𝑊 and 𝑏 ∈ 𝑊 . Then for any

(a, c) ∈ Red(𝑎, 𝑐) and t′ ∈ R𝐽∘
a
>0, we have

Δ∓
𝑖 (�̇�

−1ga,c(t
′)) ≥ 0. (3.5.21)

Moreover, if 𝑎 ≤ 𝑏 ≤ 𝑐 then

Δ∓
𝑖 (�̇�

−1ga,c(t
′)) > 0, and 𝑅>0

𝑎,𝑐 ⊂ �̇�𝐵−𝐵/𝐵. (3.5.22)

Proof. By (3.5.19), we know that Δ∓
𝑖 (�̇�

−1ga,c(t)) ∈ ℱsf for all 𝑖 ∈ 𝐼. Evaluating at t =

t′ (cf. Section 3.5.4), we find that Δ∓
𝑖 (�̇�

−1ga,c(t
′)) ≥ 0 for all 𝑖 ∈ 𝐼, showing (3.5.21).

Similarly, (3.5.22) follows from (3.5.20).

Proposition 3.5.13. (Assume K = ℱ .) For all 𝑣, 𝑤, 𝑣′, 𝑤′ ∈ 𝑊 and 𝑥 ∈ 𝑈sf(𝑣
′)·𝑇 sf ·𝑈−

sf (𝑤
′),

we have Δ±
𝑖 (�̇�𝑥�̇�

−1) ∈ ℱsf .

Proof. Let t = (t1, t2, t
′
1, t

′
2) with |t1| = ℓ(𝑣′), |t2| = ℓ(𝑤′), |t′1| = ℓ(𝑤0) − ℓ(𝑣′), and |t′2| =

ℓ(𝑤0) − ℓ(𝑤′). Let t𝑣 := (t′1, t1) and t𝑤 := (t2, t
′
2). Choose reduced words i, j for 𝑤0

such that i ends with a reduced word for 𝑣′ and j starts with a reduced word for 𝑤′. Set

𝑔 = 𝑔(t1, t2, t𝑣, t𝑤) := xi(t𝑣) · 𝑎 · yj(t𝑤) for some arbitrary element 𝑎 ∈ 𝑇 sf . We get

�̇�𝑔�̇�−1 ∈ �̇� ·𝑈sf(𝑤0) ·𝑇 sf ·𝑈−
sf (𝑤0) · �̇�−1 ⊂ �̇� ·𝑈sf(𝑣

−1) ·𝑈sf(𝑣𝑤0) ·𝑇 sf ·𝑈−
sf (𝑤0𝑤

−1) ·𝑈−
sf (𝑤) · �̇�

−1.

By (3.5.16), (3.5.7), and (3.5.8), we get �̇�𝑔�̇�−1 ∈ 𝐵sf ·𝑈−
sf (𝑣)·𝑈sf(𝑤

−1)·𝐵sf
− . By (3.5.7), we can

permute 𝑈−
sf (𝑣) and 𝑈sf(𝑤

−1), showing �̇�𝑔�̇�−1 ∈ 𝐵sf ·𝐵sf
− . Thus Δ±

𝑖 (�̇�𝑔�̇�
−1) ∈ ℱ*

sf . It gives rise

to a continuous function on R|t1|
>0 ×R|t2|

>0 ×R|t′1|
≥0 ×R|t′2|

≥0 , so sending t′1, t
′
2 → 0 via Lemma 3.5.9

and varying t1, t2, and 𝑎, we get Δ±
𝑖 (�̇�𝑥�̇�

−1) ∈ ℱsf for all 𝑥 ∈ 𝑈sf(𝑣
′) · 𝑇 sf · 𝑈−

sf (𝑤
′).

3.6 Bruhat projections and total positivity

In this section, we prove a technical result (Theorem 3.6.4) which will be later used to finish

the proof of Theorem 3.2.5. Assume K is algebraically closed and fix 𝑢 ∈ 𝑊 𝐽 .
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3.6.1 The map 𝜁
(𝐽)
𝑢,𝑣

Retain the notation from Definition 3.4.23. Given 𝑣 ∈ 𝑊 and 𝑢 ∈ 𝑊 𝐽 , let us introduce a

subset

𝐺(𝐽)
𝑢,𝑣 := {𝑥 ∈ �̇�𝐺

(𝐽)
0 | 𝜅𝑥𝑥 ∈ �̇�𝐺

(𝐽)
0 } ⊂ 𝐺. (3.6.1)

Note that if 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 then 𝑥𝑃 ⊂ 𝐺

(𝐽)
𝑢,𝑣 , see Lemma 3.6.2(iii) below.

Definition 3.6.1. Define a map 𝜂 : 𝐺
(𝐽)
𝑢,𝑣 → 𝐿𝐽 sending 𝑥 ∈ 𝐺

(𝐽)
𝑢,𝑣 to 𝜂(𝑥) := [�̇�−1𝜅𝑥𝑥]𝐽 .

Also define a map 𝜋�̇�𝑃− : �̇�𝐺
(𝐽)
0 → �̇�𝑃− sending 𝑥 ∈ �̇�𝐺

(𝐽)
0 to the unique element 𝜋�̇�𝑃−(𝑥) ∈

�̇�𝑃− ∩ 𝑥𝑈 (𝐽). Explicitly (cf. Lemma 3.4.22(iii)), we put

𝜋�̇�𝑃−(𝑥) := �̇�[�̇�−1𝑥]
(𝐽)
− [�̇�−1𝑥]𝐽 = 𝑥 · ([�̇�−1𝑥]

(𝐽)
+ )−1. (3.6.2)

Finally, define 𝜁(𝐽)𝑢,𝑣 : 𝐺
(𝐽)
𝑢,𝑣 → 𝐺 by 𝜁(𝐽)𝑢,𝑣 (𝑥) := 𝜋�̇�𝑃−(𝑥) · 𝜂(𝑥)−1.

Lemma 3.6.2.

(i) The maps 𝜅 and 𝜋�̇�𝑃− are regular on �̇�𝐺
(𝐽)
0 .

(ii) The maps 𝜂 and 𝜁(𝐽)𝑢,𝑣 are regular on 𝐺
(𝐽)
𝑢,𝑣 ⊂ �̇�𝐺

(𝐽)
0 .

(iii) If 𝑥 ∈ �̇�𝐺
(𝐽)
0 and 𝑥′ ∈ 𝑥𝑃 then 𝜅𝑥′ = 𝜅𝑥.

(iv) If 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 and 𝑥′ ∈ 𝑥𝑃 then 𝜁

(𝐽)
𝑢,𝑣 (𝑥) = 𝜁

(𝐽)
𝑢,𝑣 (𝑥′).

Proof. Parts (i) and (ii) are clear since each map is a composition of regular maps. Part (iii)

follows from Definition 3.4.23, since by construction the map 𝜅 starts by applying the iso-

morphism in (3.4.31), which gives a regular map 𝐶
(𝐽)
𝑢 → �̇�𝑈

(𝐽)
− �̇�−1. To prove (iv), suppose

that 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 and 𝑥′ ∈ 𝑥𝑃 is given by 𝑥′ = 𝑥𝑝 for 𝑝 ∈ 𝑃 . Then 𝜋�̇�𝑃−(𝑥

′) = 𝜋�̇�𝑃−(𝑥)[𝑝]𝐽 by

Lemma 3.4.22(iii). By (iii), 𝜅𝑥′ = 𝜅𝑥, and

𝜂(𝑥′) = [�̇�−1𝜅𝑥′𝑥
′]𝐽 = [�̇�−1𝜅𝑥𝑥]𝐽 [𝑝]𝐽 = 𝜂(𝑥)[𝑝]𝐽 , thus

𝜁(𝐽)𝑢,𝑣 (𝑥
′) = 𝜋�̇�𝑃−(𝑥

′) · 𝜂(𝑥′)−1 = 𝜋�̇�𝑃−(𝑥)[𝑝]𝐽 · [𝑝]−1
𝐽 𝜂(𝑥)−1 = 𝜁(𝐽)𝑢,𝑣 (𝑥).

Lemma 3.6.3. Let 𝑥 ∈ �̇�𝑃−.

(i) We have 𝜋�̇�𝑃−(𝑥) = 𝑥.
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(ii) If 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 then 𝜁

(𝐽)
𝑢,𝑣 (𝑥) = 𝑥𝜂(𝑥)−1.

Proof. Both parts are clear from Definition 3.6.1.

The ultimate goal of this section is to prove the following result.

Theorem 3.6.4. (Assume K = C.) Let (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) ∈ 𝑄𝐽 and 𝑥 ∈ 𝐺 be such

that 𝑥𝐵 ∈ 𝑅>0
𝑣′,𝑤′. Then 𝑥 ∈ 𝐺

(𝐽)
𝑢,𝑣 and 𝜁(𝐽)𝑢,𝑣 (𝑥) ∈ 𝐵𝐵−�̇�.

3.6.2 Properties of 𝜅

We further investigate the element 𝜅𝑥𝑥. Denote �̃� := 𝑢𝑤𝐽 ∈ 𝑊 𝐽
max.

Lemma 3.6.5. The groups 𝑈 (𝐽), 𝑈 (𝐽)
1 , 𝑈 (𝐽)

2 from Definition 3.4.23 satisfy

�̇�𝑈
(𝐽)
− �̇�−1 = ˙̃𝑢𝑈

(𝐽)
− ˙̃𝑢−1, (3.6.3)

𝑈
(𝐽)
1 = �̇�𝑈

(𝐽)
− �̇�−1 ∩ 𝑈 = �̇�𝑈−�̇�

−1 ∩ 𝑈, (3.6.4)

𝑈
(𝐽)
2 = �̇�𝑈

(𝐽)
− �̇�−1 ∩ 𝑈− = ˙̃𝑢𝑈− ˙̃𝑢−1 ∩ 𝑈−. (3.6.5)

Proof. By Lemma 3.4.22(ii), we see that 𝑤𝐽𝑈
(𝐽)
− 𝑤𝐽

−1 = 𝑈
(𝐽)
− , which shows (3.6.3). For (3.6.4),

𝑈
(𝐽)
1 = �̇�𝑈

(𝐽)
− �̇�−1∩𝑈 is just the definition. By Lemma 3.4.5, we have �̇�𝑈−

𝐽 �̇�
−1 ⊂ 𝑈−, so (3.6.4)

follows from (3.4.5).

For (3.6.5), observe that 𝑤𝐽Φ+
𝐽 = Φ−

𝐽 , so �̃�Φ+
𝐽 ⊂ Φ− by (3.4.6). We thus have ˙̃𝑢𝑈− ˙̃𝑢−1 =

( ˙̃𝑢𝑈−
𝐽
˙̃𝑢−1)·( ˙̃𝑢𝑈 (𝐽)

− ˙̃𝑢−1) where ( ˙̃𝑢𝑈−
𝐽
˙̃𝑢−1) ⊂ 𝑈 , and hence ˙̃𝑢𝑈− ˙̃𝑢−1∩𝑈− = ˙̃𝑢𝑈

(𝐽)
− ˙̃𝑢−1∩𝑈− = 𝑈

(𝐽)
2

by the definition of 𝑈 (𝐽)
2 .

Lemma 3.6.6. For 𝑥 ∈ �̇�𝐺
(𝐽)
0 , there exists a unique element ℎ ∈ 𝑈

(𝐽)
2 such that ℎ𝑥 ∈

𝑈
(𝐽)
1 �̇�𝑃 , and we have ℎ = 𝜅𝑥.

Proof. Let 𝑔(𝐽) ∈ 𝑈 (𝐽) and 𝑝 ∈ 𝑃 be such that 𝑔(𝐽)�̇� = 𝑥𝑝. We first show that such an

ℎ ∈ 𝑈
(𝐽)
2 exists. By Definition 3.4.23, 𝜅𝑥 is an element of 𝑈 (𝐽)

2 such that 𝜅𝑥𝑔(𝐽) ∈ 𝑈
(𝐽)
1 . In

particular, 𝜅𝑥𝑥 = 𝜅𝑥𝑔
(𝐽)�̇�𝑝−1 ∈ 𝑈

(𝐽)
1 �̇�𝑃 , which shows the existence. To show the uniqueness,

observe that the action of �̇�𝑈 (𝐽)
− �̇�−1 on �̇�𝐺(𝐽)

0 /𝑃 ⊂ 𝐺/𝑃 is free by (3.4.31), and in particular

the action of 𝑈 (𝐽)
2 is also free.
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Lemma 3.6.7. If 𝑥 ∈ �̇�𝐺
(𝐽)
0 ∩𝐵�̇��̇�𝐵 for some 𝑟 ∈ 𝑊𝐽 then 𝜅𝑥 = 1.

Proof. By Lemma 3.6.6, it suffices to show that 𝐵�̇��̇�𝐵 ⊂ 𝑈
(𝐽)
1 𝑢𝑃 . Write

𝐵�̇��̇�𝐵 ⊂ 𝐵�̇�𝑃 ⊂ (𝐵�̇�𝐵) · 𝑃.

By (3.4.34), 𝐵�̇�𝐵 ⊂ (�̇�𝑈− ∩ 𝑈�̇�) ·𝐵, therefore we find

𝐵�̇��̇�𝐵 ⊂ (�̇�𝑈− ∩ 𝑈�̇�) · 𝑃 = (�̇�𝑈−�̇�
−1 ∩ 𝑈)�̇�𝑃 = 𝑈

(𝐽)
1 �̇�𝑃,

where the last equality follows from (3.6.4).

Lemma 3.6.8. Let 𝑎 ∈ 𝑇 .

(i) The subgroups �̇�𝑈 (𝐽)�̇�−1, 𝑈 (𝐽)
1 , and 𝑈 (𝐽)

2 are preserved under conjugation by 𝑎.

(ii) If 𝑥 ∈ �̇�𝐺
(𝐽)
0 then 𝑎𝑥 ∈ �̇�𝐺

(𝐽)
0 and 𝜅𝑎𝑥𝑎𝑥 = 𝑎𝜅𝑥𝑥.

(iii) (Assume K = C.) For each 𝑤 ∈ 𝑊 , there exists 𝜌∨𝑤 ∈ 𝑌 (𝑇 ) such that for all

𝑥 ∈ �̇�𝐵−𝐵, lim𝑡→0 𝜌
∨
𝑤(𝑡) · 𝑥𝐵 = �̇�𝐵 in 𝐺/𝐵. If 𝑤 ∈ 𝑊 𝐽 then for all 𝑥 ∈ �̇�𝐺

(𝐽)
0 ,

lim𝑡→0 𝜌
∨
𝑤(𝑡) · 𝑥𝑃 = �̇�𝑃 in 𝐺/𝑃 .

Proof. Since �̇� ∈ 𝑁𝐺(𝑇 ), there exists 𝑏 ∈ 𝑇 such that 𝑎�̇� = �̇�𝑏. Thus 𝑎�̇�𝑈 (𝐽)�̇�−1𝑎−1 =

�̇�𝑏𝑈 (𝐽)𝑏−1�̇�−1 = �̇�𝑈 (𝐽)�̇�−1, which shows (i), and (ii) is a simple consequence of (i). To

show (iii), assume K = C and choose 𝜌∨ ∈ 𝑌 (𝑇 ) such that ⟨𝛼𝑖, 𝜌∨⟩ < 0 for all 𝑖 ∈ 𝐼. Then

lim𝑡→0 𝜌
∨(𝑡)𝑦𝜌∨(𝑡)−1 = 1 for all 𝑦 ∈ 𝑈−, in particular, for all 𝑦 ∈ 𝑈

(𝐽)
− . Set 𝜌∨𝑤 := 𝑤−1𝜌∨,

thus for 𝑡 ∈ C*, 𝜌∨𝑤(𝑡) = �̇�𝜌∨(𝑡)�̇�−1, see (3.4.2). Every 𝑥 ∈ �̇�𝐵−𝐵 belongs to �̇�𝑦𝐵 for some

𝑦 ∈ 𝑈−, so 𝜌∨𝑤(𝑡) ·𝑥 ·𝐵 = �̇�𝜌∨(𝑡)𝑦𝜌∨(𝑡)−1 ·𝐵 → �̇�𝐵 as 𝑡→ 0. Similarly, if 𝑤 ∈ 𝑊 𝐽 then every

𝑥 ∈ �̇�𝐺
(𝐽)
0 belongs to �̇�𝑦𝑃 for some 𝑦 ∈ 𝑈

(𝐽)
− by (3.4.31), so 𝜌∨𝑤(𝑡) · 𝑥𝑃 → �̇�𝑃 as 𝑡→ 0.

Lemma 3.6.9. Suppose that 𝑣′′ ≤ 𝑢𝑟 ≤ 𝑤′′ for some 𝑣′′, 𝑤′′ ∈ 𝑊 and 𝑟 ∈ 𝑊𝐽 , and let 𝑥 ∈ 𝐺.

(i) (Assume K = ℱ .) If 𝑥 ∈ 𝑅sf
𝑣′′,𝑤′′ then 𝑥 ∈ �̇�𝐺

(𝐽)
0 .

(ii) (Assume K = C.) If 𝑥𝐵 ∈ 𝑅>0
𝑣′′,𝑤′′ then 𝑥 ∈ �̇�𝐺

(𝐽)
0 and 𝜅𝑥𝑥𝐵 ∈ 𝑅>0

𝑣′′,𝑢𝑟𝑤
for some

𝑟𝑤 ∈ 𝑊𝐽 such that 𝑟𝑤 ≥ 𝑟.
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Proof. When K = ℱ , (3.5.20) shows that𝑅sf
𝑣′′,𝑤′′ ⊂ �̇��̇�𝐵−𝐵 ⊂ �̇�𝑃−𝐵, and by Lemma 3.4.22(i),

𝑃−𝐵 = 𝐺
(𝐽)
0 , which shows (i). Similarly (for K = C), by Corollary 3.5.12, we have

𝑥 ∈ �̇��̇�𝐵−𝐵 for any 𝑥 ∈ 𝑅>0
𝑣′′,𝑤′′ , so 𝑅>0

𝑣′′,𝑤′′ ⊂ �̇�𝐺
(𝐽)
0 .

Assume now that K = C and 𝑥𝐵 ∈ 𝑅>0
𝑣′′,𝑤′′ . Let 𝑝 ∈ 𝑃 and 𝑔(𝐽) ∈ �̇�𝑈

(𝐽)
− �̇�−1 be such

that 𝑥𝑝 = 𝑔(𝐽)�̇�. Then 𝜅𝑥𝑥𝑝 = 𝑔
(𝐽)
1 �̇� for 𝑔(𝐽)1 ∈ 𝑈

(𝐽)
1 . By (3.6.4), 𝑈 (𝐽)

1 �̇� ⊂ 𝑈�̇� ⊂ 𝐵�̇�𝐵. By

Lemma 3.4.22(i), we have 𝑝−1 ∈ 𝐵�̇�𝑤𝐵 for some 𝑟𝑤 ∈ 𝑊𝐽 . We get 𝜅𝑥𝑥 = 𝑔
(𝐽)
1 �̇� · 𝑝−1 ∈

𝐵�̇�𝐵 · 𝐵�̇�𝑤𝐵 ⊂ 𝐵�̇��̇�𝑤𝐵 by (3.4.18). On the other hand, 𝜅𝑥 ∈ 𝑈− and 𝑥 ∈ 𝐵−𝑣
′′𝐵, so

𝜅𝑥𝑥 ∈ 𝐵−𝑣
′′𝐵. Therefore 𝜅𝑥𝑥𝐵 ∈

∘
𝑅𝑣′′,𝑢𝑟𝑤 .

We now show 𝑟𝑤 ≥ 𝑟. By (3.5.22), 𝑥 ∈ �̇��̇�𝐵−𝐵, so by Lemma 3.6.8(iii), we have 𝜌∨𝑢𝑟(𝑡) ·

𝑥𝐵 → �̇��̇�𝐵 as 𝑡→ 0 in 𝐺/𝐵. Since �̇��̇� ∈ �̇�𝐺
(𝐽)
0 , 𝜅 is regular at �̇��̇�𝐵, and by Lemma 3.6.7, we

have 𝜅�̇��̇� = 1. Thus 𝜅𝜌∨𝑢𝑟(𝑡)𝑥𝜌
∨
𝑢𝑟(𝑡)𝑥𝐵 → �̇��̇�𝐵 as 𝑡→ 0. By Lemma 3.6.8(ii), 𝜅𝜌∨𝑢𝑟(𝑡)𝑥𝜌

∨
𝑢𝑟(𝑡)𝑥𝐵 =

𝜌∨𝑢𝑟(𝑡) · 𝜅𝑥𝑥𝐵, which belongs to
∘
𝑅𝑣′′,𝑢𝑟𝑤 for all 𝑡 ∈ C*. We see that the closure of

∘
𝑅𝑣′′,𝑢𝑟𝑤

contains �̇��̇�𝐵, thus 𝑣′′ ≤ 𝑢𝑟 ≤ 𝑢𝑟𝑤 by (3.4.14), so 𝑟 ≤ 𝑟𝑤 by Lemma 3.4.4(ii).

Finally, we show 𝜅𝑥𝑥𝐵 ∈ (𝐺/𝐵)≥0. First, clearly the map 𝜅 is defined over R, thus

𝜅𝑥𝑥𝐵 ∈ (𝐺/𝐵)R. Consider the subset 𝑅>0
𝑣′′,[�̃�,𝑤0]

:=
⨆︀
𝑤′′≥�̃�𝑅

>0
𝑣′′,𝑤′′ ⊂ (𝐺/𝐵)≥0. It contains

𝑅>0
𝑣′′,𝑤0

as an open dense subset, and therefore 𝑅>0
𝑣′′,[�̃�,𝑤0]

is connected. We have already shown

that for any 𝑥′ ∈ 𝑅>0
𝑣′′,[�̃�,𝑤0]

, 𝜅𝑥′𝑥′𝐵 ∈
∘
𝑅R
𝑣′′,�̃� (because we have 𝑟𝑤 ≥ 𝑟 = 𝑤𝐽). Thus the

image of the set 𝑅>0
𝑣′′,[�̃�,𝑤0]

under the map 𝑥′ ↦→ 𝜅𝑥′𝑥
′ must lie inside a single connected

component of
∘
𝑅R
𝑣′′,�̃�. However, if 𝑥′ ∈ 𝑅>0

𝑣′′,�̃� ⊂ 𝑅>0
𝑣′′,[�̃�,𝑤0]

then 𝜅𝑥′ = 1 by Lemma 3.6.7,

so in this case 𝜅𝑥′𝑥′ ∈ 𝑅>0
𝑣′′,�̃�. We conclude that the image of 𝑅>0

𝑣′′,[�̃�,𝑤0]
is contained inside

𝑅>0
𝑣′′,�̃� ⊂ (𝐺/𝐵)≥0. It follows by continuity that for arbitrary 𝑣′′ ≤ 𝑢𝑟 ≤ 𝑤′′ and 𝑥 ∈ 𝑅>0

𝑣′′,𝑤′′ ,

we have 𝜅𝑥𝑥𝐵 ∈ (𝐺/𝐵)≥0.

We will use the following consequence of Lemma 3.6.9(ii) in Section 3.9.11.

Corollary 3.6.10. (Assume K = C.) In the notation of Lemma 3.6.9(ii), we have 𝜅𝑥𝑥𝑃 ∈

Π>0
𝑣′′,𝑢 for 𝑣′′ := 𝑣′′ ▷ 𝑟−1

𝑤 .

Proof. Indeed, Lemma 3.6.9(ii) says that 𝜅𝑥𝑥𝐵 ∈ 𝑅>0
𝑣′′,𝑢𝑟𝑤

, so applying Corollary 3.4.18, we

find that 𝜋𝐽(𝜅𝑥𝑥𝐵) = 𝜅𝑥𝑥𝑃 ∈ Π>0
𝑣′′,𝑢.
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3.6.3 Proof via subtraction-free parametrizations

In this section, we fix some set t of variables and assume K = ℱ . Also fix 𝑢 ∈ 𝑊 𝐽 and recall

that �̃� = 𝑢𝑤𝐽 ∈ 𝑊 𝐽
max.

By Definition 3.4.23, the map 𝜅 is defined on �̇�𝐺(𝐽)
0 . By Lemma 3.6.9(i), we have 𝑅sf

𝑣′′,𝑤′′ ⊂

�̇�𝐺
(𝐽)
0 whenever 𝑣′′ ≤ 𝑢𝑟 ≤ 𝑤′′ for some 𝑟 ∈ 𝑊𝐽 . In particular, 𝜅 is defined on 𝑈−

sf (𝑤
′′) ⊂

𝑅sf
id,𝑤′′ for all 𝑤′′ ≥ �̃�.

Proposition 3.6.11. Let 𝑞 ∈ 𝑊 be such that ℓ(�̃�𝑞) = ℓ(�̃�)+ ℓ(𝑞). Then for ℎ ∈ 𝑈−
sf (�̃�𝑞), we

have 𝜅ℎℎ ∈ 𝑈−
sf (�̃�).

Proof. Write ℎ ∈ 𝑈−
sf (�̃�𝑞) = 𝑈−

sf (�̃�) · 𝑈
−
sf (𝑞). Using (3.5.8), we find

ℎ ∈ ˙̃𝑢 · ˙̃𝑢−1 · 𝑈−
sf (�̃�) · 𝑈

−
sf (𝑞) ⊂ ˙̃𝑢 ·𝐵sf

− · 𝑈sf(�̃�
−1) · 𝑈−

sf (𝑞).

By (3.5.7), 𝐵sf
− ·𝑈sf(�̃�

−1)·𝑈−
sf (𝑞) = 𝐵sf

− ·𝑈−
sf (𝑞)·𝑈sf(�̃�

−1) ⊂ 𝐵sf
− ·𝑈sf(�̃�

−1). Writing 𝐵sf
− ⊂ 𝑈−·𝑇 sf ,

we get

ℎ ∈ ˙̃𝑢 · 𝑈− · 𝑇 sf · 𝑈sf(�̃�
−1) = 𝑇 sf · ˙̃𝑢𝑈− ˙̃𝑢−1 · ˙̃𝑢 · 𝑈sf(�̃�

−1).

Applying (3.5.16), we find

ℎ ∈ 𝑇 sf · ˙̃𝑢𝑈− ˙̃𝑢−1 · 𝑇 sf · (𝑈◇ ∩ ˙̃𝑢𝑈− ˙̃𝑢−1) · 𝑈−
sf (�̃�) ⊂ ˙̃𝑢𝑈− ˙̃𝑢−1 · 𝑇 sf · 𝑈−

sf (�̃�).

Let 𝑔 ∈ ˙̃𝑢𝑈− ˙̃𝑢−1 be such that ℎ ∈ 𝑔 ·𝑇 sf ·𝑈−
sf (�̃�). Recall from (3.6.5) that 𝑈 (𝐽)

2 = ˙̃𝑢𝑈− ˙̃𝑢−1∩𝑈−.

By Lemma 3.4.1(i), there exists ℎ′ ∈ 𝑈
(𝐽)
2 such that ℎ′𝑔 ∈ ˙̃𝑢𝑈− ˙̃𝑢−1 ∩ 𝑈 . Thus

ℎ′ℎ ∈ ( ˙̃𝑢𝑈− ˙̃𝑢−1 ∩ 𝑈) · 𝑇 sf · 𝑈−
sf (�̃�) ⊂ 𝑈 · 𝑇 sf · 𝑈−

sf (�̃�).

But observe that both ℎ and ℎ′ belong to 𝑈−. Since the factorization of ℎ′ℎ as an element

of 𝑈 · 𝑇 · 𝑈− is unique by Lemma 3.4.21(i), it follows that ℎ′ℎ ∈ 𝑈−
sf (�̃�). By (3.4.20),

𝑈−
sf (�̃�) ⊂ 𝐵 ˙̃𝑢𝐵. By Lemma 3.6.7, 𝜅ℎ′ℎ = 1, so 𝜅ℎ = ℎ′, thus 𝜅ℎℎ ∈ 𝑈−

sf (�̃�).

Corollary 3.6.12. For 𝑞 ∈ 𝑊 such that ℓ(�̃�𝑞) = ℓ(�̃�)+ℓ(𝑞) and 𝑣 ≤ �̃�, we have 𝑅sf
id,�̃�𝑞 ⊂ 𝐺

(𝐽)
𝑢,𝑣 .

Proof. As we have already mentioned, Lemma 3.6.9(i) shows that 𝑅sf
id,�̃�𝑞 ⊂ �̇�𝐺

(𝐽)
0 . Let
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𝑥 ∈ 𝑅sf
id,�̃�𝑞 = 𝑈−

sf (�̃�𝑞) · 𝐵sf , and let 𝑏 ∈ 𝐵sf and ℎ ∈ 𝑈−
sf (�̃�𝑞) be such that 𝑥 = ℎ𝑏. By

Lemma 3.6.2(iii), we have 𝜅𝑥 = 𝜅ℎ. By Proposition 3.6.11, 𝜅ℎℎ ∈ 𝑈−
sf (�̃�), therefore 𝜅𝑥𝑥 ∈

𝑈−
sf (�̃�) ·𝐵sf = 𝑅sf

id,�̃�. By (3.5.20), we get 𝜅𝑥𝑥 ∈ �̇�𝐵−𝐵.

Corollary 3.6.12 shows that the map 𝜁(𝐽)𝑢,𝑣 is defined on the whole 𝑅sf
id,�̃�𝑞.

Lemma 3.6.13. Suppose that 𝑢0 ∈ 𝑊 𝐽 and 𝑣0 ≤ �̃�0 := 𝑢0𝑤𝐽 . Let ℎ ∈ 𝑈−
sf (�̃�0), and let

𝑏𝑢, 𝑏𝑣 ∈ 𝑈 be such that ˙̃𝑢−1
0 ℎ ∈ 𝐵− · 𝑏𝑢 and �̇�−1

0 ℎ ∈ 𝐵− · 𝑏𝑣. Then [𝑏𝑢𝑏
−1
𝑣 ]𝐽 ∈ 𝑈sf(𝑟) for some

𝑟 ∈ 𝑊𝐽 .

Proof. First, recall from Lemma 3.4.21(i) and (3.5.11) that 𝑏𝑢 and 𝑏𝑣 are uniquely defined and

satisfy 𝑏𝑢 ∈ 𝑈sf(�̃�
−1
0 ), 𝑏𝑣 ∈ 𝑈sf(𝑣

−1
0 ). Let ℎ = ℎ1ℎ2 for ℎ1 ∈ 𝑈−

sf (𝑢0) and ℎ2 ∈ 𝑈−
sf (𝑤𝐽). Our

first goal is to show that [𝑏𝑢]𝐽 ∈ 𝑈𝐽 satisfies (and is uniquely defined by) �̇�−1
𝐽 ℎ2 ∈ 𝐵− · [𝑏𝑢]𝐽 .

Letting 𝑏′𝑢 ∈ 𝑈𝐽 be uniquely defined by �̇�−1
𝐽 ℎ2 ∈ 𝐵− ·𝑏′𝑢, we thus need to show that [𝑏𝑢]𝐽 = 𝑏′𝑢.

By (3.5.9), there exists 𝑑 ∈ 𝑈sf(𝑢
−1
0 ) such that

�̇�−1
𝐽 �̇�−1

0 ℎ1 ∈ 𝐵sf
− · �̇�−1

𝐽 · 𝑑.

Since 𝑑 ∈ 𝑈 , we can use Lemma 3.4.22(iii) to factorize it as 𝑑 = [𝑑]𝐽 [𝑑]
(𝐽)
+ . Since ℎ2 ∈ 𝑈−

𝐽 ⊂

𝐿𝐽 , Lemma 3.4.22(ii) shows that there exists 𝑑′ ∈ 𝑈 (𝐽) such that [𝑑]
(𝐽)
+ ℎ2 = ℎ2𝑑

′. Since

[𝑑]𝐽 ∈ 𝑈𝐽 by Lemma 3.4.22(iv), (3.4.21) shows that �̇�−1
𝐽 [𝑑]𝐽 ∈ 𝑈−�̇�

−1
𝐽 . Combining the pieces

together, we get

˙̃𝑢−1
0 ℎ = �̇�−1

𝐽 �̇�−1
0 ℎ1ℎ2 ∈ 𝐵sf

− · �̇�−1
𝐽 · [𝑑]𝐽 [𝑑](𝐽)+ · ℎ2 ⊂ 𝐵− · �̇�−1

𝐽 ℎ2𝑑
′ = 𝐵− · 𝑏′𝑢𝑑′.

On the other hand, ˙̃𝑢−1
0 ℎ ∈ 𝐵− · 𝑏𝑢, so 𝑏𝑢 = 𝑏′𝑢𝑑

′, where 𝑏′𝑢 ∈ 𝑈𝐽 and 𝑑′ ∈ 𝑈 (𝐽). It follows

that [𝑏𝑢]𝐽 = 𝑏′𝑢, and thus we have shown that �̇�−1
𝐽 ℎ2 ∈ 𝐵− · [𝑏𝑢]𝐽 .

We now prove the result by induction on ℓ(𝑢0). When ℓ(𝑢0) = 0, we have �̃�0 = 𝑤𝐽 and

𝑣0 ∈ 𝑊𝐽 . Thus there exists 𝑣1 ∈ 𝑊𝐽 such that 𝑤𝐽 = 𝑣0 · 𝑣1 with ℓ(𝑤𝐽) = ℓ(𝑣0) + ℓ(𝑣1).

We have 𝑏𝑢, 𝑏𝑣 ∈ 𝑈𝐽 , so [𝑏𝑢𝑏
−1
𝑣 ]𝐽 = 𝑏𝑢𝑏

−1
𝑣 by Lemma 3.4.22(iv). By (3.5.10), there exist

𝑏0 ∈ 𝑈sf(𝑣
−1
0 ) and 𝑏1 ∈ 𝑈sf(𝑣

−1
1 ) such that

�̇�−1
0 ℎ ∈ 𝐵sf

− · 𝑏0, �̇�−1
𝐽 ℎ ∈ 𝐵sf

− · 𝑏1𝑏0.
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In particular, we have 𝑏𝑣 = 𝑏0 and 𝑏𝑢 = 𝑏1𝑏0. Thus [𝑏𝑢𝑏−1
𝑣 ]𝐽 = 𝑏1 ∈ 𝑈sf(𝑣

−1
1 ), and we are done

with the base case.

Assume ℓ(𝑢0) > 0, and let 𝑖 ∈ 𝐼 be such that 𝑢1 := 𝑠𝑖𝑢0 < 𝑢0. By Lemma 3.4.4(i),

𝑢1 ∈ 𝑊 𝐽 , so denote �̃�1 := 𝑢1𝑤𝐽 ∈ 𝑊 𝐽
max. Let ℎ ∈ 𝑈−

sf (�̃�0) be factorized as ℎ = ℎ𝑖ℎ
′
1ℎ2 for

ℎ𝑖 = 𝑦𝑖(𝑡) ∈ 𝑈−
sf (𝑠𝑖), ℎ

′
1 ∈ 𝑈−

sf (𝑢1), and ℎ2 ∈ 𝑈−
sf (𝑤𝐽).

Suppose that 𝑠𝑖𝑣0 > 𝑣0, in which case we have 𝑣0 ≤ �̃�1. Let ℎ′ := ℎ′1ℎ2 and 𝑏′𝑢 ∈ 𝑈

be defined by ˙̃𝑢−1
1 ℎ′ ∈ 𝐵− · 𝑏′𝑢. Since 𝑠𝑖𝑣0 > 𝑣0, we see that �̇�−1

0 ℎ𝑖 ∈ 𝐵− · �̇�−1
0 , so �̇�−1

0 ℎ′ ∈

𝐵− · �̇�−1
0 ℎ = 𝐵− · 𝑏𝑣. By the induction hypothesis applied to 𝑣0 ≤ �̃�1 and ℎ′ ∈ 𝑈−

sf (�̃�1), we

have [𝑏′𝑢𝑏
−1
𝑣 ]𝐽 ∈ 𝑈sf(𝑟) for some 𝑟 ∈ 𝑊𝐽 . On the other hand, we have shown above that [𝑏𝑢]𝐽

satisfies �̇�−1
𝐽 ℎ2 ∈ 𝐵− · [𝑏𝑢]𝐽 . But since ℎ′ = ℎ′1ℎ2 for ℎ2 ∈ 𝑈−

sf (𝑤𝐽), we get that [𝑏′𝑢]𝐽 satisfies

�̇�−1
𝐽 ℎ2 ∈ 𝐵− · [𝑏′𝑢]𝐽 , thus [𝑏𝑢]𝐽 = [𝑏′𝑢]𝐽 . Therefore using Lemma 3.4.22(iv), we get

[𝑏𝑢𝑏
−1
𝑣 ]𝐽 = [𝑏𝑢]𝐽 [𝑏

−1
𝑣 ]𝐽 = [𝑏′𝑢]𝐽 [𝑏

−1
𝑣 ]𝐽 = [𝑏′𝑢𝑏

−1
𝑣 ]𝐽 ∈ 𝑈sf(𝑟),

finishing the induction step in the case 𝑠𝑖𝑣0 > 𝑣0.

Suppose now that 𝑣1 := 𝑠𝑖𝑣0 < 𝑣0. Let ℎ = ℎ𝑖ℎ
′
1ℎ2 ∈ 𝑈−

sf (�̃�0) be as above. By (3.5.8),

�̇�−1
𝑖 ℎ𝑖 ∈ 𝐵sf

− · 𝑈sf(𝑠𝑖), so let 𝑑𝑖 ∈ 𝑈sf(𝑠𝑖) be such that �̇�−1
𝑖 ℎ𝑖 ∈ 𝐵sf

− · 𝑑𝑖. By (3.5.7), 𝑈sf(𝑠𝑖) ·

𝑈−
sf (�̃�1) = 𝑈−

sf (�̃�1) · 𝑈sf(𝑠𝑖), so let 𝑏𝑖 ∈ 𝑈sf(𝑠𝑖) and ℎ′ ∈ 𝑈−
sf (�̃�1) be such that 𝑑𝑖ℎ′1ℎ2 = ℎ′𝑏𝑖.

We check using (3.5.9) that

˙̃𝑢−1
0 ℎ ∈ 𝐵sf

− · ˙̃𝑢−1
1 ℎ′ · 𝑏𝑖, �̇�−1

0 ℎ ∈ 𝐵sf
− · �̇�−1

1 ℎ′ · 𝑏𝑖. (3.6.6)

Let 𝑏′𝑢, 𝑏′𝑣 ∈ 𝑈 be defined by ˙̃𝑢−1
1 ℎ′ ∈ 𝐵− · 𝑏′𝑢 and �̇�−1

1 ℎ′ ∈ 𝐵− · 𝑏′𝑣. Then by the induction

hypothesis applied to 𝑣1 ≤ �̃�1 and ℎ′ ∈ 𝑈−
sf (�̃�1), we find [𝑏′𝑢𝑏

′−1
𝑣 ]𝐽 ∈ 𝑈sf(𝑟) for some 𝑟 ∈ 𝑊𝐽 .

But it is clear from (3.6.6) that 𝑏𝑢 = 𝑏′𝑢𝑏𝑖 and 𝑏𝑣 = 𝑏′𝑣𝑏𝑖. Therefore [𝑏𝑢𝑏
−1
𝑣 ]𝐽 ∈ 𝑈sf(𝑟).

Theorem 3.6.14. For all 𝑣 ≤ �̃�, 𝑤 ∈ 𝑊 𝐽 , 𝑖 ∈ 𝐼, and 𝑥 ∈ 𝑅sf
id,𝑤0

, we have

Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) ∈ ℱsf . (3.6.7)

Proof. Let 𝑞 ∈ 𝑊 be such that 𝑤0 = �̃�𝑞, thus ℓ(�̃�𝑞) = ℓ(�̃�) + ℓ(𝑞). Let 𝑥 ∈ 𝑅sf
id,𝑤0

=

𝑈−
sf (𝑤0) · 𝐵sf be written as 𝑥 = ℎ · 𝑏, where ℎ = ℎ1ℎ2ℎ3 ∈ 𝑈−

sf (𝑤0) for ℎ1 ∈ 𝑈−
sf (𝑢), ℎ2 ∈
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𝑈−
sf (𝑤𝐽), ℎ3 ∈ 𝑈−

sf (𝑞), and 𝑏 ∈ 𝐵sf . By (3.5.10), there exist 𝑏1 ∈ 𝑈sf(𝑢
−1), 𝑏2 ∈ 𝑈sf(𝑤𝐽), and

𝑏3 ∈ 𝑈sf(𝑞
−1) such that

�̇�−1ℎ ∈ 𝐵sf
− · 𝑏1, ˙̃𝑢−1ℎ ∈ 𝐵sf

− · 𝑏2𝑏1, �̇�−1
0 ℎ ∈ 𝐵sf

− · 𝑏3𝑏2𝑏1. (3.6.8)

Let 𝑥′ := ℎ𝑏−1
1 . We have 𝑥′ = 𝑥𝑏−1𝑏−1

1 ∈ 𝑥𝐵 ⊂ 𝑥𝑃 , therefore 𝑥′ ∈ 𝐺
(𝐽)
𝑢,𝑣 and 𝜁(𝐽)𝑢,𝑣 (𝑥′) = 𝜁

(𝐽)
𝑢,𝑣 (𝑥)

by Lemma 3.6.2(iv). On the other hand, by (3.6.8), 𝑥′ ∈ �̇�𝐵sf
− ⊂ �̇�𝑃−, so Lemma 3.6.3(ii)

implies 𝜁(𝐽)𝑢,𝑣 (𝑥′) = 𝑥′𝜂(𝑥′)−1.

Let us now compute 𝜂(𝑥′) = [�̇�−1𝜅𝑥′𝑥
′]𝐽 . By Lemma 3.6.2(iii), 𝜅𝑥 = 𝜅𝑥′ = 𝜅ℎ, and by

Proposition 3.6.11, 𝜅ℎℎ ∈ 𝑈−
sf (�̃�). Thus by (3.5.11), �̇�−1𝜅ℎℎ ∈ 𝐵sf

− · 𝑈sf(𝑣
−1), so let 𝑑0 ∈ 𝐵sf

−

and 𝑏0 ∈ 𝑈sf(𝑣
−1) be such that �̇�−1𝜅ℎℎ = 𝑑0𝑏0. By definition, 𝜅ℎ ∈ 𝑈

(𝐽)
2 , so by (3.6.5),

˙̃𝑢−1𝜅ℎ ˙̃𝑢 ∈ 𝑈−, and therefore using (3.6.8) we find

˙̃𝑢−1𝜅ℎℎ = ˙̃𝑢−1𝜅ℎ ˙̃𝑢 · ˙̃𝑢−1ℎ ∈ 𝑈− · ˙̃𝑢−1ℎ ⊂ 𝐵− · 𝑏2𝑏1.

We can now apply Lemma 3.6.13: we have 𝑣 ≤ �̃�, 𝜅ℎℎ ∈ 𝑈−
sf (�̃�), ˙̃𝑢−1𝜅ℎℎ ∈ 𝐵− · 𝑏2𝑏1,

and �̇�−1𝜅ℎℎ ∈ 𝐵− · 𝑏0. Let 𝑏𝑢 := 𝑏2𝑏1 ∈ 𝑈 and 𝑏𝑣 := 𝑏0 ∈ 𝑈 . By Lemma 3.6.13, [𝑏𝑢𝑏−1
𝑣 ]𝐽 =

[𝑏2𝑏1𝑏
−1
0 ]𝐽 ∈ 𝑈sf(𝑟) for some 𝑟 ∈ 𝑊𝐽 .

Recall that �̇�−1𝜅ℎℎ = 𝑑0𝑏0 for 𝑑0 ∈ 𝐵sf
− and 𝑏0 ∈ 𝑈sf(𝑣

−1). Thus

𝜂(𝑥′) = [�̇�−1𝜅𝑥′𝑥
′]𝐽 = [�̇�−1𝜅ℎ𝑥

′]𝐽 = [�̇�−1𝜅ℎℎ𝑏
−1
1 ]𝐽 = [𝑑0𝑏0𝑏

−1
1 ]𝐽 .

By Lemma 3.4.22(iii), we get [𝑑0𝑏0𝑏
−1
1 ]𝐽 = [𝑑0]𝐽 [𝑏0𝑏

−1
1 ]𝐽 . Thus

𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝜁(𝐽)𝑢,𝑣 (𝑥
′) = 𝑥′𝜂(𝑥′)−1 = 𝑥′[𝑏0𝑏

−1
1 ]−1

𝐽 [𝑑0]
−1
𝐽 .

By (3.6.8), we have �̇�−1
0 𝑥′ ∈ 𝐵sf

− · 𝑏3𝑏2, so 𝑥′ ∈ 𝐵sf�̇�0𝑏3𝑏2. Using Lemma 3.4.22(iv), we thus

get

𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝑥′[𝑏0𝑏
−1
1 ]−1

𝐽 [𝑑0]
−1
𝐽 ∈ 𝐵sf · �̇�0𝑏3[𝑏2𝑏1𝑏

−1
0 ]𝐽 [𝑑0]

−1
𝐽 .

We are interested in the element 𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�−1. We know that 𝑑0 ∈ 𝐵sf
− , thus [𝑑0]𝐽 ∈ 𝑇 sf𝑈−

𝐽 ,

87



and by Lemma 3.4.5, �̇�[𝑑0]𝐽�̇�−1 ∈ 𝑇 sf · 𝑈−. Hence

𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�
−1 ∈ 𝐵sf · �̇�0𝑏3[𝑏2𝑏1𝑏

−1
0 ]𝐽 [𝑑0]

−1
𝐽 �̇�−1 ⊂ 𝐵sf · �̇�0𝑏3[𝑏2𝑏1𝑏

−1
0 ]𝐽�̇�

−1 · 𝑇 sf · 𝑈−.

In particular, Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�−1) ∈ ℱsf if and only if Δ±

𝑖 (�̇�0𝑏3[𝑏2𝑏1𝑏
−1
0 ]𝐽�̇�

−1) ∈ ℱsf . Recall that

𝑏3 ∈ 𝑈sf(𝑞
−1) and [𝑏2𝑏1𝑏

−1
0 ]𝐽 ∈ 𝑈sf(𝑟) for some 𝑟 ∈ 𝑊𝐽 . Thus 𝑏3[𝑏2𝑏1𝑏−1

0 ]𝐽 ∈ 𝑈sf(𝑞
−1𝑟), so we

are done by Proposition 3.5.13.

Proof of Theorem 3.6.4. Our strategy will be very similar to the one we used in the proof of

Corollary 3.5.12.

Fix (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) ∈ 𝑄𝐽 . Let t = (t1, t2, t3) with |t1| = ℓ(𝑣′), |t2| = ℓ(𝑤0) −

ℓ(𝑤′), and |t3| := ℓ(𝑤′) − ℓ(𝑣′), and assume K = ℱ . Choose reduced words i for 𝑣′−1 and j

for 𝑤0𝑤
′−1, and let (v′,w′) ∈ Red(𝑣′, 𝑤′). Suppose that 𝑥 ∈ gv′,w′(t3) ·𝐵sf . Then

𝑔(t1, t2, t3) := xi(t1) · yj(t2) · gv′,w′(t3) ∈ 𝑈sf(𝑣
′−1) · 𝑈−

sf (𝑤0𝑤
′−1) ·𝑅sf

𝑣′,𝑤′ .

By Lemma 3.5.8, we have 𝑔(t1, t2, t3) ∈ 𝑅sf
id,𝑤0

. Thus by Theorem 3.6.14, for all 𝑖 ∈ 𝐼 we

have Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑔(t1, t2, t3))�̇�

−1) ∈ ℱsf . Denote by 𝑓(t1, t2, t3) := Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑔(t1, t2, t3))�̇�

−1)

the corresponding subtraction-free rational expression, which yields a continuous function

R|t1|
>0 × R|t2|

>0 × R|t3|
>0 → R≥0. We claim that 𝑓 extends to a continuous function R|t1|

≥0 ×

R|t2|
≥0 × R|t3|

>0 → R≥0. Indeed, fix some (t′1, t
′
2, t

′
3) ∈ R|t1|

≥0 × R|t2|
≥0 × R|t3|

>0 and let K = C. The

element 𝑥′ := 𝑔(t′1, t
′
2, t

′
3) (obtained by evaluating at (t′1, t′2, t′3), see Section 3.5.4) belongs to

𝐺≥0 · 𝑅>0
𝑣′,𝑤′ , and by Lemma 3.4.17 there exist 𝑣′′, 𝑤′′ ∈ 𝑊 such that 𝑣′′ ≤ 𝑣′ ≤ 𝑤′ ≤ 𝑤′′ and

𝑥′ ∈ 𝑅>0
𝑣′′,𝑤′′ . Recall from Lemma 3.4.8(ii) that we have

𝑣′′ ≤ 𝑣′ ≤ 𝑣𝑟′ ≤ 𝑢𝑟 ≤ 𝑤𝑟′ ≤ 𝑤′ ≤ 𝑤′′

for some 𝑟′, 𝑟 ∈ 𝑊𝐽 such that ℓ(𝑣𝑟′) = ℓ(𝑣) + ℓ(𝑟′). In particular, by Lemma 3.6.9(ii),

𝑥′ ∈ �̇�𝐺
(𝐽)
0 and 𝜅𝑥′𝑥

′ ∈ 𝑅>0
𝑣′′,𝑢𝑟𝑤

for some 𝑟𝑤 ∈ 𝑊𝐽 such that 𝑟𝑤 ≥ 𝑟. By Corollary 3.5.12,

𝜅𝑥′𝑥
′ ∈ �̇��̇�′𝐵−𝐵 ⊂ �̇�𝐺

(𝐽)
0 , which shows that 𝑥′ ∈ 𝐺

(𝐽)
𝑢,𝑣 . The map 𝜁

(𝐽)
𝑢,𝑣 is therefore regular at

𝑥′ by Lemma 3.6.2(ii). The map Δ±
𝑖 is regular on 𝐺 by Lemma 3.4.21(ii), so in particular

it is regular at 𝜁(𝐽)𝑢,𝑣 (𝑥′)�̇�−1. We have shown that the map 𝑥′′ ↦→ Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥′′)�̇�−1) is regular
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at 𝑥′ = 𝑔(t′1, t
′
2, t

′
3) for all (t′1, t

′
2, t

′
3) ∈ R|t1|

≥0 × R|t2|
≥0 × R|t3|

>0 . Thus the map 𝑓(t1, t2, t3)

extends to a continuous function R|t1|
≥0 × R|t2|

≥0 × R|t3|
>0 → R≥0. By Lemma 3.5.9, we find that

𝑓(0, 0, t3) := limt1,t2→0 𝑓(t1, t2, t3) belongs to ℱsf , i.e., can be represented by a subtraction-

free rational expression in the variables t3. On the other hand, it is clear that 𝑓(0, 0, t3) =

Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (gv′,w′(t3))�̇�

−1).

Our next goal is to show that 𝑓(0, 0, t3) ∈ ℱ*
sf . Indeed, suppose otherwise that 𝑓(0, 0, t3) =

0 (as an element of ℱ). By Lemma 3.6.2(iv), 𝜁(𝐽)𝑢,𝑣 descends to a regular map 𝐺
(𝐽)
𝑢,𝑣/𝑃 → 𝐺

(still assuming K = C). Therefore the map 𝑓 : 𝐺
(𝐽)
𝑢,𝑣/𝑃 → C sending 𝑥′𝑃 ↦→ Δ±

𝑖 (𝜁
(𝐽)
𝑢,𝑣 (𝑥′)�̇�−1)

is also regular. If 𝑓(0, 0, t3) = 0 then 𝑓 vanishes on 𝜋𝐽(𝑅>0
𝑣′,𝑤′) = Π>0

𝑣′,𝑤′ , and therefore it van-

ishes on its Zariski closure, which is Π𝑣′,𝑤′ . We have 𝜋𝐽(𝑅>0
𝑣,𝑤) = Π>0

𝑣,𝑤 ⊂ Π𝑣′,𝑤′ , thus 𝑓(𝑥) = 0

for any 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 such that 𝑥𝐵 ∈ 𝑅>0

𝑣,𝑤. Let us show that this leads to a contradiction.

Let 𝑥 ∈ 𝐺 be such that 𝑥𝐵 ∈ 𝑅>0
𝑣,𝑤. By (3.4.27), there exists 𝑥′ ∈ 𝑥𝑃 such that

𝑥′𝐵 ∈ 𝑅>0
𝑣𝑟′,𝑤𝑟′ . By Lemma 3.6.9(ii), we have 𝑥′ ∈ �̇�𝐺

(𝐽)
0 , and thus 𝑥 ∈ �̇�𝐺

(𝐽)
0 . Having

𝑥𝐵 ∈ 𝑅>0
𝑣,𝑤 implies 𝑥 ∈ 𝐵−�̇�𝐵 ∩ 𝐵�̇�𝐵. Since 𝜅𝑥 ∈ 𝑈

(𝐽)
2 ⊂ 𝑈−, we have 𝜅𝑥𝑥 ∈ 𝐵−�̇�𝐵.

By (3.4.34), 𝐵−�̇�𝐵 = (�̇�𝑈− ∩ 𝑈−�̇�)𝐵 ⊂ �̇�𝐵−𝐵, thus 𝜅𝑥𝑥 ∈ �̇�𝐵−𝐵, and therefore 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 .

Moreover, �̇�−1𝜅𝑥𝑥 ∈ 𝐵−𝐵, thus 𝜂(𝑥) = [�̇�−1𝜅𝑥𝑥]𝐽 ∈ 𝑈−
𝐽 𝑇𝑈𝐽 . On the other hand, 𝜋�̇�𝑃−(𝑥) ∈

𝑥𝑈 (𝐽) ⊂ 𝑥𝐵 ⊂ 𝐵�̇�𝐵, see Definition 3.6.1. Thus

𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝜋�̇�𝑃−(𝑥)𝜂(𝑥)
−1 ∈ 𝐵�̇�𝐵 · 𝑈𝐽𝑇𝑈−

𝐽 = 𝐵�̇�𝐵 · 𝑈−
𝐽 .

Recall that because 𝑤 ∈ 𝑊 𝐽 , we have 𝑈−
𝐽 �̇�

−1 ⊂ �̇�−1𝑈− by Lemma 3.4.5. Hence

𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�
−1 ∈ 𝐵�̇�𝐵 · 𝑈−

𝐽 · �̇�−1 ⊂ 𝐵�̇�𝐵�̇�−1𝐵−.

By (3.4.34) (after taking inverses of both sides), 𝐵�̇�𝐵 = 𝐵 · (𝑈−�̇� ∩ �̇�𝑈), so

𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�
−1 ∈ 𝐵 · (𝑈− ∩ �̇�𝑈�̇�−1) ·𝐵− ⊂ 𝐵 ·𝐵−.

In particular, Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�−1) ̸= 0 for all 𝑖 ∈ 𝐼. This gives a contradiction, showing

𝑓(0, 0, t3) ∈ ℱ*
sf . But then evaluating 𝑓 at any t′3 ∈ Rℓ(𝑤′)−ℓ(𝑣′)

>0 yields a positive real number.

We have shown that Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�−1) ̸= 0 for all 𝑥 ∈ 𝐺 such that 𝑥𝐵 ∈ 𝑅>0

𝑣′,𝑤′ . We are done
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by Lemma 3.4.21(iii).

3.7 Affine Bruhat atlas for the projected Richardson strat-

ification

In this section, we embed the stratification (3.4.23) of 𝐺/𝑃 inside the affine Richardson

stratification of the affine flag variety. Throughout, we work over K = C.

3.7.1 Loop groups and affine flag varieties

Recall that 𝐺 is a simple and simply connected algebraic group. Let 𝒜 := C[𝑧, 𝑧−1] and

𝒜+,𝒜− ⊂ 𝒜 denote the subrings given by 𝒜+ := C[𝑧], 𝒜− := C[𝑧−1]. Then we have ring

homomorphisms ēv0 : 𝒜+ → C (resp., ēv∞ : 𝒜− → C), sending a polynomial in 𝑧 (resp., in

𝑧−1) to its constant term. Let 𝒢 := 𝐺(𝒜) denote the polynomial loop group of 𝐺.

Remark 3.7.1. The group 𝒢 is closely related to the (minimal) affine Kac–Moody group

𝒢min associated to 𝐺, introduced by Kac–Peterson [KP83, PK83]. Below we state many

standard results on 𝒢 without proof. We refer the reader unfamiliar with Kac–Moody groups

to Section 3.A, where we give some background and explain how to derive these statements

from Kumar’s book [Kum02].

We introduce opposite Iwahori subgroups

ℬ := {𝑔(𝑧) ∈ 𝐺(𝒜+) | ēv0(𝑔) ∈ 𝐵}, ℬ− := {𝑔(𝑧−1) ∈ 𝐺(𝒜−) | ēv∞(𝑔) ∈ 𝐵−}

of 𝒢, and denote by

𝒰 := {𝑔(𝑧) ∈ 𝐺(𝒜+) | ēv0(𝑔) ∈ 𝑈}, 𝒰− := {𝑔(𝑧−1) ∈ 𝐺(𝒜−) | ēv∞(𝑔) ∈ 𝑈−}

their unipotent radicals. There exists a tautological embedding 𝐺 →˓ 𝒢, and we treat 𝐺 as

a subset of 𝒢.
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We let 𝒯 := C* × 𝑇 ⊂ C* n𝐺 be the affine torus, where C* acts on 𝒢 via loop rotation,

see Section 3.8.2. The affine root system Δ of 𝒢 is the subset of 𝑋(𝒯 ) := Hom(𝒯 ,C*) ∼=

𝑋(𝑇 )⊕ Z𝛿 given by

Δ = Δre ⊔Δim, where Δre := {𝛽 + 𝑗𝛿 | 𝛽 ∈ Φ, 𝑗 ∈ Z}, Δim := {𝑗𝛿 | 𝑗 ∈ Z ∖ {0}}

are the real and imaginary roots, and the set of positive roots Δ+ ⊂ Δ has the form

Δ+ = {𝑗𝛿 | 𝑗 > 0} ⊔ {𝛽 + 𝑗𝛿 | 𝛽 ∈ Φ, 𝑗 > 0} ⊔ {𝛽 | 𝛽 ∈ Φ+}. (3.7.1)

We let Δ+
re := Δ+ ∩Δre and Δ−

re := Δ− ∩Δre. For each 𝛼 ∈ Δ+
re (resp., 𝛼 ∈ Δ−

re) , we have a

one-parameter subgroup 𝒰𝛼 ⊂ 𝒰 (resp., 𝒰𝛼 ⊂ 𝒰−). The group 𝒰 (resp., 𝒰−) is generated by

{𝒰𝛼}𝛼∈Δ+
re

(resp., {𝒰𝛼}𝛼∈Δ−
re
), and for each 𝛼 ∈ Δre, we fix a group isomorphism 𝑥𝛼 : C ∼−→ 𝒰𝛼.

Let 𝑄∨
Φ :=

⨁︀
𝑖∈𝐼 Z𝛼∨

𝑖 denote the coroot lattice of Φ. The affine Weyl group �̃� = 𝑊 n𝑄∨
Φ

is a semidirect product of 𝑊 and 𝑄∨
Φ, i.e., as a set we have �̃� = 𝑊 ×𝑄∨

Φ, and the product

rule is given by (𝑤1, 𝜆1) · (𝑤2, 𝜆2) := (𝑤1𝑤2, 𝜆1 + 𝑤1𝜆2). For 𝜆 ∈ 𝑄∨
Φ, we denote the element

(id, 𝜆) ∈ �̃� by 𝜏𝜆. The group �̃� is isomorphic to 𝑁C*n𝒢(𝒯 )/𝒯 , and for 𝑓 ∈ �̃� , we

choose a representative 𝑓 ∈ 𝒢 of 𝑓 in 𝑁C*n𝒢(𝒯 ), with the assumption that for 𝑤 ∈ 𝑊 , the

representative �̇� ∈ 𝐺 ⊂ 𝒢 is given by (3.4.1). Thus �̃� is a Coxeter group with generators

𝑠0 ⊔ {𝑠𝑖}𝑖∈𝐼 , length function ℓ : �̃� → Z≥0, and affine Bruhat order ≤. The group �̃� acts

on Δ, and for 𝛼 ∈ Φ, 𝛽 ∈ Δre, 𝜆 ∈ 𝑄∨
Φ, and 𝑤 ∈ 𝑊 , we have

𝑤𝜏𝜆𝑤
−1 = 𝜏𝑤𝜆, 𝜏𝜆𝛼 = 𝛼 + ⟨𝜆, 𝛼⟩𝛿, 𝜏𝜆𝛿 = 𝛿, 𝜏𝜆𝒰𝛽𝜏−1

𝜆 = 𝒰𝜏𝜆𝛽. (3.7.2)

Let 𝒢/ℬ denote the affine flag variety of𝐺. This is an ind-variety that is isomorphic to the

flag variety of the corresponding affine Kac-Moody group 𝒢min, see Section 3.A.4. For each

ℎ, 𝑓 ∈ �̃� we have Schubert cells
∘
𝒳 𝑓 := ℬ𝑓ℬ/ℬ and opposite Schubert cells

∘
𝒳ℎ := ℬ−ℎ̇ℬ/ℬ.

If ℎ ̸≤ 𝑓 ∈ �̃� then
∘
𝒳 𝑓 ∩

∘
𝒳ℎ = ∅. For ℎ ≤ 𝑓 , we denote

∘
ℛ𝑓
ℎ :=

∘
𝒳ℎ ∩

∘
𝒳 𝑓 . For all 𝑔 ∈ �̃� , we
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have

∘
𝒳 𝑔 =

⨆︁
ℎ≤𝑔

∘
ℛ𝑔
ℎ,

∘
𝒳𝑔 =

⨆︁
𝑔≤𝑓

∘
ℛ𝑓
𝑔 , 𝒳 𝑔 :=

⨆︁
ℎ≤𝑔

∘
𝒳 ℎ, 𝒳𝑔 :=

⨆︁
𝑔≤𝑓

∘
𝒳𝑓 . (3.7.3)

For 𝑔 ∈ �̃� , let

𝒞𝑔 := �̇�ℬ−ℬ/ℬ, 𝒰1(𝑔) := �̇�𝒰−�̇�
−1 ∩ 𝒰 , and 𝒰2(𝑔) := �̇�𝒰−�̇�

−1 ∩ 𝒰−. (3.7.4)

As we explain in Section 3.A.5, the map 𝑥 ↦→ 𝑥�̇�ℬ gives biregular isomorphisms

�̇�𝒰−�̇�
−1 ∼−→ 𝒞𝑔, 𝒰1(𝑔)

∼−→
∘
𝒳 𝑔, 𝒰2(𝑔)

∼−→
∘
𝒳𝑔. (3.7.5)

Let 𝒰 (𝐼) ⊂ 𝒰 be the subgroup generated by {𝒰𝛼}𝛼∈Δ+
re∖Φ+ . Similarly, let 𝒰 (𝐼)

− ⊂ 𝒰− be

the subgroup generated by {𝒰𝛼}𝛼∈Δ−
re∖Φ− . For 𝑥 ∈ 𝐺 ⊂ 𝒢, we have

𝑥 · 𝒰 (𝐼) · 𝑥−1 = 𝒰 (𝐼), 𝑥 · 𝒰 (𝐼)
− · 𝑥−1 = 𝒰 (𝐼)

− . (3.7.6)

3.7.2 Combinatorial Bruhat atlas for 𝐺/𝑃

We fix an element 𝜆 ∈ 𝑄∨
Φ such that ⟨𝜆, 𝛼𝑖⟩ = 0 for 𝑖 ∈ 𝐽 and ⟨𝜆, 𝛼𝑖⟩ ∈ Z<0 for 𝑖 ∈ 𝐼 ∖ 𝐽 .

Thus 𝜆 is anti-dominant and the stabilizer of 𝜆 in 𝑊 is equal to 𝑊𝐽 . Following [HL15],

define a map

𝜓 : 𝑄𝐽 → �̃� , (𝑣, 𝑤) ↦→ 𝑣𝜏𝜆𝑤
−1. (3.7.7)

By [HL15, Thm. 2.2], the map 𝜓 gives an order-reversing bijection between𝑄𝐽 and a subposet

of �̃� . More precisely, let 𝜏𝐽𝜆 := 𝜏𝜆(𝑤
𝐽)−1, and recall from (3.7.2) that 𝑢𝜏𝜆𝑢−1 = 𝜏𝑢𝜆.

By [HL15, §2.3], for all (𝑣, 𝑤) ∈ 𝑄𝐽 we have

𝑣𝜏𝜆𝑤
−1 = 𝑣 · 𝜏𝐽𝜆 · 𝑤𝐽𝑤−1, ℓ(𝑣𝜏𝜆𝑤

−1) = ℓ(𝑣) + ℓ(𝜏𝐽𝜆 ) + ℓ(𝑤𝐽𝑤−1), (3.7.8)

92



see Figure 3-2 for an example. By [HL15, Thm. 2.2], for all 𝑢 ∈ 𝑊 𝐽 we have

𝜓(𝑄
⪰(𝑢,𝑢)
𝐽 ) = {𝑔 ∈ �̃� | 𝜏𝐽𝜆 ≤ 𝑔 ≤ 𝜏𝑢𝜆}, and (3.7.9)

𝜓(𝑄𝐽) = {𝑔 ∈ �̃� | 𝜏𝐽𝜆 ≤ 𝑔 ≤ 𝜏𝑤𝜆 for some 𝑤 ∈ 𝑊 𝐽}. (3.7.10)

3.7.3 Bruhat atlas for the projected Richardson stratification of

𝐺/𝑃

Let 𝑢 ∈ 𝑊 𝐽 . Recall that 𝜆 ∈ 𝑄∨
Φ has been fixed. We further assume that the representatives

𝜏𝜆 and 𝜏𝑢𝜆 satisfy the identity �̇�𝜏𝜆�̇�−1 = 𝜏𝑢𝜆.

Our goal is to construct a geometric lifting of the map 𝜓. Recall the maps 𝑥 ↦→ 𝑔
(𝐽)
1 and

𝑥 ↦→ 𝑔
(𝐽)
2 from Definition 3.4.23. We define maps

𝜙𝑢 : 𝐶
(𝐽)
𝑢 → 𝒢, 𝑥𝑃 ↦→ 𝑔

(𝐽)
1 �̇� · 𝜏𝜆 · (𝑔(𝐽)2 �̇�)−1 = 𝑔

(𝐽)
1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1, and (3.7.11)

𝜙𝑢 : 𝐶
(𝐽)
𝑢 → 𝒢/ℬ, 𝑥𝑃 ↦→ 𝜙𝑢(𝑥𝑃 ) · ℬ. (3.7.12)

The main result of this section is the following theorem.

Theorem 3.7.2.

(1) The map 𝜙𝑢 is a biregular isomorphism

𝜙𝑢 : 𝐶
(𝐽)
𝑢

∼−→ 𝒳𝜏𝐽𝜆
∩

∘
𝒳 𝜏𝑢𝜆 =

⨆︁
(𝑣,𝑤)∈𝑄⪰(𝑢,𝑢)

𝐽

∘
ℛ𝜏𝑢𝜆
𝑣𝜏𝜆𝑤−1 ,

and for all (𝑣, 𝑤) ⪰ (𝑢, 𝑢) in 𝑄𝐽 , 𝜙𝑢 restricts to a biregular isomorphism

𝜙𝑢 : 𝐶
(𝐽)
𝑢 ∩

∘
Π𝑣,𝑤

∼−→
∘
ℛ𝜏𝑢𝜆
𝑣𝜏𝜆𝑤−1 .

(2) Suppose that (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) in 𝑄𝐽 . Then

𝜙𝑢
(︀
Π>0
𝑣′,𝑤′

)︀
⊂ 𝒞𝑣𝜏𝜆𝑤−1 .

The remainder of this section will be devoted to the proof of Theorem 3.7.2.
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3.7.4 An alternative definition of 𝜙𝑢

Recall the notation from Definition 3.4.23, and that we have fixed 𝑢 ∈ 𝑊 𝐽 and 𝜆 ∈ 𝑄∨
Φ

satisfying ⟨𝜆, 𝛼𝑖⟩ = 0 for 𝑖 ∈ 𝐽 and ⟨𝜆, 𝛼𝑖⟩ ∈ Z<0 for 𝑖 ∈ 𝐼 ∖ 𝐽 . We list the rules for

conjugating elements of 𝐺 ⊂ 𝒢 by 𝜏𝜆.

Lemma 3.7.3. We have

𝜏𝜆 · 𝑝 = 𝑝 · 𝜏𝜆 for all 𝑝 ∈ 𝐿𝐽 , (3.7.13)

𝜏𝜆 · 𝑈 (𝐽) · 𝜏−1
𝜆 ⊂ 𝒰 (𝐼)

− , 𝜏𝜆 · 𝑈 (𝐽)
− · 𝜏−1

𝜆 ⊂ 𝒰 (𝐼), (3.7.14)

𝜏−1
𝜆 · 𝑈 (𝐽) · 𝜏𝜆 ⊂ 𝒰 (𝐼), 𝜏−1

𝜆 · 𝑈 (𝐽)
− · 𝜏𝜆 ⊂ 𝒰 (𝐼)

− , (3.7.15)

𝜏𝑢𝜆 · 𝑈 (𝐽)
2 · 𝜏−1

𝑢𝜆 ⊂ 𝒰 (𝐼), 𝜏−1
𝑢𝜆 · 𝑈 (𝐽)

1 · 𝜏𝑢𝜆 ⊂ 𝒰 (𝐼)
− . (3.7.16)

Proof. Recall that 𝐿𝐽 is generated by 𝑇 , 𝑈𝐽 , and 𝑈−
𝐽 , and since 𝜏𝜆𝛼 = 𝛼 for all 𝛼 ∈ Φ𝐽 , we

see that (3.7.13) follows from (3.7.2). By (3.7.2), we find 𝜏𝜆𝛼 ∈ Δ+
re ∖ Φ+ for 𝛼 ∈ Φ

(𝐽)
− and

𝜏𝜆𝛼 ∈ Δ−
re ∖ Φ− for 𝛼 ∈ Φ

(𝐽)
+ , which shows (3.7.14). Similarly, 𝜏−1

𝜆 𝛼 ∈ Δ+
re ∖ Φ+ for 𝛼 ∈ Φ

(𝐽)
+

and 𝜏−1
𝜆 𝛼 ∈ Δ−

re ∖ Φ− for 𝛼 ∈ Φ
(𝐽)
− , which shows (3.7.15).

To show (3.7.16), we use (3.7.6), (3.7.14), (3.7.15), and 𝑈 (𝐽)
1 , 𝑈

(𝐽)
2 ⊂ �̇�𝑈

(𝐽)
− �̇�−1 to get

𝜏𝑢𝜆 · 𝑈 (𝐽)
2 · 𝜏−1

𝑢𝜆 = �̇�𝜏𝜆�̇�
−1 · 𝑈 (𝐽)

2 · �̇�𝜏−1
𝜆 �̇�−1 ⊂ �̇�𝜏𝜆 · 𝑈 (𝐽)

− · 𝜏−1
𝜆 �̇�−1 ⊂ �̇�𝒰 (𝐼)�̇�−1 = 𝒰 (𝐼),

𝜏−1
𝑢𝜆 · 𝑈 (𝐽)

1 · 𝜏𝑢𝜆 = �̇�𝜏−1
𝜆 �̇�−1 · 𝑈 (𝐽)

1 · �̇�𝜏𝜆�̇�−1 ⊂ �̇�𝜏−1
𝜆 · 𝑈 (𝐽)

− · 𝜏𝜆�̇�−1 ⊂ �̇�𝒰 (𝐼)
− �̇�−1 = 𝒰 (𝐼)

− .

The map 𝜙𝑢 can alternatively be characterized as follows. Recall from Definition 3.4.23

that we have a regular map 𝜅 : �̇�𝐺
(𝐽)
0 → 𝑈

(𝐽)
2 that descends to a regular map 𝜅 : 𝐶

(𝐽)
𝑢 → 𝑈

(𝐽)
2

by Lemma 3.6.2(iii). Recall also from Lemma 3.4.22(i) that �̇�𝐺(𝐽)
0 = �̇�𝑃− ·𝐵.

Lemma 3.7.4. Let 𝑥 ∈ �̇�𝑃−. Then

𝜙𝑢(𝑥𝑃 ) = 𝜅𝑥𝑥 · 𝜏𝜆 · 𝑥−1 · ℬ. (3.7.17)

Proof. We continue using the notation of Definition 3.4.23. Let 𝑝 ∈ 𝐿𝐽 and 𝑔(𝐽) ∈ �̇�𝑈
(𝐽)
− �̇�−1

be such that 𝑥𝑝 = 𝑔(𝐽)�̇�. Note that 𝑔(𝐽)2 �̇� = ℎ
(𝐽)
1 𝑔(𝐽)�̇� = ℎ

(𝐽)
1 𝑥𝑝, and since ℎ(𝐽)1 ∈ 𝑈

(𝐽)
1 ⊂ 𝑈 ⊂
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ℬ, we see that (𝑔(𝐽)2 �̇�)−1 ·ℬ = (𝑥𝑝)−1 ·ℬ. On the other hand, 𝜅𝑥𝑥𝑝 = ℎ
(𝐽)
2 𝑔(𝐽)�̇� = 𝑔

(𝐽)
1 �̇�. Since

𝑝 commutes with 𝜏𝜆 by (3.7.13), we find

𝜙𝑢(𝑥𝑃 ) = 𝑔
(𝐽)
1 �̇� · 𝜏𝜆 · (𝑔(𝐽)2 �̇�)−1 · ℬ = 𝜅𝑥𝑥𝑝 · 𝜏𝜆 · (𝑥𝑝)−1 · ℬ = 𝜅𝑥𝑥 · 𝜏𝜆 · 𝑥−1 · ℬ.

3.7.5 The affine Richardson cell of 𝜙𝑢

Lemma 3.7.5. We have

𝐶(𝐽)
𝑢 =

⨆︁
(𝑣,𝑤)∈𝑄⪰(𝑢,𝑢)

𝐽

(𝐶(𝐽)
𝑢 ∩

∘
Π𝑣,𝑤). (3.7.18)

Proof. The torus 𝑇 acts on 𝐺/𝑃 by left multiplication and preserves the sets 𝐶(𝐽)
𝑢 and

∘
Π𝑣,𝑤

for all (𝑣, 𝑤) ∈ 𝑄𝐽 . By (3.4.23), Π𝑣,𝑤 contains �̇�𝑃 if and only if (𝑢, 𝑢) ⪯ (𝑣, 𝑤). Suppose

that 𝑥𝑃 ∈ 𝐶
(𝐽)
𝑢 ∩

∘
Π𝑣,𝑤 for some (𝑣, 𝑤) ∈ 𝑄𝐽 . Then 𝑇𝑥𝑃/𝑃 ⊂ 𝐶

(𝐽)
𝑢 , and by Lemma 3.6.8(iii),

the closure of this set contains �̇�𝑃 . On the other hand, the closure of this set is contained

inside Π𝑣,𝑤, thus (𝑢, 𝑢) ⪯ (𝑣, 𝑤).

Lemma 3.7.6. Let (𝑣, 𝑤) ∈ 𝑄
⪰(𝑢,𝑢)
𝐽 . Then

𝜙𝑢(𝐶
(𝐽)
𝑢 ∩

∘
Π𝑣,𝑤) ⊂

∘
ℛ𝜏𝑢𝜆
𝑣𝜏𝜆𝑤−1 . (3.7.19)

Proof. Let 𝑥 ∈ �̇�𝐺
(𝐽)
0 be such that 𝑥𝑃 ∈

∘
Π𝑣,𝑤. Let us first show that 𝜙𝑢(𝑥𝑃 ) ∈

∘
𝒳 𝜏𝑢𝜆 .

By (3.7.12), we have

𝜙𝑢(𝑥𝑃 ) = 𝑔
(𝐽)
1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1 · 𝜏−1

𝑢𝜆 · 𝜏𝑢𝜆 · ℬ. (3.7.20)

Observe that 𝑔(𝐽)1 ∈ 𝑈
(𝐽)
1 ⊂ 𝑈 and by (3.7.16), 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1 · 𝜏−1

𝑢𝜆 ∈ 𝒰 (𝐼), so by (3.7.6), we

have

𝜙𝑢(𝑥𝑃 ) · 𝜏−1
𝑢𝜆 ∈ 𝒰 , thus 𝜙𝑢(𝑥𝑃 ) ∈ ℬ · 𝜏𝑢𝜆 · ℬ. (3.7.21)

This proves that 𝜙𝑢(𝑥𝑃 ) ∈
∘
𝒳 𝜏𝑢𝜆 .

We now show 𝜙𝑢(𝑥𝑃 ) ∈
∘
𝒳𝑣𝜏𝜆𝑤−1 . Recall that

∘
Π𝑣,𝑤 = 𝜋𝐽(

∘
𝑅𝑣,𝑤), so assume that 𝑥 ∈

𝐵−�̇�𝐵 ∩ 𝐵�̇�𝐵. Since �̇�𝐺(𝐽)
0 = �̇�𝑃−𝐵 by Lemma 3.4.22(i), we may assume that 𝑥 ∈ �̇�𝑃−,

in which case 𝜙𝑢(𝑥𝑃 ) is given by (3.7.17). We have 𝜅𝑥𝑥 ∈ 𝐵−�̇�𝐵 and 𝑥−1 ∈ 𝐵�̇�−1𝐵, so it
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suffices to show

𝐵−�̇�𝐵 · 𝜏𝜆 ·𝐵�̇�−1𝐵 ⊂ ℬ− · �̇�𝜏𝜆�̇�−1 · ℬ. (3.7.22)

Clearly we have

𝐵−�̇�𝐵 · 𝜏𝜆 ·𝐵�̇�−1𝐵 ⊂ ℬ− · �̇� · 𝑈 (𝐽) · 𝑈𝐽 · 𝜏𝜆 · 𝑈 (𝐽) · 𝑈𝐽 · �̇�−1 · ℬ.

By (3.7.13) and Lemma 3.4.22(ii), 𝑈𝐽 can be moved to the right past 𝜏𝜆 and 𝑈 (𝐽). We can

then move 𝑈 (𝐽) to the left past 𝜏𝜆 using (3.7.14), which gives

𝐵−�̇�𝐵 · 𝜏𝜆 ·𝐵�̇�−1𝐵 ⊂ ℬ− · �̇� · 𝑈 (𝐽) · 𝒰 (𝐼)
− · 𝜏𝜆 · 𝑈𝐽 · �̇�−1 · ℬ.

By (3.7.6), 𝒰 (𝐼)
− can be moved to the left past �̇� · 𝑈 (𝐽), and then 𝑈 (𝐽) can be moved to the

right past 𝜏𝜆 using (3.7.15), yielding

𝐵−�̇�𝐵 · 𝜏𝜆 ·𝐵�̇�−1𝐵 ⊂ ℬ− · �̇� · 𝜏𝜆 · 𝒰 (𝐼) · 𝑈𝐽 · �̇�−1 · ℬ.

By (3.7.6), 𝒰 (𝐼) can be moved to the right past 𝑈𝐽 · �̇�−1. Since 𝑤 ∈ 𝑊 𝐽 , Lemma 3.4.5 shows

that 𝑈𝐽 · �̇�−1 ⊂ �̇�−1𝑈 , so (3.7.22) follows.

3.7.6 Proof of Theorem 3.7.2(1)

Observe that 𝒳𝜏𝐽𝜆
∩

∘
𝒳 𝜏𝑢𝜆 =

⨆︀
(𝑣,𝑤)∈𝑄⪰(𝑢,𝑢)

𝐽

∘
ℛ𝜏𝑢𝜆
𝑣𝜏𝜆𝑤−1 by (3.7.3) and (3.7.9). By (3.7.19),

𝜙𝑢(𝐶
(𝐽)
𝑢 ) ⊂ 𝒳𝜏𝐽𝜆

∩
∘
𝒳 𝜏𝑢𝜆 . Let us identify

∘
𝒳 𝜏𝑢𝜆 with the affine variety 𝒰1(𝜏𝑢𝜆) via (3.7.5),

and denote by 𝜙†
𝑢 : 𝐶

(𝐽)
𝑢 → 𝒰1(𝜏𝑢𝜆) the composition of (3.7.5) and 𝜙𝑢.

We claim that 𝜙†
𝑢 gives a biregular isomorphism between 𝐶(𝐽)

𝑢 and a closed subvariety of

𝒰1(𝜏𝑢𝜆). Let 𝑥 ∈ �̇�𝐺
(𝐽)
0 and let 𝑔(𝐽), 𝑔(𝐽)1 , 𝑔(𝐽)2 be as in Definition 3.4.23. Let 𝑦 := 𝜙𝑢(𝑥𝑃 )·𝜏−1

𝑢𝜆 ,

so 𝜙𝑢(𝑥𝑃 ) = 𝑦 · 𝜏𝑢𝜆 · ℬ. Thus 𝜙†
𝑢(𝑥𝑃 ) = 𝑦 if and only if 𝑦 ∈ 𝒰1(𝜏𝑢𝜆). By (3.7.21), we have

𝑦 ∈ 𝒰 . Hence in order to prove 𝑦 ∈ 𝒰1(𝜏𝑢𝜆), we need to show 𝑦 ∈ 𝜏𝑢𝜆𝒰−𝜏
−1
𝑢𝜆 . Conjugating

both sides by 𝜏𝑢𝜆, we get

𝜏−1
𝑢𝜆 · 𝑦 · 𝜏𝑢𝜆 = 𝜏−1

𝑢𝜆 𝑔
(𝐽)
1 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1,
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which belongs to 𝒰− since (𝑔
(𝐽)
2 )−1 ∈ 𝑈

(𝐽)
2 ⊂ 𝑈− by definition and 𝜏−1

𝑢𝜆 𝑔
(𝐽)
1 𝜏𝑢𝜆 ∈ 𝒰 (𝐼)

−

by (3.7.16). Thus 𝑦 ∈ 𝒰1(𝜏𝑢𝜆) and 𝜙†
𝑢(𝑥𝑃 ) = 𝑦. By Lemma 3.4.2, we may identify 𝐶

(𝐽)
𝑢

with 𝑈
(𝐽)
1 × 𝑈

(𝐽)
2 , so let 𝜙‡

𝑢 : 𝑈
(𝐽)
1 × 𝑈

(𝐽)
2 → 𝒰1(𝜏𝑢𝜆) be the map sending (𝑔

(𝐽)
1 , 𝑔

(𝐽)
2 ) ↦→ 𝑦 :=

𝑔
(𝐽)
1 · 𝜏𝑢𝜆(𝑔(𝐽)2 )−1𝜏−1

𝑢𝜆 .

Let Θ1 := 𝑢Φ
(𝐽)
− ∩ Φ+ and Θ2 := 𝑢Φ

(𝐽)
− ∩ Φ−, thus 𝑈 (𝐽)

1 = 𝑈(Θ1), 𝑈
(𝐽)
2 = 𝑈−(Θ2), and

Θ1 ⊔ Θ2 = 𝑢Φ
(𝐽)
− . By the proof of (3.7.16), 𝜏𝑢𝜆Θ2 ⊂ Δ+

re ∖ Φ+ and 𝜏−1
𝑢𝜆 Θ1 ⊂ Δ−

re, thus

Θ1 ⊔ 𝜏𝑢𝜆Θ2 ⊂ Inv(𝜏−1
𝑢𝜆 ). Let Θ3 ⊂ Δ+

re be defined by Θ3 := Inv(𝜏−1
𝑢𝜆 ) ∖ (Θ1 ⊔ Θ2). By

Lemma 3.A.1, the multiplication map gives a biregular isomorphism

𝒰(Θ1)× 𝒰(𝜏𝑢𝜆Θ2)×
∏︁
𝛼∈Θ3

𝒰𝛼
∼−→ 𝒰(Inv(𝜏−1

𝑢𝜆 )) = 𝒰1(𝜏𝑢𝜆), (3.7.23)

where 𝒰(Θ) denotes the subgroup generated by {𝒰𝛼}𝛼∈Θ. In particular, 𝒰(Θ1) · 𝒰(𝜏𝑢𝜆Θ2) is

a closed subvariety of 𝒰1(𝜏𝑢𝜆) isomorphic to C|Θ1|+|Θ2| = Cℓ(𝑤𝐽 ). Observe that 𝒰(𝜏𝑢𝜆Θ2) =

𝜏𝑢𝜆𝑈
(𝐽)
2 𝜏−1

𝑢𝜆 , thus 𝜙‡
𝑢 essentially coincides with the restriction of the map (3.7.23) to 𝒰(Θ1)×

𝒰(𝜏𝑢𝜆Θ2)×{1}. We have thus shown that 𝜙‡
𝑢 gives a biregular isomorphism between 𝑈 (𝐽)

1 ×

𝑈
(𝐽)
2 and a closed ℓ(𝑤𝐽)-dimensional subvariety of 𝒰1(𝜏𝑢𝜆). Therefore 𝜙𝑢 gives a biregular

isomorphism between 𝐶
(𝐽)
𝑢 and a closed ℓ(𝑤𝐽)-dimensional subvariety 𝜙𝑢(𝐶

(𝐽)
𝑢 ) of

∘
𝒳 𝜏𝑢𝜆 . By

Proposition 3.A.2, 𝒳𝜏𝐽𝜆
∩

∘
𝒳 𝜏𝑢𝜆 is a closed irreducible subvariety of

∘
𝒳 𝜏𝑢𝜆 , and by (3.7.8) and

Proposition 3.A.2, it has dimension ℓ(𝑤𝐽). Since 𝜙𝑢(𝐶
(𝐽)
𝑢 ) ⊂ 𝒳𝜏𝐽𝜆

∩
∘
𝒳 𝜏𝑢𝜆 , it follows that

𝜙𝑢(𝐶
(𝐽)
𝑢 ) = 𝒳𝜏𝐽𝜆

∩
∘
𝒳 𝜏𝑢𝜆 . We are done with the proof of Theorem 3.7.2(1).

Remark 3.7.7. Alternatively, the proof of Theorem 3.7.2(1) could be deduced from Deodhar-

type parametrizations [Had84, Had85, BD94] of
∘
ℛ𝜏𝑢𝜆
𝑣𝜏𝜆𝑤−1 , by observing that any reduced word

for 𝜏𝑢𝜆 that is compatible with the length-additive factorization 𝜏𝑢𝜆 = 𝑢 ·𝜏𝐽𝜆 ·𝑤𝐽𝑢−1 in (3.7.8)

contains a unique reduced subword for 𝜏𝐽𝜆 .

3.7.7 Proof of Theorem 3.7.2(2)

We use the notation and results from Section 3.6. Let 𝑥 ∈ 𝐺 be such that 𝑥𝑃 ∈ Π>0
𝑣′,𝑤′ . Since

Π>0
𝑣′,𝑤′ = 𝜋𝐽(𝑅

>0
𝑣′,𝑤′), we may assume that 𝑥𝐵 ∈ 𝑅>0

𝑣′,𝑤′ . Then 𝑥 ∈ �̇�𝐺
(𝐽)
0 by Lemma 3.6.9(ii),

so 𝜙𝑢(𝑥𝑃 ) is defined. In addition, by Lemma 3.4.22(i) we may assume that 𝑥 ∈ �̇�𝑃−. By
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definition, 𝜙𝑢(𝑥𝑃 ) ∈ 𝒞𝑣𝜏𝜆𝑤−1 if and only if �̇�𝜏−1
𝜆 �̇�−1𝜙𝑢(𝑥𝑃 ) ∈ ℬ−ℬ/ℬ. By (3.7.17), this is

equivalent to

�̇�𝜏−1
𝜆 �̇�−1 · 𝜅𝑥𝑥 · 𝜏𝜆 · 𝑥−1 ∈ ℬ−ℬ. (3.7.24)

By Theorem 3.6.4, 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣 , so �̇�−1𝜅𝑥𝑥 ∈ 𝐺

(𝐽)
0 . Let us factorize 𝑦 := �̇�−1𝜅𝑥𝑥 as 𝑦 =

[𝑦]
(𝐽)
− [𝑦]0[𝑦]

(𝐽)
+ using Lemma 3.4.22(iii). By (3.7.13) and (3.7.15), we get

�̇�𝜏−1
𝜆 �̇�−1 ·𝜅𝑥𝑥 · 𝜏𝜆 ·𝑥−1 = �̇� · 𝜏−1

𝜆 [𝑦]
(𝐽)
− 𝜏𝜆 · 𝜏−1

𝜆 [𝑦]0𝜏𝜆 · 𝜏−1
𝜆 [𝑦]

(𝐽)
+ 𝜏𝜆 ·𝑥−1 ∈ �̇� · 𝒰 (𝐼)

− · [𝑦]0 · 𝒰 (𝐼) ·𝑥−1.

Using (3.7.6), we can move 𝒰 (𝐼)
− to the left and 𝒰 (𝐼) to the right, so we see that (3.7.24) is

equivalent to �̇�[𝑦]0𝑥−1 ∈ ℬ−ℬ. By Definition 3.6.1, we have [𝑦]0 = 𝜂(𝑥), and by Lemma 3.6.3(ii),

we have 𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝑥𝜂(𝑥)−1 = 𝑥[𝑦]−1
0 . By Theorem 3.6.4, 𝜁(𝐽)𝑢,𝑣 (𝑥) ∈ 𝐵𝐵−�̇�, and after taking

inverses, we obtain �̇�[𝑦]0𝑥−1 ∈ 𝐵−𝐵 ⊂ ℬ−ℬ, finishing the proof.

3.8 From Bruhat atlas to Fomin–Shapiro atlas

We use Theorem 3.7.2 to prove Theorem 3.2.5.

3.8.1 Affine Bruhat projections

We first define the affine flag variety version of the map 𝜈𝑔 from (3.2.1). We will need some

results on Gaussian decomposition inside 𝒢, see Section 3.A.5 for a proof.

Lemma 3.8.1. Let 𝒢0 := ℬ− · ℬ.

(i) The multiplication map gives a biregular isomorphism of ind-varieties:

𝒰− × 𝒯 × 𝒰 ∼−→ 𝒢0. (3.8.1)

For 𝑥 ∈ 𝒢0, we denote by [𝑥]− ∈ 𝒰−, [𝑥]0 ∈ 𝒯 , and [𝑥]+ ∈ 𝒰 the unique elements such

that 𝑥 = [𝑥]−[𝑥]0[𝑥]+.

(ii) For 𝑔 ∈ �̃� , the multiplication map gives biregular isomorphisms of ind-varieties:

𝜇12 : 𝒰1(𝑔)× 𝒰2(𝑔)
∼−→ �̇�𝒰−�̇�

−1, 𝜇21 : 𝒰2(𝑔)× 𝒰1(𝑔)
∼−→ �̇�𝒰−�̇�

−1. (3.8.2)
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The group �̇�𝒰−�̇�
−1, as well as its subgroups 𝒰1(𝑔) and 𝒰2(𝑔), act on 𝒞𝑔. The following result,

which we state for the polynomial loop group 𝒢, holds in Kac-Moody generality.

Proposition 3.8.2. Let 𝑔 ∈ �̃� .

(i) For 𝑥 ∈ 𝒢 such that 𝑥ℬ ∈ 𝒞𝑔, there exist unique elements 𝑦1 ∈ 𝒰1(𝑔) and 𝑦2 ∈ 𝒰2(𝑔)

such that 𝑦1𝑥ℬ ∈
∘
𝒳𝑔 and 𝑦2𝑥ℬ ∈

∘
𝒳 𝑔.

(ii) The map 𝜈𝑔 : 𝒞𝑔
∼−→

∘
𝒳𝑔 ×

∘
𝒳 𝑔 sending 𝑥ℬ ↦→ (𝑦1𝑥ℬ, 𝑦2𝑥ℬ) is a biregular isomorphism

of ind-varieties.

(iii) For all ℎ, 𝑓 ∈ �̃� satisfying ℎ ≤ 𝑔 ≤ 𝑓 , the map 𝜈𝑔 restricts to a biregular isomorphism

𝒞𝑔 ∩
∘
ℛ𝑓
ℎ

∼−→
∘
ℛ𝑓
𝑔 ×

∘
ℛ𝑔
ℎ of finite-dimensional varieties.

Proof. Let us first prove an affine analog of Lemma 3.4.2. Let 𝜈1 : �̇�𝒰−�̇�
−1 → 𝒰2(𝑔), 𝜈2 :

�̇�𝒰−�̇�
−1 → 𝒰1(𝑔) denote the second component of 𝜇−1

12 and 𝜇−1
21 (cf. (3.8.2)), respectively, and

let 𝜈 := (𝜈1, 𝜈2) : �̇�𝒰−�̇�
−1 → 𝒰2(𝑔) × 𝒰1(𝑔). We claim that 𝜈 is a biregular isomorphism.

By Lemma 3.8.1(ii), 𝜈 is a regular morphism. Let us now compute the inverse of 𝜈. Given

𝑥1 ∈ 𝒰1(𝑔) and 𝑥2 ∈ 𝒰2(𝑔), we claim that there exist unique 𝑦1 ∈ 𝒰1(𝑔) and 𝑦2 ∈ 𝒰2(𝑔) such

that 𝑦1𝑥2 = 𝑦2𝑥1. Indeed, this equation is equivalent to 𝑦−1
2 𝑦1 = 𝑥1𝑥

−1
2 , so we must have 𝑦2 =

[𝑥1𝑥
−1
2 ]−1

− and 𝑦1 = [𝑥1𝑥
−1
2 ]+. Clearly, 𝜈−1(𝑥2, 𝑥1) = 𝑦1𝑥2 = 𝑦2𝑥1, and by Lemma 3.8.1(i),

the map 𝜈−1 is regular. Applying (3.7.5) finishes the proof of (i) and (ii).

We now prove (iii). Observe that if 𝑥ℬ ∈ 𝒞𝑔 ∩
∘
ℛ𝑓
ℎ for some ℎ ≤ 𝑓 ∈ �̃� then 𝑥 ∈

ℬ−ℎ̇ℬ ∩ ℬ𝑓ℬ. Let 𝑦1, 𝑦2 be as in (ii). Then 𝑦1 ∈ 𝒰1(𝑔) ⊂ 𝒰 , so 𝑦1𝑥 ∈ ℬ𝑓ℬ. Similarly,

𝑦2 ∈ 𝒰2(𝑔) ⊂ 𝒰−, so 𝑦2𝑥 ∈ ℬ−ℎ̇ℬ. It follows that if 𝑥ℬ ∈ 𝒞𝑔 ∩
∘
ℛ𝑓
ℎ then 𝜈𝑔(𝑥ℬ) ∈

∘
ℛ𝑔
ℎ ×

∘
ℛ𝑓
𝑔 .

In particular, we must have ℎ ≤ 𝑔 ≤ 𝑓 , and we are done by (3.7.3).

3.8.2 Torus action

Recall that 𝒯 = C*×𝑇 is the affine torus. The group C* acts on 𝒢 via loop rotation as follows.

For 𝑡 ∈ C*, we have 𝑡 · 𝑔(𝑧) = 𝑔(𝑡𝑧). We form the semidirect product C*n𝒢 with multiplica-

tion given by (𝑡1, 𝑥1(𝑧)) · (𝑡2, 𝑥2(𝑧)) := (𝑡1𝑡2, 𝑥1(𝑧)𝑥2(𝑡1𝑧)), for (𝑡1, 𝑥1(𝑧)), (𝑡2, 𝑥2(𝑧)) ∈ C*×𝒢.

Let 𝑌 (𝒯 ) := Hom(C*, 𝒯 ) ∼= Z𝑑⊕𝑌 (𝑇 ). For 𝜆 ∈ 𝑌 (𝒯 ), 𝑡 ∈ C*, 𝑡′ ∈ C, and 𝛼 ∈ Δre, we have

𝜆(𝑡)𝑥𝛼(𝑡
′)𝜆(𝑡)−1 = 𝑥𝛼(𝑡

⟨𝜆,𝛼⟩𝑡′). (3.8.3)
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where 𝑥𝛼 : C ∼−→ 𝒰𝛼 is as in Section 3.7.1, and ⟨·, ·⟩ : 𝑌 (𝒯 )×𝑋(𝒯 ) → Z extends the pairing

from Section 3.4.1 in such a way that ⟨𝑑, 𝛿⟩ = 1 and ⟨𝑑, 𝛼𝑖⟩ = ⟨𝛼∨
𝑖 , 𝛿⟩ = 0 for 𝑖 ∈ 𝐼.

Let 𝑔 ∈ �̃� and denote 𝑁 := ℓ(𝑔). If Inv(𝑔) = {𝛼(1), . . . , 𝛼(𝑁)} then by Lemma 3.A.1, the

map x𝑔 : C𝑁 → 𝒰1(𝑔) given by

x𝑔(𝑡1, . . . , 𝑡𝑁) := 𝑥𝛼(1)(𝑡1) · · ·𝑥𝛼(𝑁)(𝑡𝑁) (3.8.4)

is a biregular isomorphism. For t = (𝑡1, . . . , 𝑡𝑁) ∈ C𝑁 , define ‖t‖ := (|𝑡1|2 + · · ·+ |𝑡𝑁 |2)
1
2 ∈

R≥0, and let ‖ · ‖ : 𝒰1(𝑔) → R≥0 be defined by ‖𝑦‖ := ‖x−1
𝑔 (𝑦)‖. Identifying 𝒰1(𝑔) with

∘
𝒳 𝑔

via (3.7.5), we get a function ‖ · ‖ :
∘
𝒳 𝑔 → R≥0.

We say that 𝜌 ∈ 𝑌 (𝒯 ) is a regular dominant integral coweight if ⟨𝜌, 𝛿⟩ ∈ Z>0 and ⟨𝜌, 𝛼𝑖⟩ ∈

Z>0 for all 𝑖 ∈ 𝐼. In this case, we have ⟨𝜌, 𝛼⟩ ∈ Z>0 for any 𝛼 ∈ Δ+
re. Let us choose such a

coweight 𝜌, and define 𝜗𝑔 : R>0 × 𝒢/ℬ → 𝒢/ℬ by 𝜗𝑔(𝑡, 𝑥ℬ) := 𝜌(𝑡)𝑥ℬ.

It follows from (3.8.3) that if 𝑔 ∈ �̃� and 𝑦 ∈ 𝒰1(𝑔) is such that x−1
𝑔 (𝑦) = (𝑡1, . . . , 𝑡𝑁)

then there exist 𝑘1, . . . , 𝑘𝑁 ∈ Z>0 satisfying

‖𝜗𝑔(𝑡, 𝑦�̇�ℬ)‖ =
(︀
𝑡𝑘1|𝑡1|2 + · · ·+ 𝑡𝑘𝑁 |𝑡𝑁 |2

)︀ 1
2 for all 𝑡 ∈ R>0. (3.8.5)

3.8.3 Proof of Theorem 3.2.5

By Corollary 3.4.20, ((𝐺/𝑃 )R, (𝐺/𝑃 )≥0, 𝑄𝐽) is a TNN space in the sense of Definition 3.2.1.

Thus it suffices to construct a Fomin–Shapiro atlas.

Let (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ∈ 𝑄𝐽 , and denote 𝑓 := (𝑢, 𝑢), 𝑔 := (𝑣, 𝑤). Thus we have 𝜓(𝑓) = 𝜏𝑢𝜆

and 𝜓(𝑔) = 𝑣𝜏𝜆𝑤
−1. Moreover, for the maximal element 1̂ = (id, 𝑤𝐽) ∈ 𝑄𝐽 , we have

𝜓(1̂) = 𝜏𝐽𝜆 . By Theorem 3.7.2(1), the map 𝜙𝑢 gives an isomorphism 𝐶
(𝐽)
𝑢

∼−→ 𝒳𝜓(1̂) ∩
∘
𝒳 𝜓(𝑓).

Let 𝒪C
𝑔 ⊂ 𝐶

(𝐽)
𝑢 be the preimage of 𝒞𝜓(𝑔) ∩ 𝒳𝜓(1̂) ∩

∘
𝒳 𝜓(𝑓) under 𝜙𝑢, and denote by 𝒪𝑔 :=

𝒪C
𝑔 ∩ (𝐺/𝑃 )R. Since 𝒞𝜓(𝑔) is open in 𝒢/ℬ, we see that 𝒪C

𝑔 is open in 𝐶
(𝐽)
𝑢 which is open

in 𝐺/𝑃 , so 𝒪𝑔 is an open subset of (𝐺/𝑃 )R. By Theorem 3.7.2(2), 𝒪𝑔 contains Star≥0
𝑔 ,

which shows (FS5). Moreover, we claim that 𝒪𝑔 ⊂ Star𝑔. Indeed, if ℎ ⪰ 𝑓 but ℎ ̸⪰ 𝑔 then

𝜓(ℎ) ̸≤ 𝜓(𝑔). The map 𝜙𝑢 sends
∘
Πℎ∩𝐶(𝐽)

𝑢 to
∘
ℛ𝜓(𝑓)
𝜓(ℎ), which does not intersect 𝒞𝜓(𝑔) by (3.A.3).

We now define the smooth cone (𝑍𝑔, 𝜗𝑔). Throughout, we identify
∘
𝒳 𝜓(𝑔) with C𝑁𝑔 for
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𝑁𝑔 := ℓ(𝜓(𝑔)) via (3.8.4). We set 𝑍C
𝑔 := 𝒳𝜓(1̂) ∩

∘
𝒳 𝜓(𝑔) and

∘
𝑍C
𝑔,ℎ :=

∘
ℛ𝜓(𝑔)
𝜓(ℎ) for 𝑔 ⪯ ℎ ∈ 𝑄𝐽 .

We let 𝑍𝑔 := 𝑍C
𝑔 ∩ R𝑁𝑔 and

∘
𝑍𝑔,ℎ :=

∘
𝑍C
𝑔,ℎ ∩ R𝑁𝑔 denote the corresponding sets of real points.

Thus (FS1) follows trivially. The action 𝜗𝑔 restricts to R𝑁𝑔 , and by (3.8.5), it satisfies (SC2).

As we discussed in Section 3.8.2, the action of 𝜗𝑔 also preserves 𝑍𝑔 (showing (SC1)) and
∘
𝑍𝑔,ℎ

(showing (FS2)).

Finally, we define a map 𝜈𝑔 : 𝒪C
𝑔 → (

∘
Π𝑔 ∩ 𝒪C

𝑔 ) × C𝑁𝑔 as follows. Let 𝜈𝑔 = (𝜈𝑔,1, 𝜈𝑔,2) :

𝒞𝑔
∼−→

∘
𝒳𝑔 ×

∘
𝒳 𝑔 be the map from Proposition 3.8.2. We let 𝜈𝑔,2 := 𝜈𝑔,2 ∘ 𝜙𝑢, so it sends

𝒪C
𝑔 → 𝒞𝜓(𝑔) →

∘
𝒳 𝜓(𝑔) ∼= C𝑁𝑔 . By Proposition 3.8.2(iii), the image of 𝜈𝑔,2 is precisely 𝑍C

𝑔 . We

also let 𝜈𝑔,1 := 𝜙−1
𝑢 ∘ 𝜈𝑔,1 ∘ 𝜙𝑢, thus it sends

𝒪C
𝑔

∼−→ 𝒞𝜓(𝑔) ∩ 𝒳𝜓(1̂) ∩
∘
𝒳 𝜓(𝑓) →

∘
ℛ𝜓(𝑓)
𝜓(𝑔)

∼−→
∘
Π𝑔 ∩ 𝒪C

𝑔 .

It follows from Theorem 3.7.2(1) and Proposition 3.8.2 that 𝜈𝑔 := (𝜈𝑔,1, 𝜈𝑔,2) gives a biregular

isomorphism 𝒪C
𝑔

∼−→ (
∘
Π𝑔 ∩ 𝒪C

𝑔 ) × 𝑍C
𝑔 . All maps in the definition of 𝑍C

𝑔 are defined over R,

thus 𝜈𝑔 gives a smooth embedding 𝒪𝑔 → (
∘
ΠR
𝑔 ∩ 𝒪𝑔)× R𝑁𝑔 with image (

∘
ΠR
𝑔 ∩ 𝒪𝑔)× 𝑍𝑔. By

Lemma 3.3.3, we find that 𝑍𝑔 is an embedded submanifold of R𝑁𝑔 , so we get a diffeomorphism

𝜈𝑔 : 𝒪𝑔
∼−→ (

∘
ΠR
𝑔 ∩ 𝒪𝑔)× 𝑍𝑔.

By Theorem 3.7.2(1) and Proposition 3.8.2(iii), we find that for ℎ ⪰ 𝑔, 𝜈𝑔 sends
∘
Πℎ ∩ 𝒪𝑔

to (
∘
Π𝑔 ∩ 𝒪𝑔) ×

∘
𝑍𝑔,ℎ, showing (FS3). When 𝑥𝑃 ∈

∘
Π𝑔 ∩ 𝒪𝑔, we have 𝜙𝑢(𝑥𝑃 ) ∈

∘
ℛ𝜓(𝑓)
𝜓(𝑔) , so

clearly 𝜈𝑔,1(𝜙𝑢(𝑥𝑃 )) = 𝜙𝑢(𝑥𝑃 ) and 𝜈𝑔,2(𝜙𝑢(𝑥𝑃 )) ∈
∘
ℛ𝜓(𝑔)
𝜓(𝑔). Thus 𝜈𝑔,1(𝑥𝑃 ) = 𝑥 and 𝜈𝑔,2(𝑥𝑃 ) =

0, showing (FS4). We have thus completed all requirements of Definitions 3.2.1, 3.2.2,

and 3.2.3.

3.9 The case 𝐺 = SL𝑛

In this section, we illustrate our construction in type 𝐴. We mostly focus on the case when

𝐺/𝑃 is the Grassmannian Gr(𝑘, 𝑛) so that (𝐺/𝑃 )≥0 is the totally nonnegative Grassmannian

Gr≥0(𝑘, 𝑛). Throughout, we assume K = C.
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3.9.1 Preliminaries

Fix an integer 𝑛 ≥ 1 and recall the notation [𝑛] := {1, 2, . . . , 𝑛},
(︀
[𝑛]
𝑘

)︀
:= {𝑆 ⊂ [𝑛] : |𝑆| = 𝑘}.

Let 𝐺 = SL𝑛 be the group of 𝑛×𝑛 matrices over C of determinant 1. We have subgroups

𝐵,𝐵−, 𝑇, 𝑈, 𝑈− ⊂ 𝐺 consisting of upper triangular, lower triangular, diagonal, upper unitri-

angular, and lower unitriangular matrices of determinant 1, respectively. The Weyl group

𝑊 is the group 𝑆𝑛 of permutations of [𝑛], and for 𝑖 ∈ 𝐼 = [𝑛 − 1], 𝑠𝑖 ∈ 𝑊 is the simple

transposition of elements 𝑖 and 𝑖 + 1. If 𝑤 ∈ 𝑊 is written as a product 𝑤 = 𝑠𝑖1 . . . 𝑠𝑖𝑙 then

the action of 𝑤 on [𝑛] is given by 𝑤(𝑗) := 𝑠𝑖1(. . . (𝑠𝑖𝑙(𝑗)) . . . ) for 𝑗 ∈ [𝑛]. For 𝑆 ⊂ [𝑛], we

set 𝑤𝑆 := {𝑤(𝑗) | 𝑗 ∈ 𝑆}. For example, if 𝑛 = 3 and 𝑤 = 𝑠2𝑠1 then 𝑤(1) = 3, 𝑤(2) = 1,

𝑤(3) = 2, and 𝑤{1, 3} = {2, 3}.

For 𝑖 ∈ [𝑛−1], the homomorphism 𝜑𝑖 : SL2 → 𝐺 just sends a matrix 𝐴 ∈ SL2 to the 𝑛×𝑛

matrix 𝜑𝑖(𝐴) ∈ SL𝑛 which has a 2× 2 block equal to 𝐴 in rows and columns 𝑖, 𝑖+1. Thus if

𝑛 = 3 then �̇�1 =
[︁
0 −1 0
1 0 0
0 0 1

]︁
, �̇�2 =

[︁
1 0 0
0 0 −1
0 1 0

]︁
, and for 𝑤 = 𝑠2𝑠1, �̇� =

[︁
0 −1 0
0 0 −1
1 0 0

]︁
. In general, given

𝑤 ∈ 𝑆𝑛, �̇� contains a ±1 in row 𝑤(𝑗) and column 𝑗 for each 𝑗 ∈ [𝑛], and the sign of this

entry is −1 if and only if the number of ±1’s strictly below and to the left of it is odd. In

other words, the (𝑤(𝑗), 𝑗)-th entry of �̇� equals (−1)#{𝑖<𝑗|𝑤(𝑖)>𝑤(𝑗)}.

For 𝑥 ∈ SL𝑛, 𝑥𝑇 is just the matrix transpose of 𝑥, and 𝑥𝜄 defined in (3.4.4) has (𝑖, 𝑗)-th

entry equal to the determinant of the submatrix obtained from 𝑥 by deleting row 𝑗 and

column 𝑖.

For 𝑖 ∈ [𝑛 − 1], the function Δ∓
𝑖 : SL𝑛 → C is the top-left 𝑖 × 𝑖 principal minor, while

Δ±
𝑖 : SL𝑛 → C is the bottom-right 𝑖 × 𝑖 principal minor. The subset 𝐺∓

0 = 𝐵−𝐵 consists

precisely of matrices 𝑥 ∈ SL𝑛 all of whose top-left principal minors are nonzero, in agreement

with Lemma 3.4.21(iii). We denote Δ∓
𝑛 (𝑥) = Δ±

𝑛 (𝑥) := det 𝑥 = 1.

3.9.2 Flag variety

The group 𝐵 acts on 𝐺 = SL𝑛 by right multiplication, and 𝐺/𝐵 is the complete flag variety

in C𝑛. It consists of flags {0} = 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑛 = C𝑛 in C𝑛 such that dim𝑉𝑖 = 𝑖 for

𝑖 ∈ [𝑛]. For a matrix 𝑥 ∈ SL𝑛, the element 𝑥𝐵 ∈ 𝐺/𝐵 gives rise to a flag 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑛

such that 𝑉𝑖 is the span of columns 1, . . . 𝑖 of 𝑥. For 𝑘 ∈ [𝑛], 𝑆 ∈
(︀
[𝑛]
𝑘

)︀
, and 𝑥 ∈ SL𝑛, we denote
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by Δflag
𝑆 the determinant of the 𝑘 × 𝑘 submatrix of 𝑥 with row set 𝑆 and column set [𝑘].

Thus for each 𝑘 ∈ [𝑛], we have a map Δflag
𝑘 : 𝐺/𝐵 → CP(

𝑛
𝑘)−1 sending 𝑥𝐵 to (Δflag

𝑆 (𝑥))
𝑆∈([𝑛]

𝑘 )
.

Here
(︀
[𝑛]
𝑘

)︀
is identified with the set 𝑊𝜔𝑘 from Lemma 3.4.21(iv).

3.9.3 Partial flag variety

For 𝐽 ⊂ [𝑛], we have a parabolic subgroup 𝑃 ⊂ 𝐺, and the partial flag variety 𝐺/𝑃 consists

of partial flags {0} = 𝑉0 ⊂ 𝑉𝑗1 ⊂ · · · ⊂ 𝑉𝑗𝑙 ⊂ 𝑉𝑛 = C𝑛, where {𝑗1 < · · · < 𝑗𝑙} := ([𝑛− 1] ∖ 𝐽)

and dim𝑉𝑗𝑖 = 𝑗𝑖 for 𝑖 ∈ [𝑙]. The projection 𝜋𝐽 : 𝐺/𝐵 → 𝐺/𝑃 sends a flag (𝑉0, 𝑉1, . . . , 𝑉𝑛) to

(𝑉0, 𝑉𝑗1 , . . . , 𝑉𝑗𝑙 , 𝑉𝑛). When 𝐽 = ∅, we have 𝑃 = 𝐵 and 𝐺/𝑃 = 𝐺/𝐵. We will focus on the

“opposite” special case.

Unless otherwise stated, we assume that 𝐽 = [𝑛− 1] ∖ {𝑘} for some fixed 𝑘 ∈ [𝑛− 1].

In this case, 𝐺/𝑃 is the (complex) Grassmannian Gr(𝑘, 𝑛), which we will identify with the

space of 𝑛 × 𝑘 full rank matrices modulo column operations. Let us write matrices in SL𝑛

in block form
⎡⎣ 𝐴 𝐵

𝐶 𝐷

⎤⎦, where 𝐴 is of size 𝑘 × 𝑘 and 𝐷 is of size (𝑛 − 𝑘) × (𝑛 − 𝑘). For a

matrix 𝑥 =
⎡⎣ 𝐴 𝐵

𝐶 𝐷

⎤⎦ ∈ SL𝑛, we denote by [𝑥| :=
⎡⎣ 𝐴

𝐶

⎤⎦ the 𝑛 × 𝑘 submatrix consisting of the

first 𝑘 columns of 𝑥. Thus every 𝑥 ∈ SL𝑛 gives rise to an element 𝑥𝑃 of 𝐺/𝑃 which is a

𝑘-dimensional subspace 𝑉𝑘 ⊂ C𝑛 equal to the column span of [𝑥|. The map Δflag
𝑘 in this case

is the classical Plücker embedding Δflag
𝑘 : Gr(𝑘, 𝑛) →˓ CP(

𝑛
𝑘)−1, cf. Section 2.2.

The set 𝑊 𝐽 from Section 3.4.6 consists of Grassmannian permutations : we have 𝑤 ∈ 𝑊 𝐽

if and only if 𝑤 = id or every reduced word for 𝑤 ends with 𝑠𝑘. Equivalently, 𝑤 ∈ 𝑊 𝐽 if

and only if 𝑤(1) < · · · < 𝑤(𝑘) and 𝑤(𝑘 + 1) < · · · < 𝑤(𝑛), so the map 𝑤 ↦→ 𝑤[𝑘] gives

a bijection 𝑊 𝐽 →
(︀
[𝑛]
𝑘

)︀
. The parabolic subgroup 𝑊𝐽 (generated by {𝑠𝑗}𝑗∈𝐽) consists of

permutations 𝑤 ∈ 𝑆𝑛 such that 𝑤[𝑘] = [𝑘], and the longest element 𝑤𝐽 ∈ 𝑊𝐽 is given by

(𝑤𝐽(1), . . . , 𝑤𝐽(𝑛)) = (𝑘, . . . , 1, 𝑛, . . . , 𝑘 + 1). The maximal element 𝑤𝐽 of 𝑊 𝐽 is given by

(𝑤𝐽(1), . . . , 𝑤𝐽(𝑛)) = (𝑛− 𝑘 + 1, . . . , 𝑛, 1, . . . , 𝑛− 𝑘). We have

𝑈𝐽 =

{︃[︃
𝑈𝑘 0

0 𝑈𝑛−𝑘

]︃}︃
, 𝑈

(𝐽)
− =

{︃[︃
𝐼𝑘 0

𝐶 𝐼𝑛−𝑘

]︃}︃
, 𝐿𝐽 =

{︃[︃
𝐴 0

0 𝐷

]︃}︃
, 𝑃 =

{︃[︃
𝐴 𝐵

0 𝐷

]︃}︃
,
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where 𝑈𝑟 is an 𝑟 × 𝑟 upper unitriangular matrix, 𝐼𝑟 is an 𝑟 × 𝑟 identity matrix, 𝐴 ∈ SL𝑘,

𝐷 ∈ SL𝑛−𝑘, and 𝐵, 𝐶 are arbitrary 𝑘 × (𝑛− 𝑘) and (𝑛− 𝑘)× 𝑘 matrices, respectively.

3.9.4 Affine charts

We have 𝐺(𝐽)
0 := {𝑥 ∈ 𝐺 | Δflag

[𝑘] (𝑥) ̸= 0}, and for 𝑥 =
⎡⎣ 𝐴 𝐵

𝐶 𝐷

⎤⎦ ∈ 𝐺
(𝐽)
0 (such that Δflag

[𝑘] (𝑥) =

det𝐴 ̸= 0), the factorization 𝑥 = [𝑥]
(𝐽)
− [𝑥]

(𝐽)
0 [𝑥]

(𝐽)
+ from Lemma 3.4.22(iii) is given by

[︃
𝐴 𝐵

𝐶 𝐷

]︃
=

[︃
𝐼𝑘 0

𝐶𝐴−1 𝐼𝑛−𝑘

]︃
·

[︃
𝐴 0

0 𝐷 − 𝐶𝐴−1𝐵

]︃
·

[︃
𝐼𝑘 𝐴−1𝐵

0 𝐼𝑛−𝑘

]︃
. (3.9.1)

The matrix 𝐷 − 𝐶𝐴−1𝐵 is called the Schur complement of 𝐷 in 𝑥.

For 𝑢 ∈ 𝑊 𝐽 , the set 𝐶(𝐽)
𝑢 ⊂ 𝐺/𝑃 consists of elements 𝑥𝑃 such that Δflag

𝑢[𝑘](𝑥) ̸= 0. The

(inverse of the) isomorphism (3.4.31) essentially amounts to computing the reduced column

echelon form of an 𝑛× 𝑘 matrix: if 𝑥 ∈ 𝐺 is such that 𝑥𝑃 ∈ 𝐶
(𝐽)
𝑢 is sent to 𝑔(𝐽) ∈ �̇�𝑈

(𝐽)
− �̇�−1

via (3.4.31) then the 𝑛 × 𝑘 matrices [𝑥| and
[︀
𝑔(𝐽)�̇�

⃒⃒
have the same column span, and the

submatrix of
[︀
𝑔(𝐽)�̇�

⃒⃒
with row set 𝑢[𝑘] is the 𝑘× 𝑘 identity matrix. Let us say that an 𝑛× 𝑘

matrix 𝑀 is in 𝑢[𝑘]-echelon form if its submatrix with row set 𝑢[𝑘] is the 𝑘 × 𝑘 identity

matrix.

The matrices 𝑔
(𝐽)
1 �̇� and 𝑔

(𝐽)
2 �̇� from Definition 3.4.23 are obtained from 𝑔(𝐽)�̇� simply

by replacing some entries with 0. Explicitly, let (𝑀𝑖,𝑗) :=
[︀
𝑔(𝐽)�̇�

⃒⃒
, (𝑀 ′

𝑖,𝑗) :=
[︁
𝑔
(𝐽)
1 �̇�

⃒⃒⃒
, and

(𝑀 ′′
𝑖,𝑗) :=

[︁
𝑔
(𝐽)
2 �̇�

⃒⃒⃒
be the corresponding 𝑛×𝑘 matrices. Thus 𝑀𝑖,𝑗 = 𝛿𝑖,𝑢(𝑗) for all 𝑖 ∈ 𝑢[𝑘] and

𝑗 ∈ [𝑘], and we have

𝑀 ′
𝑖,𝑗 =

⎧⎪⎨⎪⎩𝑀𝑖,𝑗, if 𝑖 ≤ 𝑢(𝑗),

0, otherwise,
𝑀 ′′

𝑖,𝑗 =

⎧⎪⎨⎪⎩𝑀𝑖,𝑗, if 𝑖 ≥ 𝑢(𝑗),

0, otherwise,
for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘].

The operation 𝑀 ↦→𝑀 ′, which we call 𝑢-truncation, will play an important role.

Example 3.9.1. Let 𝐺/𝑃 = Gr(2, 4) and 𝑢 = 𝑠3𝑠2 ∈ 𝑊 𝐽 , so 𝑢[𝑘] = {1, 4}. We have

𝑥 = 𝑔(𝐽)�̇� =

[︂
1
𝑥1 𝑥2 −1
𝑥3 𝑥4 −1

1

]︂
, [𝑥| =

[︂
1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
,

[︁
𝑔
(𝐽)
1 �̇�

⃒⃒⃒
=

[︂
1
𝑥2
𝑥4
1

]︂
,

[︁
𝑔
(𝐽)
2 �̇�

⃒⃒⃒
=

[︂
1
𝑥1
𝑥3

1

]︂
.
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3.9.5 Positroid varieties

We review the background on positroid varieties inside Gr(𝑘, 𝑛), which were introduced

in [KLS13], building on the work of Postnikov [Pos07]. Let 𝑆𝑛 be the group of affine permu-

tations, i.e., bijections 𝑓 : Z → Z such that 𝑓(𝑖+𝑛) = 𝑓(𝑖)+𝑛 for all 𝑖 ∈ Z. We have a func-

tion av : 𝑆𝑛 → Z sending 𝑓 to av(𝑓) := 1
𝑛

∑︀𝑛
𝑖=1(𝑓(𝑖)− 𝑖), which is an integer for all 𝑓 ∈ 𝑆𝑛.

For 𝑗 ∈ Z, denote 𝑆𝑗,𝑛 := {𝑓 ∈ 𝑆𝑛 | av(𝑓) = 𝑗}. Every 𝑓 ∈ 𝑆𝑛 is determined by the sequence

𝑓(1), . . . , 𝑓(𝑛), thus we write 𝑓 in window notation as 𝑓 = [𝑓(1), . . . , 𝑓(𝑛)]. For 𝜆 ∈ Z𝑛,

define 𝜏𝜆 ∈ 𝑆𝑛 by 𝜏𝜆 := [𝑑1, . . . , 𝑑𝑛], where 𝑑𝑖 = 𝑖+𝑛𝜆𝑖 for all 𝑖 ∈ [𝑛]. Let Bound(𝑘, 𝑛) ⊂ 𝑆𝑘,𝑛

be the set of bounded affine permutations, which consists of all 𝑓 ∈ 𝑆𝑛 satisfying av(𝑓) = 𝑘

and 𝑖 ≤ 𝑓(𝑖) ≤ 𝑖 + 𝑛 for all 𝑖 ∈ Z. The subset 𝑆0,𝑛 is a Coxeter group with generators

𝑠1, . . . , 𝑠𝑛−1, 𝑠𝑛 = 𝑠0, where for 𝑖 ∈ [𝑛], 𝑠𝑖 : Z → Z sends 𝑖 ↦→ 𝑖 + 1, 𝑖 + 1 ↦→ 𝑖, and 𝑗 ↦→ 𝑗

for all 𝑗 ̸≡ 𝑖, 𝑖 + 1 (mod 𝑛). We let ≤ denote the Bruhat order on 𝑆0,𝑛, and ℓ : 𝑆0,𝑛 → Z≥0

denote the length function. The sets 𝑆0,𝑛 and 𝑆𝑘,𝑛 are in bijection sending (𝑖 ↦→ 𝑓(𝑖)) to

(𝑖 ↦→ 𝑓(𝑖)+𝑘), and thus we get a poset structure and a length function on 𝑆𝑘,𝑛. When 𝑓 ≤ 𝑔,

we write 𝑔 ≤op 𝑓 , and we will be interested in the poset (Bound(𝑘, 𝑛),≤op), which has a

unique maximal element 𝜏𝑘 := [1+𝑘, 2+𝑘, . . . , 𝑛+𝑘]. It is known that Bound(𝑘, 𝑛) is a lower

order ideal of (𝑆𝑘,𝑛,≤op). We fix 𝜆 = 1𝑘0𝑛−𝑘 := (1, . . . , 1, 0, . . . , 0) ∈ Z𝑛 (with 𝑘 1’s). Then

𝜏𝜆 = [1+𝑛, . . . , 𝑘+𝑛, 𝑘+1, . . . , 𝑛] is one of the
(︀
[𝑛]
𝑘

)︀
minimal elements of (Bound(𝑘, 𝑛),≤op).

The group 𝑆𝑛 is naturally a subset of 𝑆0,𝑛, and we have 𝜏𝑘 = 𝜏𝜆(𝑤
𝐽)−1 = 𝜏𝐽𝜆 , where 𝜏𝐽𝜆 was

introduced in Section 3.7.2.

Given an 𝑛 × 𝑘 matrix 𝑀 and 𝑖 ∈ [𝑛], we let 𝑀𝑖 denote the 𝑖-th row of 𝑀 . We extend

this to all 𝑖 ∈ Z in such a way that 𝑀𝑖+𝑛 = (−1)𝑘−1𝑀𝑖 for all 𝑖 ∈ Z. Thus we view 𝑀 as

a periodic Z × 𝑘 matrix. (The sign (−1)𝑘−1 is chosen so that if 𝑀 ∈ Gr≥0(𝑘, 𝑛), then the

matrix with rows 𝑀𝑖, . . . ,𝑀𝑖+𝑛−1 belongs to Gr≥0(𝑘, 𝑛) for all 𝑖 ∈ Z, see Section 3.9.11.)

Every 𝑛 × 𝑘 matrix 𝑀 of rank 𝑘 gives rise to a map 𝑓𝑀 : Z → Z sending 𝑖 ∈ Z to the

minimal 𝑗 ≥ 𝑖 such that 𝑀𝑖 belongs to the linear span of 𝑀𝑖+1, . . . ,𝑀𝑗. It is easy to see that

𝑓𝑀 ∈ Bound(𝑘, 𝑛) and 𝑓𝑀 depends only on the column span of 𝑀 . For ℎ ∈ Bound(𝑘, 𝑛),

the (open) positroid variety
∘
Πℎ ⊂ Gr(𝑘, 𝑛) is the subset

∘
Πℎ := {𝑀 ∈ Gr(𝑘, 𝑛) | 𝑓𝑀 = ℎ}. Its

Zariski closure inside Gr(𝑘, 𝑛) is Πℎ =
⨆︀
𝑔≤opℎ

∘
Π𝑔.
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For ℎ ∈ Bound(𝑘, 𝑛), define the Grassmann necklace ℐℎ = (𝐼𝑎)𝑎∈Z of ℎ by

𝐼𝑎 := {ℎ(𝑖) | 𝑖 < 𝑎, ℎ(𝑖) ≥ 𝑎} for 𝑎 ∈ Z. (3.9.2)

Then 𝐼𝑎 is a 𝑘-element subset of [𝑎, 𝑎+𝑛), where for 𝑎 ≤ 𝑏 ∈ Z we set [𝑎, 𝑏) := {𝑎, 𝑎+1, . . . , 𝑏−

1}. For 𝑎 ≤ 𝑏 ∈ Z and 𝑀 ∈ Gr(𝑘, 𝑛), define rk(𝑀 ; 𝑎, 𝑏) to be the rank of the submatrix of

𝑀 with row set [𝑎, 𝑏). For 𝑎, 𝑏 ∈ Z and ℎ ∈ 𝑆𝑛, define 𝑟𝑎,𝑏(ℎ) := #{𝑖 < 𝑎 | ℎ(𝑖) ≥ 𝑏}. We

describe two well known alternative characterizations of open positroid varieties, see [KLS13].

Proposition 3.9.2. Let ℎ ∈ Bound(𝑘, 𝑛) and let ℐℎ = (𝐼𝑎)𝑎∈Z be its Grassmann necklace.

(i) The set
∘
Πℎ consists of all 𝑀 ∈ Gr(𝑘, 𝑛) such that for each 𝑎 ∈ Z, 𝐼𝑎 is the lexicograph-

ically minimal 𝑘-element subset 𝑆 of [𝑎, 𝑎+ 𝑛) such that the rows (𝑀𝑖)𝑖∈𝑆 are linearly

independent.

(ii) For 𝑀 ∈ Gr(𝑘, 𝑛), we have 𝑀 ∈
∘
Πℎ if and only if

𝑘 − rk(𝑀 ; 𝑎, 𝑏) = 𝑟𝑎,𝑏(ℎ) for all 𝑎 ≤ 𝑏 ∈ Z. (3.9.3)

We use window notation for Grassmann necklaces as well, i.e., we write ℐℎ = [𝐼1, . . . , 𝐼𝑛].

Recall that we have fixed 𝜆 = 1𝑘0𝑛−𝑘 ∈ Z𝑛. For (𝑣, 𝑤) ∈ 𝑄𝐽 , define 𝑓𝑣,𝑤 ∈ 𝑆𝑛 by

𝑓𝑣,𝑤 := 𝑣𝜏𝜆𝑤
−1. (3.9.4)

Theorem 3.9.3 ([KLS13]). The map (𝑣, 𝑤) ↦→ 𝑓𝑣,𝑤 gives a poset isomorphism

(𝑄𝐽 ,⪯)
∼−→ (Bound(𝑘, 𝑛),≤op).

For (𝑣, 𝑤) ∈ 𝑄𝐽 , we have
∘
Π𝑣,𝑤 =

∘
Π𝑓𝑣,𝑤 and Π𝑣,𝑤 = Π𝑓𝑣,𝑤 as subsets of 𝐺/𝑃 = Gr(𝑘, 𝑛).

Example 3.9.4. There are 𝑛 positroid varieties of codimension 1, each given by the condition

Δflag
{𝑖−𝑘+1,...,𝑖} = 0 for some 𝑖 ∈ [𝑛]. The top element (id, 𝑤𝐽) ∈ 𝑄𝐽 covers 𝑛 elements, namely,

(𝑠𝑖, 𝑤
𝐽) for 𝑖 ∈ [𝑛 − 1] together with (id, 𝑠𝑛−𝑘𝑤

𝐽). For 𝑖 ∈ [𝑛 − 1], 𝑣 = 𝑠𝑖, and 𝑤 = 𝑤𝐽 , we

have 𝑓𝑣,𝑤 = 𝑠𝑖𝜏
𝐽
𝜆 , which corresponds to the variety Δflag

{𝑖−𝑘+1,...,𝑖} = 0. For the remaining pair

𝑣 = id, 𝑤 = 𝑠𝑛−𝑘𝑤
𝐽 , we have 𝑓𝑣,𝑤 = 𝜏𝐽𝜆 𝑠𝑛−𝑘, which corresponds to the cell Δflag

{𝑛−𝑘+1,...,𝑛} = 0.
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𝜏𝜆

𝑣

Figure 3-2: A Le diagram (bottom left) and the labeling of its squares by simple trans-
positions (top left). The result of applying the bijection of Theorem 3.9.3 (right). See
Example 3.9.6 for details.

Example 3.9.5. It is easy to see directly from (3.9.4) and (3.9.2) that the first element of

the Grassmann necklace of 𝑓𝑣,𝑤 is 𝐼1 = 𝑣[𝑘]. Similarly, 𝑤[𝑘] = {𝑖 ∈ [𝑛] | 𝑓𝑣,𝑤(𝑖) > 𝑛}.

Example 3.9.6. Elements of Bound(𝑘, 𝑛) and𝑄𝐽 are in bijection with Le diagrams of [Pos07].

The bijection between 𝑄𝐽 and the set of Le diagrams is described in [Pos07, §19]: a pair

(𝑣, 𝑤) ∈ 𝑄𝐽 gives rise to a Le diagram whose shape is a Young diagram inside a 𝑘 × (𝑛− 𝑘)

rectangle, corresponding to the set 𝑤[𝑘]. The squares of the Le diagram correspond to

the terms in a reduced expression for 𝑤, as shown in Figure 3-2 (top left): the box with

coordinates (𝑖, 𝑗) in matrix notation is labeled by 𝑠𝑘+𝑗−𝑖. The terms in the positive subex-

pression for 𝑣 inside 𝑤 correspond to the squares of the Le diagram that are not filled with

dots, see Figure 3-2 (bottom left). Thus the bijection of Theorem 3.9.3 can be pictorially

represented as in Figure 3-2 (right). We refer to [Pos07, §19] or [Wil07, Appendix A] for

the precise description. For the example in Figure 3-2, we have 𝑣 = 𝑠1, 𝑤 = 𝑠2𝑠1𝑠4𝑠3𝑠2,

and 𝑓𝑣,𝑤 = [3, 4, 7, 5, 6] in window notation, which is obtained by following the strands in

Figure 3-2 (right) starting from the top.

3.9.6 Polynomial loop group

We explain how the construction in Section 3.7 applies to the case 𝐺/𝑃 = Gr(𝑘, 𝑛). Recall

that 𝒜 := C[𝑧, 𝑧−1]. Let GL𝑛(𝒜) denote the polynomial loop group of GL𝑛, consisting of
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𝑛 × 𝑛 matrices with entries in 𝒜 whose determinant is a nonzero Laurent monomial in 𝑧,

i.e., an invertible element of 𝒜. (We use GL𝑛(𝒜) instead of SL𝑛(𝒜) as the constructions are

combinatorially more elegant.) We have a group homomorphism val : GL𝑛(𝒜) → Z sending

𝑥 ∈ GL𝑛(𝒜) to 𝑗 ∈ Z such that det𝑥 = 𝑐𝑧−𝑗 for some 𝑐 ∈ C*, and we let GL(𝑗)
𝑛 (𝒜) :=

{𝑥 ∈ GL𝑛(𝒜) | val 𝑥 = 𝑗}. The subgroups GL𝑛(𝒜+) and GL𝑛(𝒜−) are contained inside

the group GL(0)
𝑛 (𝒜) of matrices whose determinant belongs to C*. We have subgroups

𝑈(𝒜+) := ēv−1
0 (𝑈), 𝑈−(𝒜−) := ēv−1

∞ (𝑈−), 𝐵(𝒜+) := ēv−1
0 (𝐵) and 𝐵−(𝒜−) := ēv−1

∞ (𝐵−) of

GL(0)
𝑛 (𝒜). Thus in the notation of Section 3.7 for 𝐺 = SL𝑛, we have 𝒢 = SL𝑛(𝒜) ( GL(0)

𝑛 (𝒜),

ℬ = SL𝑛(𝒜) ∩𝐵(𝒜+) ( 𝐵(𝒜+), 𝒰 = 𝑈(𝒜+), and 𝒰− = 𝑈−(𝒜−).

To each matrix 𝑥 ∈ GL𝑛(𝒜), we associate a Z× Z matrix �̃� = (�̃�𝑖,𝑗)𝑖,𝑗∈Z that is uniquely

defined by the conditions

1. �̃�𝑖,𝑗 = �̃�𝑖+𝑛,𝑗+𝑛 for all 𝑖, 𝑗 ∈ Z, and

2. the entry 𝑥𝑖,𝑗(𝑧) equals the finite sum
∑︀

𝑑∈Z �̃�𝑖,𝑗+𝑑𝑛𝑧
𝑑 for all 𝑖, 𝑗 ∈ [𝑛].

One can check that if 𝑥 = 𝑥1𝑥2, then �̃� = �̃�1�̃�2. With this identification, the subgroups 𝒰 ,

𝒰−, 𝐵(𝒜+), and 𝐵−(𝒜−) have a very natural meaning. For example, 𝑥 ∈ GL𝑛(𝒜) belongs

to 𝒰 if and only if �̃�𝑖,𝑗 = 0 for 𝑖 > 𝑗 and �̃�𝑖,𝑖 = 1 for all 𝑖 ∈ Z. Similarly, 𝐵(𝒜+) consists of

all elements 𝑥 ∈ GL𝑛(𝒜) such that �̃�𝑖,𝑗 = 0 for 𝑖 > 𝑗 and �̃�𝑖,𝑖 ̸= 0 for all 𝑖 ∈ Z.

To each affine permutation 𝑓 ∈ 𝑆𝑘,𝑛, we associate an element 𝑓 ∈ GL𝑛(𝒜) so that the

corresponding Z×Z matrix 𝑓 satisfies 𝑓𝑖,𝑗 = 1 if 𝑖 = 𝑓(𝑗) and 𝑓𝑖,𝑗 = 0 otherwise, for all 𝑖, 𝑗 ∈

Z. In other words, if for 𝑖, 𝑗 ∈ [𝑛] there exists 𝑑 ∈ Z such that 𝑓(𝑗) = 𝑖+𝑑𝑛 then 𝑓𝑖,𝑗(𝑧) := 𝑧−𝑑,

and otherwise 𝑓𝑖,𝑗(𝑧) := 0. Observe that val 𝑓 = 𝑘 for all 𝑓 ∈ 𝑆𝑘,𝑛, thus 𝑓 ∈ GL(𝑘)
𝑛 (𝒜). Recall

that we have fixed 𝜆 = 1𝑘0𝑛−𝑘 ∈ Z𝑛. We obtain 𝜏𝜆 = diag
(︀
1
𝑧
, . . . , 1

𝑧
, 1, . . . , 1

)︀
with 𝑘 entries

equal to 1
𝑧
, and for 𝑢 ∈ 𝑊 𝐽 , we therefore get 𝜏𝑢𝜆 = diag(𝑐1, . . . , 𝑐𝑛), where 𝑐𝑖 = 1

𝑧
for 𝑖 ∈ 𝑢[𝑘]

and 𝑐𝑖 = 1 for 𝑖 /∈ 𝑢[𝑘].

3.9.7 Affine flag variety

The quotient GL(𝑘)
𝑛 (𝒜)/𝐵(𝒜+) is isomorphic to the affine flag variety 𝒢/ℬ of Section 3.7

for the case 𝐺 = SL𝑛. Indeed, GL(0)
𝑛 (𝒜) acts simply transitively on GL(𝑘)

𝑛 (𝒜) and we
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clearly have GL(0)
𝑛 (𝒜)/𝐵(𝒜+) ∼= 𝒢/ℬ. For 𝑓 ≤op ℎ ∈ 𝑆𝑘,𝑛 and 𝑔 ∈ 𝑆𝑘,𝑛, we have subsets

∘
𝒳 𝑓 ,

∘
𝒳ℎ,

∘
ℛ𝑓
ℎ, 𝒞𝑔 ⊂ GL(𝑘)

𝑛 (𝒜)/𝐵(𝒜+) defined by

∘
𝒳 𝑓 := 𝐵(𝒜+) · 𝑓 ·𝐵(𝒜+)/𝐵(𝒜+),

∘
𝒳ℎ := 𝐵−(𝒜−) · ℎ̇ ·𝐵(𝒜+)/𝐵(𝒜+),

∘
ℛ𝑓
ℎ :=

∘
𝒳ℎ ∩

∘
𝒳 𝑓 , 𝒞𝑔 := �̇� ·𝐵−(𝒜−) ·𝐵(𝒜+)/𝐵(𝒜+).

Let us now calculate the map 𝜙𝑢 from (3.7.11). Recall that it sends 𝑥𝑃 ∈ 𝐶
(𝐽)
𝑢 to

𝑔
(𝐽)
1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1. Assuming as before that 𝑥 = 𝑔(𝐽)�̇� ∈ �̇�𝑈

(𝐽)
− , consider the corresponding

𝑛× 𝑘 matrix (𝑀𝑖,𝑗) := [𝑥| in 𝑢[𝑘]-echelon form.

Proposition 3.9.7. The matrix 𝑦 := 𝜙𝑢(𝑥𝑃 ) ∈ GL(𝑘)
𝑛 (𝒜) is given for all 𝑖, 𝑗 ∈ [𝑛] by

𝑦𝑖,𝑗(𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿𝑖,𝑗, if 𝑗 /∈ 𝑢[𝑘],

−𝑀𝑖,𝑠, if 𝑖 > 𝑗 and 𝑗 = 𝑢(𝑠) for some 𝑠 ∈ [𝑘],

𝑀𝑖,𝑠

𝑧
, if 𝑖 ≤ 𝑗 and 𝑗 = 𝑢(𝑠) for some 𝑠 ∈ [𝑘].

(3.9.5)

Proof. This follows by directly computing the product 𝑔(𝐽)1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1.

Example 3.9.8. In the notation of Example 3.9.1, we have

𝑦 = 𝑔
(𝐽)
1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1 =

[︂
1
1 𝑥2
1 𝑥4

1

]︂
·

[︃
1
𝑧

1
1

1
𝑧

]︃
·
[︂

1
−𝑥1 1
−𝑥3 1

1

]︂
=

⎡⎣ 1
𝑧

−𝑥1 1
𝑥2
𝑧

−𝑥3 1
𝑥4
𝑧
1
𝑧

⎤⎦ . (3.9.6)

Remark 3.9.9. The map 𝜙𝑢 : 𝑥𝑃 ↦→ 𝑔
(𝐽)
1 ·𝜏𝑢𝜆 ·(𝑔(𝐽)2 )−1 ·𝐵(𝒜+) is a slight variation of a similar

embedding of [Sni10] which we denote 𝜙′
𝑢. We have 𝜙′

𝑢(𝑥𝑃 ) = 𝑔
(𝐽)
1 · 𝜏𝑢𝜆 · 𝑔(𝐽)2 · 𝐵(𝒜+), and

the corresponding matrix 𝑦′ = 𝜙′
𝑢(𝑥𝑃 ) := 𝑔

(𝐽)
1 · 𝜏𝑢𝜆 ·𝑔(𝐽)2 is given by (3.9.5) except that −𝑀𝑖,𝑠

should be replaced by 𝑀𝑖,𝑠. Thus 𝑦′ is obtained from 𝑦 by substituting 𝑧 ↦→ −𝑧 and then

changing the signs of all columns in 𝑢[𝑘]. In particular, 𝑦′ and 𝑦 are related by an element

of the affine torus from Section 3.8.2. Proposition 3.9.14 below is due to Snider [Sni10].

Theorem 3.7.2(1) generalizes Snider’s result to arbitrary 𝐺/𝑃 .

We give a standard convenient characterization of
∘
𝒳ℎ using lattices. For each 𝑥 ∈ GL𝑛(𝒜)

and column 𝑎 ∈ Z, we introduce a Laurent polynomial 𝑥𝑎(𝑡) ∈ C[𝑡, 𝑡−1] defined by 𝑥𝑎(𝑡) :=
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∑︀
𝑖∈Z �̃�𝑖,𝑎𝑡

𝑖, and an infinite-dimensional linear subspace 𝐿𝑎(𝑥) ⊂ C[𝑡, 𝑡−1] given by 𝐿𝑎(𝑥) :=

Span{𝑥𝑗(𝑡) | 𝑗 < 𝑎}, where Span denotes the space of all finite linear combinations. For

𝑏 ∈ Z, define another linear subspace 𝐸𝑏 ⊂ C[𝑡, 𝑡−1] by 𝐸𝑏 := Span{𝑡𝑖 | 𝑖 ≥ 𝑏}. Finally,

for 𝑎, 𝑏 ∈ Z, define 𝑟𝑎,𝑏(𝑥) ∈ Z to be the dimension of 𝐿𝑎(𝑥) ∩ 𝐸𝑏. In other words, 𝑟𝑎,𝑏(𝑥)

is the dimension of the space of Z × 1 vectors that have zeros in rows 𝑏 − 1, 𝑏 − 2, . . . and

can be obtained as finite linear combinations of columns 𝑎 − 1, 𝑎 − 2, . . . of �̃�. Recall from

Section 3.9.5 that for 𝑎, 𝑏 ∈ Z and ℎ ∈ 𝑆𝑛, we denote 𝑟𝑎,𝑏(ℎ) := #{𝑖 < 𝑎 | ℎ(𝑖) ≥ 𝑏}.

Lemma 3.9.10. Let 𝑥 ∈ GL(𝑑)
𝑛 (𝒜) and ℎ ∈ 𝑆𝑑,𝑛 for some 𝑑 ∈ Z. Then

𝑥 ·𝐵(𝒜+) ∈
∘
𝒳ℎ if and only if 𝑟𝑎,𝑏(𝑥) = 𝑟𝑎,𝑏(ℎ) for all 𝑎, 𝑏 ∈ Z. (3.9.7)

Proof. It is clear that 𝑟𝑎,𝑏(𝑥) = 𝑟𝑎,𝑏(ℎ) when 𝑥 = ℎ̇. One can check that 𝑟𝑎,𝑏(𝑦−𝑥𝑦+) = 𝑟𝑎,𝑏(𝑥)

for all 𝑥 ∈ GL(𝑑)
𝑛 (𝒜), 𝑦− ∈ 𝐵−(𝒜−), 𝑦+ ∈ 𝐵(𝒜+), and 𝑎, 𝑏 ∈ Z. This proves (3.9.7) since

GL(𝑑)
𝑛 (𝒜)/𝐵(𝒜+) =

⨆︀
ℎ∈𝑆𝑑,𝑛

∘
𝒳ℎ by (3.A.2).

Remark 3.9.11. A lattice ℒ is usually defined (see e.g. [Kum02, §13.2.13]) to be a free

C[[𝑧]]-submodule of C((𝑡)) ∼= C((𝑧))𝑛 (where 𝑧 = 𝑡𝑛) satisfying ℒ ⊗C[[𝑧]] C((𝑧)) ∼= C((𝑧))𝑛.

The C[[𝑧]]-submodule generated by our 𝐿𝑎(𝑥) gives a lattice ℒ𝑎(𝑥) in the usual sense.

Definition 3.9.12. Suppose we are given an 𝑛 × 𝑘 matrix 𝑀 in 𝑢[𝑘]-echelon form. Recall

that we have defined the row 𝑀𝑎 for all 𝑎 ∈ Z in such a way that 𝑀𝑎+𝑛 = (−1)𝑘−1𝑀𝑎. For

𝑎 ∈ Z and 𝑗 ∈ [𝑘], denote by 𝜃𝑢𝑎,𝑗 ∈ [𝑎, 𝑎+𝑛) the unique integer that is equal to 𝑢(𝑗) modulo

𝑛. Define the 𝑢-truncation 𝑀 tr𝑎𝑢 of 𝑀 to be the [𝑎, 𝑎+𝑛)×𝑘 matrix 𝑀 tr𝑎𝑢 = (𝑀
tr𝑎𝑢
𝑖,𝑗 ) such that

for 𝑖 ∈ [𝑎, 𝑎 + 𝑛) and 𝑗 ∈ [𝑘], the entry 𝑀 tr𝑎𝑢
𝑖,𝑗 is equal to 𝑀𝑖,𝑗 if 𝑖 ≤ 𝜃𝑢𝑎,𝑗 and to 0 otherwise,

see Example 3.9.18. Thus 𝑀 tr𝑎𝑢 is obtained from the matrix with rows 𝑀𝑎, . . . ,𝑀𝑎+𝑛−1 by

setting an entry to 0 if it is below the corresponding ±1 in the same column, and we label

its rows by 𝑎, . . . , 𝑎+ 𝑛− 1 rather than by 1, . . . , 𝑛. For example, if 𝑥 = 𝑔(𝐽)�̇� and 𝑀 = [𝑥|

then 𝑀 tr1𝑢 =
[︁
𝑔
(𝐽)
1 �̇�

⃒⃒⃒
, cf. Example 3.9.1.

Lemma 3.9.13. Let 𝑥 = 𝑔(𝐽)�̇� ∈ �̇�𝑈
(𝐽)
− , 𝑀 := [𝑥|, and 𝑦 := 𝜙𝑢(𝑥𝑃 ). Then for all 𝑎 ∈ Z,
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the space 𝐿𝑎(𝑦) has a basis

{𝑡𝑖 | 𝑖 < 𝑎} ⊔ {𝑃1(𝑡), . . . , 𝑃𝑘(𝑡)}, where 𝑃𝑠(𝑡) :=
𝑎+𝑛−1∑︁
𝑖=𝑎

𝑀
tr𝑎𝑢
𝑖,𝑠 𝑡

𝑖 for 𝑠 ∈ [𝑘]. (3.9.8)

Proof. For a subset 𝑆 ⊂ Z, define 𝑆 + 𝑛Z := {𝑗 + 𝑖𝑛 | 𝑗 ∈ 𝑆, 𝑖 ∈ Z}. The space 𝐿𝑎(𝑦) is the

span of 𝑦𝑗(𝑡) for all 𝑗 < 𝑎. If 𝑗 /∈ 𝑢[𝑘] + 𝑛Z then 𝑦𝑗(𝑡) = 𝑡𝑗 by definition. If 𝑗 ∈ 𝑢[𝑘] + 𝑛Z

then 𝑦𝑗−𝑛(𝑡) = 𝑡𝑗 +
∑︀

𝑗−𝑛<𝑖<𝑗 𝑐𝑖𝑡
𝑖, where 𝑐𝑖 is zero for 𝑖 ∈ 𝑢[𝑘] + 𝑛Z. It follows that 𝐿𝑎(𝑦)

contains 𝑡𝑖 for all 𝑖 < 𝑎. Moreover, the only indices 𝑗 < 𝑎 such that 𝑦𝑗(𝑡) /∈ Span{𝑡𝑖 | 𝑖 < 𝑎}

are those that belong to [𝑎 − 𝑛, 𝑎) ∩ (𝑢[𝑘] + 𝑛Z). Let 𝑗 ∈ [𝑎 − 𝑛, 𝑎) ∩ (𝑢[𝑘] + 𝑛Z) be such

an index, and let 𝑠 ∈ [𝑘] be the unique index such that 𝑢(𝑠) ∈ 𝑗 + 𝑛Z. Then clearly

𝑦𝑗(𝑡) ± 𝑃𝑠(𝑡) ∈ Span{𝑡𝑖 | 𝑖 < 𝑎}, where the sign depends on the parity of 𝑗−𝑢(𝑠)
𝑛

∈ Z. Thus

𝑃𝑠(𝑡) ∈ 𝐿𝑎(𝑦) for all 𝑠 ∈ [𝑘], and 𝐿𝑎(𝑦) is the span of {𝑡𝑖 | 𝑖 < 𝑎} ⊔ {𝑃1(𝑡), . . . , 𝑃𝑘(𝑡)}. Since

the Laurent polynomials 𝑃𝑠(𝑡) have different degrees, they must be linearly independent.

We give an alternative proof of Theorem 3.7.2(1) for the case 𝐺/𝑃 = Gr(𝑘, 𝑛).

Proposition 3.9.14. For ℎ ∈ Bound(𝑘, 𝑛) such that 𝜏𝑢𝜆 ≤op ℎ, the map 𝜙𝑢 gives isomor-

phisms

𝜙𝑢 : 𝐶
(𝐽)
𝑢

∼−→
∘
𝒳 𝜏𝑢𝜆 , 𝜙𝑢 : 𝐶

(𝐽)
𝑢 ∩

∘
Πℎ

∼−→
∘
ℛ𝜏𝑢𝜆
ℎ .

Proof. It is clear from (3.9.5) that we have a biregular isomorphism 𝑈
(𝐽)
1 × 𝑈

(𝐽)
2

∼−→ 𝒰1(𝜏𝑢𝜆)

sending (𝑔
(𝐽)
1 , 𝑔

(𝐽)
2 ) ↦→ 𝑔

(𝐽)
1 · 𝜏𝑢𝜆(𝑔(𝐽)2 )−1𝜏−1

𝑢𝜆 . Thus the map (𝑔
(𝐽)
1 , 𝑔

(𝐽)
2 ) ↦→ 𝑔

(𝐽)
1 · 𝜏𝑢𝜆 · (𝑔(𝐽)2 )−1 ·

𝐵(𝒜+) gives a parametrization of
∘
𝒳 𝜏𝑢𝜆 , see (3.7.5). Since 𝐶(𝐽)

𝑢 =
⨆︀
ℎ∈Bound(𝑘,𝑛)(𝐶

(𝐽)
𝑢 ∩

∘
Πℎ),

let us fix ℎ ∈ Bound(𝑘, 𝑛) and 𝑥 = 𝑔(𝐽)�̇� ∈ �̇�𝑈
(𝐽)
− . Denote 𝑀 := [𝑥| and 𝑦 := 𝜙𝑢(𝑥𝑃 ).

By (3.9.3), we have 𝑀 ∈
∘
Πℎ if and only if 𝑘 − rk(𝑀 ; 𝑎, 𝑏) = 𝑟𝑎,𝑏(ℎ) for all 𝑎 ≤ 𝑏 ∈ Z.

By (3.9.7), we have 𝑦 · 𝐵(𝒜+) ∈
∘
𝒳ℎ if and only if 𝑟𝑎,𝑏(𝑦) = 𝑟𝑎,𝑏(ℎ) for all 𝑎, 𝑏 ∈ Z. If 𝑎 > 𝑏

then 𝑟𝑎,𝑏(𝑦) = 𝑟𝑎,𝑏+1(𝑦) + 1 by (3.9.8) and 𝑟𝑎,𝑏(ℎ) = 𝑟𝑎,𝑏+1(ℎ) + 1 since ℎ ∈ Bound(𝑘, 𝑛)

satisfies ℎ−1(𝑏) ≤ 𝑏, so ℎ−1(𝑏) < 𝑎. We have shown that 𝑦 · 𝐵(𝒜+) ∈
∘
𝒳ℎ if and only if

𝑟𝑎,𝑏(𝑦) = 𝑟𝑎,𝑏(ℎ) for all 𝑎 ≤ 𝑏 ∈ Z. Thus it suffices to show

𝑟𝑎,𝑏(𝑦) + rk(𝑀 ; 𝑎, 𝑏) = 𝑘 for all 𝑎 ≤ 𝑏 ∈ Z. (3.9.9)
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By (3.9.8), 𝑟𝑎,𝑏(𝑦) is the dimension of Span{𝑃1(𝑡), . . . , 𝑃𝑘(𝑡)} ∩ 𝐸𝑏. By the rank-nullity

theorem, 𝑘 − 𝑟𝑎,𝑏(𝑦) is the rank of the submatrix of 𝑀 tr𝑎𝑢 with row set [𝑎, 𝑏), which is

obtained by downward row operations from the submatrix of 𝑀 with row set [𝑎, 𝑏). This

shows (3.9.9).

Remark 3.9.15. By Theorem 3.7.2(1), the image of 𝜙𝑢 is 𝒳𝜏𝐽𝜆
∩

∘
𝒳 𝜏𝑢𝜆 , where 𝜏𝐽𝜆 = 𝜏𝜆(𝑤

𝐽)−1.

But recall from Section 3.9.5 that 𝜏𝜆(𝑤𝐽)−1 = 𝜏𝑘, and since
∘
𝒳𝜏𝑘 is dense in GL(𝑘)

𝑛 (𝒜)/𝐵(𝒜+),

we find that 𝒳𝜏𝐽𝜆
∩

∘
𝒳 𝜏𝑢𝜆 =

∘
𝒳 𝜏𝑢𝜆 .

Example 3.9.16. Suppose that 𝑥 = 𝑔(𝐽)�̇� is given in Example 3.9.1, then 𝑦 = 𝜙𝑢(𝑥𝑃 ) is

the matrix from Example 3.9.8. It is clear that 𝑦 ∈ 𝐵(𝒜+) · 𝜏𝑢𝜆 regardless of the values

of 𝑥1, 𝑥2, 𝑥3, 𝑥4, and therefore 𝑦 · 𝐵(𝒜+) belongs to
∘
𝒳 𝜏𝑢𝜆 . We can try to factorize 𝑦 as an

element of 𝐵−(𝒜−) · 𝜏𝑘 ·𝐵(𝒜+):

𝑦 =

⎡⎣ 1
𝑥2

(𝑥1𝑥4−𝑥2𝑥3)𝑧
𝑥4
𝑥3𝑧

1
𝑥4
𝑥2

1

1
𝑥2

𝑥1
𝑥1𝑥4−𝑥2𝑥3

1

⎤⎦ ·

[︃
1
𝑧

1
𝑧

1
1

]︃
·

⎡⎢⎣
𝑥1𝑥4−𝑥2𝑥3

𝑥2
−𝑥4

𝑥2
1

𝑥3
𝑥1𝑥4−𝑥2𝑥3

− 𝑥1
𝑥1𝑥4−𝑥2𝑥3

1
𝑥3

−𝑥1𝑧 𝑧 𝑥2

⎤⎥⎦ .
This factorization makes sense only when all denominators on the right-hand side are nonzero,

which shows that 𝑦 ·𝐵(𝒜+) ∈
∘
ℛ𝜏𝑢𝜆
𝜏𝑘

whenever the minors Δflag
12 (𝑥) = 𝑥2, Δflag

23 = 𝑥1𝑥4 − 𝑥2𝑥3,

and Δflag
34 = 𝑥3 are nonzero. Observe also that Δflag

14 (𝑥) = 1. Thus 𝑦 ·𝐵(𝒜+) ∈
∘
ℛ𝜏𝑢𝜆
𝜏𝑘

precisely

when 𝑥𝑃 ∈
∘
Π𝜏𝑘 , where 𝜏𝑘 = [3, 4, 5, 6] in window notation. If 𝑥2 = 0 then 𝑥𝑃 ∈

∘
Πℎ for

ℎ = [2, 4, 5, 7]. In this case, we have

ℎ̇ =

[︃
1
𝑧

1
1
𝑧

1

]︃
, 𝑦|𝑥2=0 =

[︃
1 − 1

𝑥1𝑧
𝑥4
𝑥3𝑧

1
1

− 𝑥3
𝑥1𝑥4

1
𝑥4

1

]︃
·

[︃
1
𝑧

1
1
𝑧

1

]︃
·

⎡⎣ −𝑥1 1
𝑥3

𝑥1𝑥4
− 1

𝑥4
1
𝑥3

−𝑥3𝑧 𝑧 𝑥4

⎤⎦ .
Therefore 𝑦|𝑥2=0 belongs to

∘
ℛ𝜏𝑢𝜆
ℎ whenever 𝑥1, 𝑥3, 𝑥4 ̸= 0. Observe that the Grassmann

necklace of ℎ is given by ℐℎ = [{1, 3}, {2, 3}, {3, 4}, {4, 5}] in window notation, and the

corresponding flag minors of 𝑥|𝑥2=0 are given by Δflag
13 = 𝑥4, Δflag

23 = 𝑥1𝑥4, Δflag
34 = 𝑥3,

Δflag
14 = 1, in agreement with Proposition 3.9.14.
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3.9.8 Preimage of 𝒞𝑔

For this section, we fix 𝜏𝑢𝜆 ≤op 𝑔 ∈ Bound(𝑘, 𝑛). We would like to understand the preimage

of
(︁ ∘
𝒳 𝜏𝑢𝜆 ∩ 𝒞𝑔

)︁
⊂ GL(𝑘)

𝑛 (𝒜)/𝐵(𝒜+) under the map 𝜙𝑢. For a set 𝑆 ⊂ [𝑎, 𝑎 + 𝑛) of size 𝑘,

define Δ
tr𝑎𝑢
𝑆 (𝑀) to be the determinant of the 𝑘 × 𝑘 submatrix of 𝑀 tr𝑎𝑢 with row set 𝑆. Let

ℐ𝑔 = (𝐼𝑎)𝑎∈Z be the Grassmann necklace of 𝑔.

Proposition 3.9.17. Suppose that 𝑥𝑃 ∈ 𝐶
(𝐽)
𝑢 and let 𝑀 :=

[︀
𝑔(𝐽)�̇�

⃒⃒
. Then 𝜙𝑢(𝑥𝑃 ) ∈ 𝒞𝑔 if

and only if Δtr𝑎𝑢
𝐼𝑎

(𝑀) ̸= 0 for all 𝑎 ∈ [𝑛].

Proof. Let ℎ ∈ 𝑆𝑛 be the unique element such that �̇�−1𝜙𝑢(𝑥𝑃 ) belongs to
∘
𝒳ℎ, thus 𝜙𝑢(𝑥𝑃 ) ∈

𝒞𝑔 if and only if ℎ = id. Since val 𝜙𝑢(𝑥𝑃 ) = 𝑘 and val �̇�−1 = −𝑘, we get ℎ ∈ 𝑆0,𝑛. Hence

ℎ = id if and only if 𝑟𝑎,𝑎(ℎ) = 0 for all 𝑎 ∈ Z. Let 𝑦 := 𝜙𝑢(𝑥𝑃 ) and 𝑦′ := �̇�−1𝑦. Then

for 𝑎 ∈ Z, we get 𝐿𝑎(𝑦′) = 𝑔−1𝐿𝑎(𝑦), where 𝑔−1 acts on C[𝑡, 𝑡−1] by a linear map sending

𝑡𝑗 ↦→ 𝑡𝑔
−1(𝑗). In particular, 𝐿𝑎(𝑦′) ∩ 𝐸𝑎 = (𝑔−1𝐿𝑎(𝑦)) ∩ 𝐸𝑎 has the same dimension as

𝐿𝑎(𝑦) ∩ 𝑔𝐸𝑎. Let us denote 𝐻𝑎 := {𝑡𝑖 | 𝑖 ≥ 𝑎}, so 𝐸𝑎 = Span(𝐻𝑎) and 𝑔𝐸𝑎 = Span(𝑔𝐻𝑎).

Since 𝑔(𝑖) ≥ 𝑖 for all 𝑖 ∈ Z, it follows from (3.9.2) that 𝑔𝐻𝑎 = 𝐻𝑎 ∖ {𝑡𝑗}𝑗∈𝐼𝑎 . Therefore

by (3.9.8), 𝐿𝑎(𝑦) ∩ 𝑔𝐸𝑎 = {0} if and only if Span{𝑃𝑗(𝑡)}𝑗∈[𝑘] ∩ Span (𝐻𝑎 ∖ {𝑡𝑗}𝑗∈𝐼𝑎) = {0},

which happens precisely when the submatrix of 𝑀 tr𝑎𝑢 with row set 𝐼𝑎 is nonsingular, i.e.,

Δ
tr𝑎𝑢
𝐼𝑎

(𝑀) ̸= 0.

Example 3.9.18. Suppose that 𝑥 is the matrix from Example 3.9.1, then 𝑦 := 𝜙𝑢(𝑥𝑃 ) is

given in Example 3.9.8. We have

𝑀 =

[︂
1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
, 𝑀 tr1𝑢 =

[︂
1
𝑥2
𝑥4
1

]︂
, 𝑀 tr2𝑢 =

[︂
𝑥1 𝑥2
𝑥3 𝑥4

1
−1

]︂
, 𝑀 tr3𝑢 =

[︂
𝑥3 𝑥4

1
−1

]︂
, 𝑀 tr4𝑢 =

[︂
1

−1

]︂
.

Suppose that 𝑔 = [2, 4, 5, 7] as in Example 3.9.16, then its Grassmann necklace is ℐ𝑔 =

[{1, 3}, {2, 3}, {3, 4}, {4, 5}] in window notation. This gives

Δ
tr1𝑢
13 (𝑀) = 𝑥4, Δ

tr2𝑢
23 (𝑀) = 𝑥1𝑥4 − 𝑥2𝑥3, Δ

tr3𝑢
34 (𝑀) = 𝑥3, Δ

tr4𝑢
45 (𝑀) = 1. (3.9.10)

On the other hand, recall from Example 3.9.16 that �̇� =

[︃
1
𝑧

1
1
𝑧

1

]︃
. Since 𝑦 ∈ 𝒞𝑔 if and only
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if �̇�−1𝑦 ∈ 𝐵−(𝒜−) ·𝐵(𝒜+), we can factorize it as

�̇�−1𝑦 =

[︃
−𝑥1 1

𝑥2
𝑧
1
𝑧

1
−𝑥3𝑧 𝑧 𝑥4

]︃
=

⎡⎣ 1
𝑥2
𝑥4𝑧

− 𝑥3
𝑥1𝑥4−𝑥2𝑥3

1 1
𝑥4𝑧

− 𝑥4
𝑥1𝑥4−𝑥2𝑥3

𝑥4
𝑥3

1

1

⎤⎦ ·

⎡⎢⎣ −𝑥1𝑥4−𝑥2𝑥3
𝑥4

1 −𝑥2
𝑥4

𝑥3
𝑥1𝑥4−𝑥2𝑥3

− 𝑥1
𝑥1𝑥4−𝑥2𝑥3

1
𝑥3

−𝑥3𝑧 𝑧 𝑥4

⎤⎥⎦ . (3.9.11)

Again, this is valid only when the denominators in the right-hand side are nonzero. We thus

see that �̇�−1𝑦 belongs to 𝐵−(𝒜−) ·𝐵(𝒜+) precisely when all minors in (3.9.10) are nonzero,

in agreement with Proposition 3.9.17.

3.9.9 Fomin–Shapiro atlas

The computation in (3.9.11) can now be used to find the maps 𝜈𝑔 and 𝜗𝑔. As in Section 3.8.3,

denote by 𝒪𝑔 ⊂ 𝐶
(𝐽)
𝑢 the preimage of 𝒞𝑔 ∩

∘
𝒳 𝜏𝑢𝜆 under 𝜙𝑢. Thus for our running example,

𝒪𝑔 is the subset of 𝐶(𝐽)
𝑢 where all minors in (3.9.10) are nonzero. We are interested in the

map 𝜈𝑔 = (𝜈𝑔,1, 𝜈𝑔,2) : 𝒪𝑔 → (
∘
Π𝑔 ∩ 𝒪𝑔) × 𝑍𝑔 from (3.2.1), defined in Section 3.8.3. The

first component is 𝜈𝑔,1 = 𝜙−1
𝑢 ∘ 𝜈𝑔,1 ∘ 𝜙𝑢, where 𝜈𝑔 : 𝒞𝑔 ∩

∘
𝒳 𝜏𝑢𝜆 ∼−→

∘
ℛ𝜏𝑢𝜆
𝑔 ×

∘
𝒳 𝑔 is the map

from Proposition 3.8.2(ii). In order to compute it, we consider the factorization �̇�−1𝑦 =

𝑦− ·𝑦+ ∈ 𝒰− ·𝐵(𝒜+) from (3.9.11). The group 𝒰1(𝑔) is 1-dimensional since ℓ(𝑔) = 1, and the

corresponding element 𝑦1 ∈ 𝒰1(𝑔) from Proposition 3.8.2(ii) can be computed by factorizing

�̇�𝑦−�̇�
−1 as an element of 𝒰1(𝑔) · 𝒰2(𝑔):

�̇�𝑦−�̇�
−1 =

⎡⎣ 1 − 𝑥4
(𝑥1𝑥4−𝑥2𝑥3)𝑧

𝑥4
𝑥3𝑧

1
𝑥2
𝑥4
1

− 𝑥3
𝑥1𝑥4−𝑥2𝑥3

1
𝑥4

1

⎤⎦ =

[︃
1
1

𝑥2
𝑥4
1

1

]︃
·

[︃
1 − 𝑥4

(𝑥1𝑥4−𝑥2𝑥3)𝑧
𝑥4
𝑥3𝑧

1
1

− 𝑥3
𝑥1𝑥4−𝑥2𝑥3

1
𝑥4

1

]︃
, 𝑦1 =

[︃
1
1 −𝑥2

𝑥4
1

1

]︃
.

Therefore the map 𝜈𝑔,1 sends 𝑦 ·𝐵(𝒜+) from (3.9.6) to

𝑦1𝑦 ·𝐵(𝒜+) =

⎡⎢⎣
1
𝑧

−𝑥1𝑥4−𝑥2𝑥3
𝑥4

1 −𝑥2
𝑥4

−𝑥3 1
𝑥4
𝑧
1
𝑧

⎤⎥⎦ ·𝐵(𝒜+) =

⎡⎢⎣
1
𝑧

−𝑥1𝑥4−𝑥2𝑥3
𝑥4

1

−𝑥3 1
𝑥4
𝑧
1
𝑧

⎤⎥⎦ ·𝐵(𝒜+).
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Applying 𝜙−1
𝑢 to the right-hand side, we see that the map 𝜈𝑔,1 is given by

𝜈𝑔,1 : 𝒪𝑔 →
∘
Π𝑔 ∩ 𝒪𝑔,

[︂
1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
↦→

[︃
1

𝑥1𝑥4−𝑥2𝑥3
𝑥4
𝑥3 𝑥4

1

]︃
.

Similarly, factorizing �̇�𝑦−�̇�−1 as an element of 𝒰2(𝑔) · 𝒰1(𝑔), we find that

𝜈𝑔,2(𝑦 ·𝐵(𝒜+)) = 𝑦2𝑦 ·𝐵(𝒜+) =

[︃
1
1

𝑥2
𝑥4
1

1

]︃
· �̇� ·𝐵(𝒜+).

We have 𝑁𝑔 = ℓ(𝑔) = 1, and the map 𝜈𝑔,2 : 𝒪𝑔 → 𝑍𝑔 = R sends
[︂

1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
↦→ 𝑥2

𝑥4
.

Torus action

We compute the maps from Section 3.8.2. Let 𝜌 ∈ 𝑌 (𝒯 ) denote the group homomorphism

𝜌 : C* → C* × 𝑇 sending 𝑡 ↦→ 𝜌(𝑡) := (𝑡𝑛, diag(𝑡𝑛−1, . . . , 𝑡, 1)). If 𝑥 ∈ GL𝑛(𝒜) is represented

by a Z× Z matrix (�̃�𝑖,𝑗) then the element 𝑦 := 𝜌(𝑡)𝑥𝜌(𝑡)−1 ∈ GL𝑛(𝒜) satisfies 𝑦𝑖,𝑗 = 𝑡𝑗−𝑖�̃�𝑖,𝑗

for all 𝑖, 𝑗 ∈ Z.

Example 3.9.19. Continuing the above example, we find that

𝜌(𝑡) · 𝑦2𝑦 · 𝜌(𝑡)−1 ·𝐵(𝒜+) =

[︃
1
1

𝑡𝑥2
𝑥4
1

1

]︃
· �̇� ·𝐵(𝒜+), and ‖𝑦2𝑦 ·𝐵(𝒜+)‖ =

|𝑥2|
|𝑥4|

.

Thus the action of 𝜗𝑔 on 𝑍𝑔 is given by 𝜗𝑔

(︁
𝑡, 𝑥2
𝑥4

)︁
= 𝑡𝑥2

𝑥4
. The pullback of this action

to 𝒪𝑔 ⊂ 𝐶
(𝐽)
𝑢 via 𝜈−1

𝑔 preserves 𝑥3, 𝑥4, and 𝑥1𝑥4 − 𝑥2𝑥3 (since it preserves 𝜈𝑔,1(𝑥)), but

multiplies 𝑥2
𝑥4

by 𝑡. Therefore it is given by

𝜈−1
𝑔 ∘ (id× 𝜗𝑔(𝑡, ·)) ∘ 𝜈𝑔 : 𝒪𝑔 → 𝒪𝑔,

[︂
1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
↦→

[︂ 1
𝑥1+(𝑡−1)

𝑥2𝑥3
𝑥4

𝑡𝑥2
𝑥3 𝑥4

1

]︂
.

3.9.10 The maps 𝜅 and 𝜁
(𝐽)
𝑢,𝑣

The subset �̇�𝐺(𝐽)
0 consists of matrices 𝑥 ∈ 𝐺 such that Δflag

𝑢[𝑘](𝑥) ̸= 0. Suppose that 𝑥 =

𝑔(𝐽)�̇� ∈ �̇�𝑈
(𝐽)
− . Then the elements 𝑔(𝐽)1 �̇� and 𝑔

(𝐽)
2 �̇� are obtained from 𝑥 by setting some

entries to zero, see Section 3.9.4. The map 𝑥 ↦→ 𝜅𝑥𝑥 from Definition 3.4.23 sends 𝑥 = 𝑔(𝐽)�̇�
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to 𝑔(𝐽)1 �̇�, e.g., if [𝑥| =
[︂

1
𝑥1 𝑥2
𝑥3 𝑥4

1

]︂
then [𝜅𝑥𝑥| =

[︂
1
𝑥2
𝑥4
1

]︂
as in Example 3.9.1. Comparing this to

Section 3.9.8, we see that if 𝑀 = [𝑥| is in 𝑢[𝑘]-echelon form then [𝜅𝑥𝑥| is the 𝑢-truncation

𝑀 tr1𝑢 .

Let now (𝑣, 𝑤) ∈ 𝑄
⪰(𝑢,𝑢)
𝐽 , thus 𝜏𝑢𝜆 ≤op 𝑔 := 𝑓𝑣,𝑤, and denote ℐ𝑔 := (𝐼𝑎)𝑎∈Z. The set 𝐺(𝐽)

𝑢,𝑣

from (3.6.1) consists of 𝑥 ∈ 𝐺 such that Δflag
𝑢[𝑘](𝑥) ̸= 0 and Δflag

𝑣[𝑘](𝜅𝑥𝑥) ̸= 0. But recall from

Example 3.9.5 that 𝑣[𝑘] = 𝐼1. Thus

𝐺(𝐽)
𝑢,𝑣 =

{︁
𝑥 ∈ 𝐺 | Δflag

𝑢[𝑘](𝑥) ̸= 0 and Δ
tr1𝑢
𝐼1

(𝑀) ̸= 0
}︁
, where 𝑀 :=

[︀
𝑔(𝐽)�̇�

⃒⃒
. (3.9.12)

Example 3.9.20. We compute the maps 𝜅 and 𝜁
(𝐽)
𝑢,𝑣 for our running example. Suppose

that 𝑥 = 𝑔(𝐽)�̇� is given in Example 3.9.1, and let 𝑔 = [2, 4, 5, 7] as in Example 3.9.18.

Then 𝑔 = 𝑠2𝜏𝑘, so under the correspondence (3.9.4), we have 𝑔 = 𝑓𝑣,𝑤 for 𝑣 = 𝑠2 and

𝑤 = 𝑤𝐽 = 𝑠2𝑠1𝑠3𝑠2, see also Example 3.9.4. Since 𝑣[𝑘] = 𝐼1 = {1, 3}, we see that 𝑥 ∈ 𝐺
(𝐽)
𝑢,𝑣

whenever 𝑥4 ̸= 0. We have just computed that [𝜅𝑥𝑥| =
[︂

1
𝑥2
𝑥4
1

]︂
, thus �̇�−1𝜅𝑥𝑥 =

[︂
1
𝑥4 −1
−𝑥2 1
1

]︂
.

Factorizing it as an element of 𝑈 (𝐽)
− · 𝐿𝐽 · 𝑈 (𝐽) via (3.9.1), we get

�̇�−1𝜅𝑥𝑥 =

[︂
1
𝑥4 −1
−𝑥2 1
1

]︂
=

[︃ 1
1

−𝑥2
𝑥4

1

1
𝑥4

1

]︃
·

⎡⎣ 1
𝑥4

1 −𝑥2
𝑥4
1
𝑥4

⎤⎦ ·

[︃
1
1 − 1

𝑥4
1

1

]︃
, [�̇�−1𝜅𝑥𝑥]𝐽 =

⎡⎣ 1
𝑥4

1 −𝑥2
𝑥4
1
𝑥4

⎤⎦ .
Thus we have computed 𝜂(𝑥) = [�̇�−1𝜅𝑥𝑥]𝐽 from Definition 3.6.1. Since 𝑥 ∈ �̇�𝑈

(𝐽)
− , we use

Lemma 3.6.3(ii) to find

𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝑥𝜂(𝑥)−1 =

⎡⎣ 1
𝑥1

𝑥2
𝑥4

−1 −𝑥2
𝑥3 1 −𝑥4

1
𝑥4

⎤⎦ , thus 𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�
−1 =

⎡⎣ 1
−1 −𝑥2 𝑥1 𝑥2

𝑥4
−𝑥4 𝑥3 1

1
𝑥4

⎤⎦ .
Therefore the bottom-right principal minors of 𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�−1 are

Δ±
1 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) =
1

𝑥4
, Δ±

2 (𝜁
(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) =
𝑥3
𝑥4
, Δ±

3 (𝜁
(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) =
𝑥1𝑥4 − 𝑥2𝑥3

𝑥4
. (3.9.13)

By Proposition 3.9.17, the preimage of 𝒞𝑔 under 𝜙𝑢 is described by Δ
tr𝑎𝑢
𝐼𝑎

(𝑀) ̸= 0 for all

𝑎 ∈ [𝑛]. Alternatively, as we showed in Section 3.7.7, the preimage of 𝒞𝑔 under 𝜙𝑢 is described
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by Δ±
𝑖 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�−1) ̸= 0 for all 𝑖 ∈ [𝑛 − 1]. The following result has been computationally

checked for all 𝑛 ≤ 5, 𝑘 ∈ [𝑛], and (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ∈ 𝑄𝐽 :

Conjecture 3.9.21. Let (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ∈ 𝑄𝐽 . Denote 𝑔 := 𝑓𝑣,𝑤, and let ℐ𝑔 := (𝐼𝑎)𝑎∈Z be

the Grassmann necklace of 𝑔. Suppose that 𝑥 = 𝑔(𝐽)�̇� ∈ 𝐺
(𝐽)
𝑢,𝑣 and let 𝑀 := [𝑥|. Then

Δ±
𝑛+1−𝑖(𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) =
Δ

tr𝑖𝑢
𝐼𝑖

(𝑀)

Δ
tr1𝑢
𝐼1

(𝑀)
for all 𝑖 ∈ [𝑛]. (3.9.14)

For example, compare (3.9.13) with (3.9.10). Recall also that when 𝑖 = 1, Δ±
𝑛 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�−1) :=

1, so in this case (3.9.14) holds trivially.

3.9.11 Total positivity

We recall the background on the totally nonnegative Grassmannian Gr≥0(𝑘, 𝑛) of [Pos07].

By a result of Whitney [Whi52], 𝐺≥0 is the set of matrices in SL𝑛(R) all of whose minors (of

arbitrary sizes) are nonnegative. The following characterizations are well known:

(𝐺/𝐵)≥0 =
{︁
𝑥𝐵 ∈ (𝐺/𝐵)R | Δflag

𝑆 (𝑥) ≥ 0 for all 𝑆 ⊂ [𝑛]
}︁
, (3.9.15)

Gr≥0(𝑘, 𝑛) = (𝐺/𝑃 )≥0 =

{︂
𝑥𝑃 ∈ (𝐺/𝑃 )R | Δflag

𝑆 (𝑥) ≥ 0 for all 𝑆 ∈
(︂
[𝑛]

𝑘

)︂}︂
. (3.9.16)

Eq. (3.9.16) is due to Rietsch, see [Lam16, Rmk. 3.8] for a proof. Eq. (3.9.15) can be easily

deduced from the proof of Lemma 3.4.17 combined with the results of [Whi52]. We warn

the reader that the analogous statement is false for other choices of 𝐽 . For instance, when

𝐺 = SL4 and 𝐽 = {2}, (𝐺/𝑃 )≥0 does not contain all 𝑥𝑃 ∈ (𝐺/𝑃 )R such that Δflag
𝑆 (𝑥) ≥ 0

for all 𝑆 ∈
(︀
[𝑛]
1

)︀
∪
(︀
[𝑛]
3

)︀
, see [Che11, §10.1].

For 𝑓 ∈ Bound(𝑘, 𝑛), we let Π>0
𝑓 :=

∘
Π𝑓 ∩ Gr≥0(𝑘, 𝑛) and Π≥0

𝑓 := Π𝑓 ∩ Gr≥0(𝑘, 𝑛), thus

for (𝑣, 𝑤) ∈ 𝑄𝐽 , we have Π>0
𝑓𝑣,𝑤

= Π>0
𝑣,𝑤 and Π≥0

𝑓𝑣,𝑤
= Π≥0

𝑣,𝑤 by Theorem 3.9.3.

Recall that if 𝑀 = [𝑥| is in 𝑢[𝑘]-echelon form then 𝑀 ′ := [𝜅𝑥𝑥| equals the 𝑢-truncation

𝑀 tr1𝑢 of 𝑀 .

Proposition 3.9.22. Let 𝜏𝑢𝜆 ≤op 𝑔 ≤op ℎ ∈ Bound(𝑘, 𝑛), and denote by ℐ𝑔 := (𝐼𝑎)𝑎∈Z

the Grassmann necklace of 𝑔. Suppose that a matrix 𝑀 in 𝑢[𝑘]-echelon form belongs to
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Gr≥0(𝑘, 𝑛). Then

𝑀 tr𝑎𝑢 ∈ Gr≥0(𝑘, 𝑛) and Δ
tr𝑎𝑢
𝐼𝑎

(𝑀) > 0 for all 𝑎 ∈ Z. (3.9.17)

Proof. Applying Theorem 3.9.3, we have (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) ∈ 𝑄𝐽 , where 𝑔 = 𝑓𝑣,𝑤 and

ℎ = 𝑓𝑣′,𝑤′ . By (3.4.22), we get 𝑣′ ≤ 𝑣𝑟′ ≤ 𝑢𝑟 ≤ 𝑤𝑟′ ≤ 𝑤′ for some 𝑟, 𝑟′ ∈ 𝑊𝐽 .

Suppose first that 𝑎 = 1. Let 𝑥 ∈ 𝐺 be such that 𝑀 =
[︀
𝑔(𝐽)�̇�

⃒⃒
and 𝑥𝑃 ∈ Π>0

ℎ , and

denote 𝑀 ′ := 𝑀 tr1𝑢 . We may assume that 𝑥𝐵 ∈ 𝑅>0
𝑣′,𝑤′ . By Corollary 3.6.10, we find that

𝜅𝑥𝑥𝑃 ∈ Π>0
𝑣′,𝑢, where 𝑣′ := 𝑣′ ▷ 𝑟−1

𝑤 for some 𝑟𝑤 ∈ 𝑊𝐽 satisfying 𝑟𝑤 ≥ 𝑟, see Lemma 3.6.9(ii).

This shows that 𝑀 ′ ∈ Gr≥0(𝑘, 𝑛). Since 𝑢𝑟 ≤ 𝑢𝑟𝑤, we find that 𝑢𝑟▷𝑟−1
𝑤 ≤ 𝑢 by Lemma 3.4.6,

therefore 𝑢𝑟 ▷ 𝑟−1
𝑤 = 𝑢. Applying ▷𝑟−1

𝑤 to 𝑣′ ≤ 𝑣𝑟′ ≤ 𝑢𝑟 via Lemma 3.4.6(iii), we see

that 𝑣′ ≤ (𝑣𝑟′ ▷ 𝑟−1
𝑤 ) ≤ 𝑢. Let 𝑣 = 𝑣1𝑣2 for 𝑣1 ∈ 𝑊 𝐽 and 𝑣2 ∈ 𝑊𝐽 be the parabolic

factorization of 𝑣. Then 𝑣𝑟′ ▷ 𝑟−1
𝑤 ∈ 𝑣1𝑊𝐽 , thus (𝑣1, 𝑣1) ⪯ (𝑣′, 𝑢) ∈ 𝑄𝐽 , which is equivalent

to Δflag
𝑣1[𝑘]

(𝜅𝑥𝑥) > 0. From Example 3.9.5 we have that 𝑣[𝑘] = 𝐼1, and 𝑣1[𝑘] = 𝑣[𝑘] since

𝑣 ∈ 𝑣1𝑊𝐽 , so Δ
tr1𝑢
𝐼1

(𝑀) = Δflag
𝐼1

(𝜅𝑥𝑥) > 0. We have shown (3.9.17) for 𝑎 = 1. Applying the

cyclic shift 𝜒 : Gr≥0(𝑘, 𝑛) → Gr≥0(𝑘, 𝑛) (which takes 𝑀 to the matrix with rows (𝑀𝑎+1)𝑎∈[𝑛]),

we obtain (3.9.17) for all 𝑎 ∈ Z.

Note that our proof of Proposition 3.9.22 involves a lifting from 𝐺/𝑃 to 𝐺/𝐵, so it does not

stay completely inside Gr(𝑘, 𝑛).

Problem 3.9.23. Give a self-contained proof of Proposition 3.9.22.

Example 3.9.24. We now consider an example for the case 𝐺/𝑃 = Gr(2, 5). Let 𝑢 :=

𝑠2 ∈ 𝑊 𝐽 , so 𝑢[𝑘] = {1, 3}. Consider (𝑣′, 𝑤′) ∈ 𝑄𝐽 given by 𝑣′ = 𝑠1, 𝑤′ = 𝑠2𝑠1𝑠4𝑠3𝑠2 as in

Figure 3-2, thus ℎ := 𝑓𝑣′,𝑤′ = [3, 4, 7, 5, 6]. We use Marsh–Rietsch parametrizations1 from

Section 3.4.9 to compute 𝑥 ∈ 𝐺 such that 𝑥𝐵 ∈ 𝑅>0
𝑣′,𝑤′ and 𝑥𝑃 ∈ Π>0

ℎ :

𝑥 := 𝑦2(𝑡1)�̇�1𝑦4(𝑡3)𝑦3(𝑡4)𝑦2(𝑡5) =

[︃ −1
1
𝑡1 𝑡5 1

𝑡4𝑡5 𝑡4 1
𝑡3𝑡4𝑡5 𝑡3𝑡4 𝑡3 1

]︃
, 𝑀 :=

[︀
𝑔(𝐽)�̇�

⃒⃒
=

⎡⎣ 1
𝑡5
𝑡1

1
𝑡1
1

−𝑡4𝑡5
−𝑡3𝑡4𝑡5

⎤⎦ .
1For the Grassmannian case, Marsh–Rietsch parametrizations are closely related to BCFW bridge

parametrizations, see [BCFW05, AHBC+16, Kar16].
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Observe that 𝑥𝐵 ∈ (𝐺/𝐵)≥0 since all flag minors of 𝑥 are nonnegative. (For instance, the

first column of 𝑥 consists of nonnegative entries.) In fact, flag minors of 𝑥 are subtraction-

free rational expressions in t = (𝑡1, 𝑡3, 𝑡4, 𝑡5), cf. (3.5.19). The 𝑛 × 𝑘 matrix [𝑥| is not in

𝑢[𝑘]-echelon form, but the matrix 𝑀 :=
[︀
𝑔(𝐽)�̇�

⃒⃒
is. Up to a common scalar, the 2 × 2

flag minors of 𝑀 are the same as the corresponding flag minors of 𝑥, however, other (i.e.,

1 × 1) flag minors of 𝑀 are not necessarily nonnegative. The Grassmann necklace of ℎ is

ℐℎ = [{1, 2}, {2, 3}, {3, 4}, {4, 7}, {5, 7}]. Using Proposition 3.9.2(i), we check that indeed

𝑥𝑃 ∈ Π>0
ℎ .

Let us choose (𝑣, 𝑤) ∈ 𝑄𝐽 for 𝑣 = 𝑠2𝑠1, 𝑤 = 𝑠2𝑠1𝑠4𝑠3𝑠2, so that 𝑔 := 𝑓𝑣,𝑤 = [2, 4, 8, 5, 6].

The corresponding Le diagram is obtained from the one in Figure 3-2 (bottom left) by

removing the dot in the bottom row. We have (𝑢, 𝑢) ⪯ (𝑣, 𝑤) ⪯ (𝑣′, 𝑤′) and 𝜏𝑢𝜆 ≤op 𝑔 ≤op ℎ.

We compute the elements 𝜅𝑥 = ℎ
(𝐽)
2 ∈ 𝑈

(𝐽)
2 , 𝜋�̇�𝑃−(𝑥), 𝜂(𝑥), and 𝜁

(𝐽)
𝑢,𝑣 (𝑥) = 𝜋�̇�𝑃−(𝑥) · 𝜂(𝑥)−1

from Definition 3.6.1:

𝑔(𝐽)�̇� =

⎡⎣ 1
𝑡5
𝑡1

1
𝑡1

−1

1
−𝑡4𝑡5 1
−𝑡3𝑡4𝑡5 1

⎤⎦ , 𝜅𝑥 =

⎡⎣ 1
− 𝑡5

𝑡1
1

1
𝑡4𝑡5 1
𝑡3𝑡4𝑡5 1

⎤⎦ , 𝜅𝑥𝑥 =

⎡⎣ −1

1
𝑡5
𝑡1

𝑡1 𝑡5 1
𝑡4 1
𝑡3𝑡4 𝑡3 1

⎤⎦ ,
𝜋�̇�𝑃−(𝑥) =

⎡⎣ −1
1 − 1

𝑡1
𝑡1 𝑡5

𝑡4𝑡5 𝑡4 1
𝑡3𝑡4𝑡5 𝑡3𝑡4 𝑡3 1

⎤⎦ , 𝜂(𝑥) =

⎡⎣ 𝑡1 𝑡5
1

1
𝑡1
𝑡4 1
𝑡3𝑡4 𝑡3 1

⎤⎦ , 𝜁(𝐽)𝑢,𝑣 (𝑥) =

⎡⎣ −1
1
𝑡1

− 𝑡5
𝑡1

−1

1
𝑡4𝑡5 1
𝑡3𝑡4𝑡5 1

⎤⎦ .
We see that all flag minors of 𝜅𝑥𝑥 are nonnegative, cf. Lemma 3.6.9(ii). Observe that

𝜅𝑔(𝐽)�̇� = 𝜅𝑥 by Lemma 3.6.2(iii), so by Lemma 3.6.3(ii), we could alternatively compute

𝜁
(𝐽)
𝑢,𝑣 (𝑥) as the product 𝑔(𝐽)�̇� · 𝜂(𝑔(𝐽)�̇�)−1:

𝜂(𝑔(𝐽)�̇�) =

[︃
1

−1
1
1
1

]︃
, 𝜁(𝐽)𝑢,𝑣 (𝑥) = 𝑔(𝐽)�̇� · 𝜂(𝑔(𝐽)�̇�)−1 =

⎡⎣ 1
𝑡5
𝑡1

1
𝑡1

−1

1
−𝑡4𝑡5 1
−𝑡3𝑡4𝑡5 1

⎤⎦ ·

[︃
−1

1
1
1
1

]︃
.

Finally, we compute the bottom-right 𝑖 × 𝑖 principal minors of 𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�−1 and observe

that they are all nonzero subtraction-free expressions in t, agreeing with Theorems 3.6.4
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and 3.6.14:

𝜁(𝐽)𝑢,𝑣 (𝑥)�̇�
−1 =

⎡⎣ −1

−1 1
𝑡1

− 𝑡5
𝑡1

1
1 𝑡4𝑡5

−1 𝑡3𝑡4𝑡5

⎤⎦ , Δ±
1 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) = 𝑡3𝑡4𝑡5, Δ±
2 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) = 𝑡4𝑡5,

Δ±
3 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) = 𝑡4𝑡5, Δ±
4 (𝜁

(𝐽)
𝑢,𝑣 (𝑥)�̇�

−1) =
𝑡5
𝑡1

.

Let us check that this agrees with Conjecture 3.9.21. The Grassmann necklace of 𝑔 is

ℐ𝑔 = [{1, 3}, {2, 3}, {3, 4}, {4, 8}, {5, 8}] in window notation. We see that the corresponding

𝑢-truncated minors of 𝑀 =
[︀
𝑔(𝐽)�̇�

⃒⃒
are indeed given by

Δ
tr1𝑢
13 (𝑀) = 1, Δ

tr2𝑢
23 (𝑀) =

𝑡5
𝑡1
, Δ

tr3𝑢
34 (𝑀) = 𝑡4𝑡5, Δ

tr4𝑢
48 (𝑀) = 𝑡4𝑡5, Δ

tr5𝑢
58 (𝑀) = 𝑡3𝑡4𝑡5.

3.10 Further directions

In addition to Theorem 1.2.1 and [Her14], we expect the regularity theorem to hold for

many other spaces occurring in total positivity. The most natural immediate direction is

total positivity for Kac–Moody flag varieties.

Let 𝒢min be a minimal Kac–Moody group, 𝒰min,𝒰min
− ,ℬmin,ℬmin

− be unipotent and Borel

subgroups, and �̃� be the Weyl group as in Section 3.A. Furthermore, let 𝒫min ⊃ ℬmin denote

a standard parabolic subgroup of 𝒢min (a group of the form 𝒢min ∩ 𝒫𝑌 in the notation of

[Kum02]).

Definition 3.10.1. Define the totally nonnegative part 𝒰−
≥0 of 𝒰min

− to be the subsemigroup

generated by {𝑥𝛼𝑖
(𝑡) | 𝑡 ∈ R>0, 1 ≤ 𝑖 ≤ 𝑟}. Define the totally nonnegative part of the flag

variety 𝒢min/𝒫min to be the closure (𝒢min/𝒫min)≥0 := 𝒰−
≥0𝒫min/𝒫min.

When 𝒢min is an affine Kac–Moody group of type 𝐴, Definition 3.10.1 agrees with the

definition of Lam and Pylyavskyy (cf. [LP12, Theorem 2.6]) for the polynomial loop group.

Conjecture 3.10.2 (Regularity conjecture for Kac–Moody groups and flag varieties).

1. The intersection of 𝒰−
≥0 with the Bruhat stratification {ℬmin�̇�ℬmin | 𝑤 ∈ �̃�} of 𝒢min

endows 𝒰−
≥0 with an (infinite) cell decomposition with closure partial order equal to

the Bruhat order of �̃� . Furthermore, the link of the identity in any (closed) cell is a

regular CW complex homeomorphic to a closed ball.
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2. The intersection of (𝒢min/ℬmin)≥0 with the open Richardson stratification
∘
ℛ𝑣
𝑢 of 𝒢min/ℬmin

endows (𝒢min/ℬmin)≥0 with the structure of a regular CW complex. The closure par-

tial order is the interval order of the Bruhat order of �̃� , and after adding a minimum,

every interval of the closure partial order is thin and shellable.

3. The intersection of (𝒢min/𝒫min)≥0 with the open projected Richardson stratification

Π∘
𝑣,𝑤 of 𝒢min/𝒫min endows (𝒢min/𝒫min)≥0 with the structure of a regular CW complex.

The closure partial order is the natural partial order on 𝒫-Bruhat intervals of �̃� , and

after adding a minimum, every interval of the closure partial order is thin and shellable.

Note that every interval in the Bruhat order of �̃� is known to be thin and shellable [BW82].

The stratification Π∘
𝑣,𝑤 and the 𝒫-Bruhat order can be defined analogously to [KLS14].

We include a list of some other spaces occurring in total positivity which we expect to

have a natural regular CW complex structure.

1. The totally nonnegative part of double Bruhat cells [FZ99]. It has been expected that

a link of a double Bruhat cell inside another double Bruhat cell is a regular CW

complex homeomorphic to a closed ball. Our Theorem 3.3.11 confirms this in type 𝐴,

since double Bruhat cells for GL𝑛 embed in the Grassmannian Gr(𝑛, 2𝑛), see [Pos07,

Remark 3.11].

2. The space of planar electrical networks from Section 1.5 and the space of planar Ising

models from Section 1.6. These spaces are homeomorphic to closed balls by Theo-

rems 1.5.1 and 4.1.3, and have cell decompositions whose face poset is graded, thin,

and shellable [HK18].

3. Amplituhedra [AHT14] and, more generally, Grassmann polytopes [Lam16]. Grassmann

polytopes generalize convex polytopes into the Grassmannian Gr(𝑘, 𝑛). The former are

well known to be regular CW complexes homeomorphic to closed balls. We caution

that not all Grassmann polytopes are balls.

4. The totally nonnegative part of the wonderful compactification [He07]. A cell decom-

position of this space was constructed in [He07].

We expect that most spaces in this list are TNN spaces that admit a Fomin–Shapiro atlas.
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3.A Appendix: Kac–Moody flag varieties

We recall some background on Kac–Moody groups, and refer to [Kum02] for all missing

definitions. We start by introducing the minimal Kac–Moody group 𝒢min and its flag variety

𝒢min/ℬmin, and then explain how they relate to the polynomial loop group 𝒢 and its flag

variety 𝒢/ℬ from Section 3.7.

3.A.1 Kac–Moody Lie algebras

Suppose that 𝐴 is a generalized Cartan matrix [Kum02, Dfn. 1.1.1]. Thus 𝐴 is an 𝑟×𝑟 integer

matrix for some 𝑟 ≥ 1. We assume 𝐴 is symmetrizable, that is, there exists a diagonal matrix

𝐷 ∈ GL𝑟(Q) such that 𝐷𝐴 is a symmetric matrix. As in [Kum02, §1.1], denote by g the

Kac–Moody Lie algebra associated with 𝐴, and let h ⊂ g be its Cartan subalgebra, whose

dual is denoted by h*. Thus h and h* are vector spaces over C of dimension 𝑟 := 2𝑟−rank(𝐴),

and we let ⟨·, ·⟩ : h× h* → C denote the natural pairing.

We let Δ ⊂ h* denote the root system of g, as defined in [Kum02, §1.2]. Let {𝛼𝑖}𝑟𝑖=1 ⊂ h*

be the simple roots and {𝛼∨
𝑖 }𝑟𝑖=1 ∈ h be the simple coroots.

Let Δre ⊂ Δ denote the set of real roots and Δim ⊂ Δ denote the set of imaginary roots,

so Δ = Δre ⊔Δim. Also let Δ = Δ+ ⊔Δ− denote the decomposition of Δ into positive and

negative roots, and denote Δ+
re := Δ+ ∩Δre and Δ−

re := Δre ∩Δ−. Denote by �̃� the Weyl

group associated with 𝐴 as in [Kum02, §1.3]. Thus �̃� acts on Δ, and preserves the subset

Δre. Moreover, �̃� is generated by simple reflections 𝑠1, . . . , 𝑠𝑟 ∈ �̃� , and (�̃� , {𝑠𝑖}𝑟𝑖=1) is a

Coxeter group by [Kum02, Prop. 1.3.21]. We let (�̃� ,≤) denote the Bruhat order on �̃� and

ℓ : �̃� → Z≥0 denote the length function.

3.A.2 Kac–Moody groups

Let 𝒢min be the minimal Kac–Moody group associated to 𝐴 by Kac and Peterson [PK83,

KP83], see [Kum02, §7.4]. For each real root 𝛼 ∈ Δre, there is a one-parameter subgroup

𝒰𝛼 ⊂ 𝒢min by [Kum02, Dfn. 6.2.7].2 For each 𝛼 ∈ Δre, we fix an isomorphism 𝑥𝛼 : C ∼−→ 𝒰𝛼
2The results in [Kum02] are usually stated for the maximal Kac–Moody group which he denotes by 𝒢.

However, these results apply to 𝒢min as well, see Remark 3.A.3.
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of algebraic groups. Similarly to the subgroups 𝑈,𝑈−, 𝑇, 𝐵,𝐵− of 𝐺, we have subgroups

𝒰min,𝒰min
− , 𝒯 min,ℬmin,ℬmin

− of 𝒢min. The subgroup 𝒰min is generated by {𝒰𝛼}𝛼∈Δ+
re
, and 𝒰min

−

is generated by {𝒰𝛼}𝛼∈Δ−
re
. Next, 𝒯 min is an 𝑟-dimensional algebraic torus defined in [Kum02,

§6.1.6], ℬmin = 𝒯 min n 𝒰min is the standard positive Borel subgroup and ℬmin
− = 𝒯 min n 𝒰min

−

is the standard negative Borel subgroup.

We define a bracket closed subset Θ ⊂ Δre in the same way as in Section 3.4.2, and

for a bracket closed subset Θ ⊂ Δ+
re (resp., Θ ⊂ Δ−

re), we have a subgroup 𝒰(Θ) ⊂ 𝒰min

(resp., 𝒰−(Θ) ⊂ 𝒰min
− ), generated by 𝒰𝛼 for 𝛼 ∈ Θ, see [Kum02, Eq. 6.1.1(6)] (resp., [Kum02,

§6.2.7]). For 𝑤 ∈ �̃� , Inv(𝑤) := Δ+ ∩ 𝑤−1Δ− ⊂ Δ+
re is a bracket closed subset of size ℓ(𝑤),

cf. [Kum02, Ex. 6.1.5(b)]. We state the Kac–Moody analog of Lemma 3.4.1(i).

Lemma 3.A.1 ([Kum02, Lemma 6.1.4]). Suppose that Θ =
⨆︀𝑛
𝑖=1 Θ𝑖 and Θ,Θ1, . . . ,Θ𝑛 ⊂

Δ+
re are finite bracket closed subsets. Then 𝒰(Θ),𝒰(Θ1), . . . ,𝒰(Θ𝑛) are finite-dimensional

unipotent algebraic groups, and the multiplication map gives a biregular isomorphism

𝒰(Θ1)× · · · × 𝒰(Θ𝑛)
∼−→ 𝒰(Θ). (3.A.1)

3.A.3 Kac–Moody flag varieties

The Weyl group �̃� equals 𝑁𝒢min(𝒯 min)/𝒯 min , where 𝑁𝒢min(𝒯 min) is the normalizer of 𝒯 min

in 𝒢min, cf. [Kum02, Lemma 7.4.2]. For 𝑓 ∈ �̃� , we denote by 𝑓 ∈ 𝒢min an arbitrary

representative of 𝑓 in 𝑁𝒢min(𝒯 min).

By [Kum02, Lemma 7.4.2, Ex. 7.4.E(9), and Thm. 5.2.3(g)], we have Bruhat and Birkhoff

decompositions of 𝒢min:

𝒢min =
⨆︁
𝑓∈�̃�

ℬmin𝑓ℬmin, 𝒢min =
⨆︁
ℎ∈�̃�

ℬmin
− ℎ̇ℬmin. (3.A.2)

We let 𝒢min/ℬmin denote the Kac–Moody flag variety of 𝒢min. For each ℎ, 𝑓 ∈ �̃� , we have

Schubert cells
∘
𝒳 𝑓 := ℬmin𝑓ℬmin/ℬmin and opposite Schubert cells

∘
𝒳ℎ := ℬmin

− ℎ̇ℬmin/ℬmin.

If ℎ ̸≤ 𝑓 ∈ �̃� then by [Kum02, Lemma 7.1.22(b)],
∘
𝒳 𝑓 ∩

∘
𝒳ℎ = ∅. For ℎ ≤ 𝑓 , we denote

by
∘
ℛ𝑓
ℎ :=

∘
𝒳ℎ ∩

∘
𝒳 𝑓 . Therefore (3.7.3) follows from (3.A.2). The flag variety 𝒢min/ℬmin is a
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projective ind-variety by [Kum02, §7.1], the Schubert cell
∘
𝒳 𝑓 and Schubert variety 𝒳 𝑓 are

finite-dimensional subvarieties, while the opposite Schubert cell
∘
𝒳ℎ and opposite Schubert

variety 𝒳ℎ are ind-subvarieties.

Proposition 3.A.2. For ℎ ≤ 𝑓 ∈ �̃� , 𝒳ℎ ∩ 𝒳 𝑓 is a closed irreducible (ℓ(𝑓) − ℓ(ℎ))-

dimensional subvariety of 𝒳 𝑓 , and
∘
ℛ𝑓
ℎ is an open dense subset of 𝒳ℎ ∩ 𝒳 𝑓 .

Proof. By (3.7.5),
∘
𝒳 𝑓 is ℓ(𝑓)-dimensional, and by [Kum02, Lemma 7.3.10],

∘
𝒳ℎ ∩ 𝒳 𝑓 has

codimension ℓ(ℎ) in 𝒳 𝑓 . The rest follows by [Kum17, Prop. 6.6].

For 𝑔 ∈ �̃� , let 𝒞𝑔 := �̇�ℬmin
− ℬmin/ℬmin. We have

𝒢min/ℬmin =
⨆︁
ℎ≤𝑓

∘
ℛ𝑓
ℎ and 𝒞𝑔 =

⨆︁
ℎ≤𝑔≤𝑓

(𝒞𝑔 ∩
∘
ℛ𝑓
ℎ), (3.A.3)

where the unions are taken over ℎ, 𝑓 ∈ �̃� . The first part of (3.A.3) follows from (3.A.2),

and for the second part, see the proof of Proposition 3.8.2(iii).

Remark 3.A.3. Let 𝒢 ⊃ 𝒢min be the “maximal” Kac–Moody group (denoted 𝒢 in [Kum02])

associated to 𝐴, and let ℬ̂ ⊃ ℬmin be its standard positive Borel subgroup. Then the

standard negative Borel subgroup of 𝒢 is still ℬmin
− . By [Kum02, Eq. 7.4.5(2)], we may

identify 𝒢min/ℬmin ∼−→ 𝒢/ℬ̂. By [Kum02, Eq. 7.4.2(3)],
∘
𝒳 𝑓 coincides with the variety ℬ̂𝑓 ℬ̂/ℬ̂

in [Kum02, Dfn. 7.1.13] for 𝑓 ∈ �̃� . Similarly, for ℎ ∈ �̃� ,
∘
𝒳ℎ = ℬmin

− · ℎ̇ℬmin/ℬmin coincides

with the variety ℬℎ∅ := ℬmin
− ℎℬ̂/ℬ̂ defined in the last paragraph of [Kum02, §7.1.20].

3.A.4 Affine Kac–Moody groups and polynomial loop groups

Suppose that 𝐴 is the affine Cartan matrix associated to a simple and simply-connected

algebraic group 𝐺. Thus we have 𝑟 = |𝐼| + 1, 𝑟 = |𝐼| + 2, and 𝐴 is defined by [Kum02,

Eq. 13.1.1(7)]. Let 𝒢 denote the polynomial loop group from Section 3.7. Our goal is to

explain that the flag varieties 𝒢/ℬ and 𝒢min/ℬmin are isomorphic.

Let 𝐶 ⊂ 𝑇 ⊂ 𝐺 be the center of 𝐺, and let 𝐶 ⊂ 𝒯 min ⊂ 𝒢min be the center of 𝒢min,

see [Kum02, Lemma 6.2.9(c)]. By [Kum02, Cor. 13.2.9], there exists a surjective group
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homomorphism 𝜓 : 𝒢min → (C* n 𝒢)/𝐶 with kernel 𝐶, where C* acts on 𝒢 as in Sec-

tion 3.8.2, see also [Kum02, Dfn. 13.2.1]. The groups 𝒰 ,𝒰− ⊂ 𝒢 are identified with the

groups 𝒰min,𝒰min
− ⊂ 𝒢min, and we have 𝒯 /𝐶 ∼= 𝒯 min/𝐶. Thus 𝜓 induces an isomorphism

𝒢min/ℬmin ∼−→ 𝒢/ℬ between the affine Kac–Moody flag variety and the affine flag variety.

The Weyl groups �̃� of 𝒢 and 𝒢min are isomorphic by [Kum02, Prop. 13.1.7], and the root

systems Δ coincide by [Kum02, Cor. 13.1.4]. Therefore the subsets
∘
𝒳 𝑓 ,

∘
𝒳ℎ,

∘
ℛ𝑓
ℎ, 𝒞𝑔 of 𝒢/ℬ

get sent by 𝜓 to the corresponding subsets of 𝒢min/ℬmin. As explained in the last paragraph

of [Kum02, §13.2.8], 𝐺 can be viewed as a subset of 𝒢min as well, and the restriction of 𝜓 to

𝐺 is the quotient map 𝐺→ 𝐺/𝐶.

We justify some other statements that we used in Sections 3.7.1 and 3.8.2. For (3.7.2),

see [Kum02, §13.1]. For (3.7.6), see [Kum02, §6.1.13]. For a description of 𝑌 (𝒯 ) from Sec-

tion 3.8.2, see [Kum02, §13.2.2]. For a description of the pairing ⟨·, ·⟩ : 𝑌 (𝒯 ) ×𝑋(𝒯 ) → Z

in the same section, see [Kum02, §13.1.1].

3.A.5 Gaussian decomposition and affine charts

By [Kum02, Thm. 7.4.14], 𝒢min is an affine ind-group. Similarly, 𝒰min,𝒰min
− , 𝒯 ,ℬmin,ℬmin

−

are affine ind-groups, see e.g. [Kum02, §7.4] and [Kum02, Cor. 7.3.8].

Let 𝒢min
0 := ℬmin

− ℬmin and 𝑔 ∈ �̃� . Recall the subgroups 𝒰1(𝑔) and 𝒰2(𝑔) from (3.7.4).

Then 𝒰1(𝑔) is a closed ℓ(𝑔)-dimensional subgroup of 𝒰min ∼= 𝒰 and 𝒰2(𝑔) is a closed ind-

subgroup of 𝒰min
−

∼= 𝒰−.

Proof of Lemma 3.8.1. For (i), see [Kum02, Prop. 7.4.11]. For (ii), we use an argument

given in [Wil13, Prop. 2.5]: both maps are bijective morphisms by [Kum02, Lemma 6.1.3].

In particular, it follows that �̇�𝒰min
− �̇�−1 ⊂ 𝒢min

0 and for 𝑥 ∈ �̇�𝒰min
− �̇�−1, we have [𝑥]0 = 1.

The inverse maps are given by 𝜇−1
21 (𝑥) = ([𝑥]−, [𝑥]+), 𝜇−1

12 (𝑥) = ([𝑥−1]−1
+ , [𝑥−1]−1

− ). They are

regular morphisms by (i), which proves (ii).

Proof of (3.7.5). The map �̇�𝒰min
− �̇�−1 ∼−→ 𝒞𝑔 is a biregular isomorphism for 𝑔 = id by [Kum02,

Lemma 7.4.10]. Since �̃� acts on 𝒢min/ℬmin by left multiplication, the case of general 𝑔 ∈ �̃�

follows as well. Since 𝒰1(𝑔), 𝒰2(𝑔) are closed ind-subvarieties of �̇�𝒰min
− �̇�−1 and

∘
𝒳 𝑔,

∘
𝒳𝑔 are

closed ind-subvarieties of 𝒞𝑔, it suffices to show that the image of 𝒰1(𝑔) equals
∘
𝒳 𝑔 while the
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image of 𝒰2(𝑔) equals
∘
𝒳𝑔. By [Kum02, Ex. 7.4.E(9) and Eq. 5.2.3(11)], we have

𝒰min = (𝒰min ∩ �̇�𝒰min
− �̇�−1) · (𝒰min ∩ �̇�𝒰min�̇�−1) = 𝒰1(𝑔) · (𝒰min ∩ �̇�𝒰min�̇�−1),

𝒰min
− = (𝒰min

− ∩ �̇�𝒰min
− �̇�−1) · (𝒰min

− ∩ �̇�𝒰min�̇�−1) = 𝒰2(𝑔) · (𝒰min
− ∩ �̇�𝒰min�̇�−1).

Thus

ℬmin�̇�ℬmin = 𝒰1(𝑔) · (𝒰min ∩ �̇�𝒰min�̇�−1) · �̇�ℬmin = 𝒰1(𝑔) · �̇� · ℬmin,

ℬmin
− �̇�ℬmin = 𝒰2(𝑔) · (𝒰min

− ∩ �̇�𝒰min�̇�−1) · �̇�ℬmin = 𝒰2(𝑔) · �̇� · ℬmin.
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4

Ising model

The goal of this chapter is to describe a cell decomposition of the space 𝒳 𝑛 of planar Ising

networks from Section 1.6, describe this space by inequalities, and show that it is homeo-

morphic to a ball. As we mentioned in Section 1.6, we also recognize Kramers–Wannier’s

duality [KW41] as the cyclic shift on Gr≥0(𝑛, 2𝑛) in Theorem 4.2.4. We then explain (Re-

mark 4.2.6) the connection between the planar Ising model at critical temperature and the

unique cyclically symmetric point 𝑋0 ∈ Gr≥0(𝑛, 2𝑛) from Section 2.2.1. We also express

(Theorem 4.2.13) generalized Griffiths’ inequalities of [Gri67, KS68] as manifestly positive

linear combinations of the Plücker coordinates of our embedding. We explain in Corol-

lary 4.2.9 how the known formula for Plücker coordinates in terms of the dimer model gives

a new expression for boundary correlation functions, which is related to Dubédat’s formula

for squared correlation functions [Dub11]. Finally, we solve the inverse problem in Sec-

tion 4.2.5: given a boundary correlation matrix 𝑀 ∈ Mat𝑛(R) of the Ising model on a

planar graph 𝐺 embedded in a disk, we show that if 𝐺 is reduced then the edge weights of

the Ising model are uniquely and explicitly determined by 𝑀 .

This chapter is organized as follows. We state our main result (Theorem 4.1.3) in Sec-

tion 4.1, and then list several applications of our construction in Section 4.2. We give some

background on the totally nonnegative Grassmannian in Section 4.3, and study the totally

nonnegative orthogonal Grassmannian in Section 4.4. After that, we prove our main results.

In Section 4.5, we show that the formula for boundary correlations in terms of the dimer

model indeed yields the same result as the embedding 𝜑 from Section 4.1. In Section 4.6,
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we prove that 𝒳 𝑛 is homeomorphic to a ball and discuss the cyclic symmetry of this space.

We explain how to express generalized Griffiths’ inequalities as positive sums of Plücker

coordinates in Section 4.7, and list several conjectures in Section 4.8.

4.1 Main results

We give some background necessary to formulate the main results of this chapter.

4.1.1 The Ising model

A planar Ising network is a pair 𝑁 = (𝐺, 𝐽) where 𝐺 = (𝑉,𝐸) is a planar graph embedded

in a disk and 𝐽 : 𝐸 → R>0 is a function assigning positive real numbers to the edges

of 𝐺. We always label the vertices of 𝐺 on the boundary of the disk by 𝑏1, . . . , 𝑏𝑛 ∈ 𝑉

in counterclockwise order. Given a planar Ising network 𝑁 = (𝐺, 𝐽), the Ising model on

𝑁 (with no external field and free boundary conditions) is a probability measure on the

space {−1, 1}𝑉 of spin configurations on the vertices of 𝐺. Given a spin configuration

𝜎 : 𝑉 → {−1, 1}, its probability is given by

P(𝜎) :=
1

𝑍

∏︁
{𝑢,𝑣}∈𝐸

exp
(︀
𝐽{𝑢,𝑣}𝜎𝑢𝜎𝑣

)︀
, (4.1.1)

where 𝑍 is the partition function:

𝑍 :=
∑︁

𝜎∈{−1,1}𝑉

∏︁
{𝑢,𝑣}∈𝐸

exp
(︀
𝐽{𝑢,𝑣}𝜎𝑢𝜎𝑣

)︀
. (4.1.2)

Our main focus will be boundary two-point correlation functions. Let [𝑛] := {1, 2, . . . , 𝑛}.

Given 𝑖, 𝑗 ∈ [𝑛], we define the corresponding correlation function by

⟨𝜎𝑖𝜎𝑗⟩ :=
∑︁

𝜎∈{−1,1}𝑉
P(𝜎)𝜎𝑏𝑖𝜎𝑏𝑗 . (4.1.3)

Clearly, we have ⟨𝜎𝑖𝜎𝑗⟩ = ⟨𝜎𝑗𝜎𝑖⟩, and if 𝑖 = 𝑗 then the correlation function ⟨𝜎𝑖𝜎𝑖⟩ is equal

to 1. We denote by Matsym𝑛 (R, 1) ⊂ Mat𝑛(R) the space of all 𝑛× 𝑛 symmetric real matrices
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with ones on the diagonal. Thus we obtain a matrix 𝑀 =𝑀(𝐺, 𝐽) := (𝑚𝑖,𝑗) ∈ Matsym𝑛 (R, 1)

given by 𝑚𝑖,𝑗 := ⟨𝜎𝑖𝜎𝑗⟩. Let us denote

𝒳𝑛 := {𝑀(𝐺, 𝐽) | (𝐺, 𝐽) is a planar Ising network with 𝑛 boundary vertices}.

Denote by 𝒳 𝑛 the closure of 𝒳𝑛 in the space Mat𝑛(R) of 𝑛 × 𝑛 real matrices. (In other

words, 𝒳 𝑛 can be defined as the space of all boundary correlation matrices 𝑀(𝐺, 𝐽) where

𝐽 is allowed to take values in [0,∞], or equivalently where 𝐺 is obtained from a planar

graph embedded in a disk by contracting some edges that may connect boundary vertices,

as we discuss in Section 4.5.) We will see later (Proposition 4.5.4) that 𝒳 𝑛 admits a natural

stratification into cells indexed by matchings on [2𝑛], that is, by perfect matchings of the

complete graph 𝐾2𝑛 (also called medial pairings). For 𝑛 = 3, all matchings on [2𝑛] are shown

in Figure 4-7.

4.1.2 The orthogonal Grassmannian

Recall the definition of Gr≥0(𝑘, 𝑛) from Section 2.2.

Definition 4.1.1. The orthogonal Grassmannian OG(𝑛, 2𝑛) ⊂ Gr(𝑛, 2𝑛) is defined by

OG(𝑛, 2𝑛) :=

{︂
𝑋 ∈ Gr(𝑛, 2𝑛) | Δ𝐼(𝑋) = Δ[2𝑛]∖𝐼(𝑋) for all 𝐼 ∈

(︂
[2𝑛]

𝑛

)︂}︂
.

Its totally nonnegative part OG≥0(𝑛, 2𝑛) ⊂ Gr≥0(𝑛, 2𝑛) is the intersection

OG≥0(𝑛, 2𝑛) := OG(𝑛, 2𝑛) ∩Gr≥0(𝑛, 2𝑛).

The space OG≥0(𝑛, 2𝑛) has been first considered in [HW13] in the context of the scattering

amplitudes of ABJM theory. Postnikov defined a stratification of Gr≥0(𝑘, 𝑛) into positroid

cells, which induces a stratification of OG≥0(𝑛, 2𝑛). As it was observed in [HW13, HWX14],

the strata of OG≥0(𝑛, 2𝑛) are also naturally labeled by matchings on [2𝑛]. We prove this in

Section 4.4.
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𝑀 =

⎛⎜⎜⎝
1 𝑚12 𝑚13 𝑚14

𝑚12 1 𝑚23 𝑚24

𝑚13 𝑚23 1 𝑚34

𝑚14 𝑚24 𝑚34 1

⎞⎟⎟⎠ ↦→ ̃︁𝑀 =

⎛⎜⎜⎝
1 1 𝑚12 −𝑚12 −𝑚13 𝑚13 𝑚14 −𝑚14

−𝑚12 𝑚12 1 1 𝑚23 −𝑚23 −𝑚24 𝑚24

𝑚13 −𝑚13 −𝑚23 𝑚23 1 1 𝑚34 −𝑚34

−𝑚14 𝑚14 𝑚24 −𝑚24 −𝑚34 𝑚34 1 1

⎞⎟⎟⎠
Figure 4-1: An example of the map 𝑀 ↦→ ̃︁𝑀 for 𝑛 = 4.

4.1.3 An embedding

Given a matrix 𝑀 = (𝑚𝑖,𝑗) ∈ Matsym𝑛 (R, 1), one can construct an element 𝜑(𝑀) ∈ OG(𝑛, 2𝑛)

using the following rules. We will describe an 𝑛 × 2𝑛 matrix ̃︁𝑀 = (̃︀𝑚𝑖,𝑗), so that for

all 𝑖, 𝑗 ∈ [𝑛], each of ̃︀𝑚𝑖,2𝑗−1 and ̃︀𝑚𝑖,2𝑗 is equal to either 𝑚𝑖,𝑗 or −𝑚𝑖,𝑗, as in Figure 4-1.

Explicitly, for 𝑖 = 𝑗 we put ̃︀𝑚𝑖,2𝑖−1 = ̃︀𝑚𝑖,2𝑖 = 𝑚𝑖,𝑖 = 1, and for 𝑖 ̸= 𝑗 we set

̃︀𝑚𝑖,2𝑗−1 = −̃︀𝑚𝑖,2𝑗 = (−1)𝑖+𝑗+1(𝑖<𝑗)𝑚𝑖,𝑗, (4.1.4)

where 1(𝑖 < 𝑗) denotes 1 if 𝑖 < 𝑗 and 0 otherwise.

Remark 4.1.2. For each 𝑖 ∈ [𝑛], the sum of columns 2𝑖 − 1 and 2𝑖 of ̃︁𝑀 is equal to 2𝑒𝑖,

where 𝑒𝑖 is the 𝑖-th standard basis vector in R𝑛. Thus the matrix ̃︁𝑀 has full rank, and we

denote by 𝜑(𝑀) ∈ Gr(𝑛, 2𝑛) its row span.

One can check that in fact 𝜑(𝑀) belongs to OG(𝑛, 2𝑛), see Corollary 4.4.6. We have

thus constructed a map 𝜑 : Matsym𝑛 (R, 1) → OG(𝑛, 2𝑛). Since boundary correlation matrices

of planar Ising networks belong to the space Matsym𝑛 (R, 1), 𝜑 restricts to a map 𝜑 : 𝒳 𝑛 →

OG(𝑛, 2𝑛). We are ready to state our main result.

Theorem 4.1.3. The restriction 𝜑 : 𝒳 𝑛 → OG(𝑛, 2𝑛) is a stratification-preserving home-

omorphism between 𝒳 𝑛 and OG≥0(𝑛, 2𝑛). Moreover, both spaces are homeomorphic to an(︀
𝑛
2

)︀
-dimensional closed ball.

We prove the second part of Theorem 4.1.3 in Section 4.6, where we also deduce its first

part from Theorems 4.4.17 and 4.5.5.

Remark 4.1.4. The second sentence of Theorem 4.1.3 is an application of the machinery

developed in Chapter 2. The fact that the image 𝜑(𝒳 𝑛) is a subset of Gr≥0(𝑛, 2𝑛) can be

deduced in a straightforward fashion from the work of Lis [Lis17], see Section 4.5.2.
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Example 4.1.5. We illustrate Theorem 4.1.3 in the case 𝑛 = 2. Let 𝜎12 := ⟨𝜎1𝜎2⟩, then the

boundary correlation matrix 𝑀 has the form

𝑀 =

⎛⎝ 1 𝜎12

𝜎12 1

⎞⎠ . (4.1.5)

By definition, 𝜎12 ≤ 1, and we also have 𝜎12 ≥ 0 by one of the Griffiths’ inequalities [Gri67,

Theorem 1]. In fact, if 𝐺 has a single edge connecting the vertices 𝑏1 and 𝑏2 then it is

easy to check that depending on 𝐽{𝑏1,𝑏2}, 𝜎12 can be any number strictly between 0 and 1.

If we remove the edge {𝑏1, 𝑏2} from 𝐺, we get 𝜎12 = 0. Thus 𝒳𝑛 consists of all matrices

𝑀 of the form (4.1.5) for 0 ≤ 𝜎12 < 1. If we contract the edge {𝑏1, 𝑏2}, we get 𝜎12 = 1.

The resulting graph will no longer be embedded in a disk, because the boundary vertices 𝑏1

and 𝑏2 will get identified. This is an example of a generalized planar Ising network that we

introduce in Section 4.5. We see that the closure 𝒳 𝑛 of 𝒳𝑛 consists of all matrices 𝑀 of the

form (4.1.5) for 0 ≤ 𝜎12 ≤ 1, and is stratified into three cells {𝜎12 = 0}, {0 < 𝜎12 < 1}, and

{𝜎12 = 1}. These three cells correspond to three possible matchings on {1, 2, 3, 4}, namely,

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, and {{1, 4}, {2, 3}}, respectively.

We have

̃︁𝑀 =

⎛⎝ 1 1 𝜎12 −𝜎12
−𝜎12 𝜎12 1 1

⎞⎠ , (4.1.6)

and 𝜑(𝑀) ∈ Gr(𝑛, 2𝑛) is the row span of ̃︁𝑀 . The maximal minors of ̃︁𝑀 are

Δ12(̃︁𝑀) = Δ34(̃︁𝑀) = 2𝜎12, Δ14(̃︁𝑀) = Δ23(̃︁𝑀) = 1− 𝜎2
12,

Δ13(̃︁𝑀) = Δ24(̃︁𝑀) = 1 + 𝜎2
12.

It follows that 𝜑(𝑀) belongs to OG(𝑛, 2𝑛) for all 𝜎12 ∈ R, and moreover, we get 𝜑(𝑀) ∈

OG≥0(𝑛, 2𝑛) precisely when 0 ≤ 𝜎12 ≤ 1. Note that ̃︁𝑀 is a matrix but 𝜑(𝑀) is an element

of the Grassmannian, and thus the Plucker coordinates of 𝜑(𝑀) are only defined up to
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rescaling. Nevertheless, we can recover 𝜎12 from these minors as follows:

𝜎12 =
Δ12(𝜑(𝑀))

Δ13(𝜑(𝑀)) + Δ14(𝜑(𝑀))
. (4.1.7)

Thus we see that for 𝑛 = 2, the map 𝜑 is indeed a homeomorphism, and both spaces 𝒳 𝑛

and OG≥0(𝑛, 2𝑛) are homeomorphic to [0, 1], which is an
(︀
𝑛
2

)︀
= 1-dimensional closed ball.

4.2 Consequences of the main construction

In this section, we give further results on the relationship between the Ising model and the

orthogonal Grassmannian.

4.2.1 Reconstructing correlations from minors

Our first goal is, given an element 𝑋 ∈ OG≥0(𝑛, 2𝑛), to find explicitly a matrix 𝑀 = (𝑚𝑖,𝑗) ∈

Matsym𝑛 (R, 1) such that 𝑋 is the row span of ̃︁𝑀 . For the case 𝑛 = 2, this was done in (4.1.7).

In order to deal with the general case, we give the following important definition.

Definition 4.2.1. Given a subset 𝑆 ⊂ [𝑛], we denote by ℰ𝑛(𝑆) ⊂
(︀
[2𝑛]
𝑛

)︀
the collection of

𝑛-element subsets 𝐼 of [2𝑛] such that for each 𝑖 ∈ [𝑛], the intersection 𝐼 ∩ {2𝑖 − 1, 2𝑖} has

even size if and only if 𝑖 ∈ 𝑆.

The following result, proved in Section 4.5, is a simple consequence of Remark 4.1.2.

Lemma 4.2.2. Let 𝑀 = (𝑚𝑖,𝑗) ∈ Matsym𝑛 (R, 1) be a matrix. Then for each 𝑖, 𝑗 ∈ [𝑛], we

have

𝑚𝑖,𝑗 =

∑︀
𝐼∈ℰ𝑛({𝑖,𝑗}) Δ𝐼(𝜑(𝑀))∑︀
𝐼∈ℰ𝑛(∅) Δ𝐼(𝜑(𝑀))

= 2−𝑛
∑︁

𝐼∈ℰ𝑛({𝑖,𝑗})

Δ𝐼(̃︁𝑀). (4.2.1)

We stress again that unlike ̃︁𝑀 , the maximal minors of 𝜑(𝑀) are defined up to a common

scalar, so it only makes sense to talk about their ratios. However, for the specific matrix ̃︁𝑀 ,

we have ∑︁
𝐼∈ℰ𝑛(∅)

Δ𝐼(̃︁𝑀) = 2𝑛, (4.2.2)
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by the multilinearity of the determinant, see Remark 4.1.2. Thus (4.2.2) explains why the

two expressions for 𝑚𝑖,𝑗 given in (4.2.1) are actually equal.

For example, for 𝑛 = 2, (4.2.2) becomes

Δ13(̃︁𝑀) + Δ14(̃︁𝑀) + Δ23(̃︁𝑀) + Δ24(̃︁𝑀) = 4,

and for 𝑖 = 1 and 𝑗 = 2, Lemma 4.2.2 gives another expression for 𝜎12:

𝜎12 =
Δ12(𝜑(𝑀)) + Δ34(𝜑(𝑀))

Δ13(𝜑(𝑀)) + Δ14(𝜑(𝑀)) + Δ23(𝜑(𝑀)) + Δ24(𝜑(𝑀))
,

which is easily seen to be equivalent to (4.1.7).

4.2.2 Cyclic symmetry and Kramers–Wannier’s duality

A nice application of Theorem 4.1.3 is a cyclic symmetry of the space 𝒳 𝑛, which comes

from the cyclic symmetry of OG≥0(𝑛, 2𝑛). It turns out that the cyclic shift operation on

OG≥0(𝑛, 2𝑛) corresponds to a generalization of the Kramers-Wannier duality [KW41] that

switches between the high and low temperature expansions for the Ising model.

Let 𝑘 ≤ 𝑁 , and consider a linear operator 𝑆 : R𝑁 → R𝑁 mapping a row vector 𝑣 =

(𝑣1, . . . , 𝑣𝑁) ∈ R𝑁 to 𝑣 · 𝑆 = (𝑣2, 𝑣3, . . . , 𝑣𝑁 , (−1)𝑘−1𝑣1), see Section 2.2.1. As a matrix, 𝑆

is given by 𝑆𝑖+1,𝑖 = 1 for 𝑖 ∈ [𝑁 − 1], and 𝑆1,𝑁 = (−1)𝑘−1. A simple observation is that

multiplying a 𝑘 × 𝑁 matrix 𝐴 with nonnegative maximal minors by 𝑆 on the right yields

another 𝑘 ×𝑁 matrix with nonnegative maximal minors. Since multiplication on the right

commutes with the left GL𝑘(R)-action, we get a cyclic shift operator on Gr≥0(𝑘,𝑁) mapping

𝑋 ∈ Gr≥0(𝑘,𝑁) to 𝑋 · 𝑆 ∈ Gr≥0(𝑘,𝑁). It is clear from the definitions that for Gr≥0(𝑛, 2𝑛),

this action restricts to a cyclic shift action on OG≥0(𝑛, 2𝑛). For example, if 𝑋 ∈ OG≥0(2, 4)

is the row span of the matrix ̃︁𝑀 given in (4.1.6) then 𝑋 · 𝑆 is represented by

̃︁𝑀 · 𝑆 =

⎛⎝ 1 𝜎12 −𝜎12 −1

𝜎12 1 1 𝜎12

⎞⎠ . (4.2.3)

One can check that the row span 𝑋 · 𝑆 of this matrix again belongs to OG≥0(2, 4). By
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Theorem 4.1.3, there must exist a matrix 𝑀 ′ =

⎛⎝ 1 𝜎′
12

𝜎′
12 1

⎞⎠ such that 𝜑(𝑀 ′) = 𝑋 · 𝑆 in

OG≥0(2, 4) (i.e., such that ̃︁𝑀 ′ is obtained from the matrix in (4.2.3) by row operations).

The value of 𝜎′
12 can be found from the minors of 𝑋 · 𝑆 using (4.1.7):

𝜎′
12 =

Δ12(𝑋 · 𝑆)
Δ13(𝑋 · 𝑆) + Δ14(𝑋 · 𝑆)

=
1− 𝜎2

12

1 + 𝜎2
12 + 2𝜎12

=
1− 𝜎12
1 + 𝜎12

.

Thus the cyclic shift operation on OG≥0(𝑛, 2𝑛) yields an automorphism of 𝒳 𝑛 which has

order 2𝑛 for 𝑛 > 2 and order 𝑛 for 𝑛 = 1, 2. For 𝑛 = 2, it sends 𝜎12 to 1−𝜎12
1+𝜎12

.

Let us now formulate a generalization of the duality of [KW41].

Definition 4.2.3. Let 𝑁 = (𝐺, 𝐽) be a connected1 planar Ising network. The dual planar

Ising network 𝑁* := (𝐺*, 𝐽*) is defined as follows. The graph 𝐺* = (𝑉 *, 𝐸*) is the planar

dual graph of 𝐺, with boundary vertices 𝑏*1, . . . , 𝑏*𝑛 placed counterclockwise on the boundary

of the disk so that 𝑏*𝑖 is between 𝑏𝑖 and 𝑏𝑖+1. For 𝑒 ∈ 𝐸, we denote by 𝑒* the edge of 𝐺* that

crosses 𝑒 ∈ 𝐸, and thus we have 𝐸* = {𝑒* | 𝑒 ∈ 𝐸}. The edge parameters 𝐽*
𝑒* ∈ R>0 are

defined uniquely by the condition that

sinh(2𝐽*
𝑒*) =

1

sinh(2𝐽𝑒)
(4.2.4)

for all 𝑒 ∈ 𝐸.

For example, if 𝐺 is the graph in Figure 4-4 (left) then its dual 𝐺* is shown in Figure 4-4

(middle). Note that we have sinh(2𝑡) = 1/ sinh(2𝑡) if and only if 𝑡 = 1
2
log(

√
2 + 1) is the

critical temperature of the Ising model. We also remark that applying the duality twice

yields the same planar Ising network except that its boundary vertex labels are cyclically

shifted: (𝑏*𝑖 )
* = 𝑏𝑖+1. We prove the following result in Section 4.6.

Theorem 4.2.4. Let 𝑁 = (𝐺, 𝐽) be a connected planar Ising network with dual planar Ising

network 𝑁* := (𝐺*, 𝐽*). Then the correlation matrices 𝑀 :=𝑀(𝐺, 𝐽) and 𝑀* :=𝑀(𝐺*, 𝐽*)

1This definition can be easily extended to all (not necessarily connected) generalized planar Ising networks.
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are related by the cyclic shift on OG≥0(𝑛, 2𝑛):

𝜑(𝑀) · 𝑆 = 𝜑(𝑀*).

According to Theorem 1.1.1, the space Gr≥0(𝑘,𝑁) is homeomorphic to a closed ball.

The main ingredient of the proof of this result is the cyclic symmetry of Gr≥0(𝑘,𝑁). In

Section 4.6, we use the above cyclic symmetry of OG≥0(𝑛, 2𝑛) in a similar way to show that

it is a closed ball, which by the first part of Theorem 4.1.3 implies that the space 𝒳 𝑛 of

boundary correlation matrices is homeomorphic to a closed ball as well.

Recall from Section 2.2.1 that we have a unique cyclically symmetric point𝑋0 ∈ Gr≥0(𝑛, 2𝑛).

It will follow from our proof of Theorem 4.1.3 that this point 𝑋0 actually belongs to

OG≥0(𝑛, 2𝑛), and thus corresponds to some special planar Ising network with 𝑛 boundary

vertices. For instance, for 𝑛 = 2 this is the Ising network 𝑁 with one edge 𝑒 such that

𝐽𝑒 =
1
2
log(

√
2 + 1). This planar Ising network is self-dual, i.e., satisfies 𝑁 = 𝑁*. However,

it is easy to see that for 𝑛 = 3 there are no self-dual planar Ising networks. Nevertheless, as

our next result shows, for each 𝑛, there exists a (usually not unique) planar Ising network

𝑁 = (𝐺, 𝐽) with 𝑛 boundary vertices such that the boundary correlation matrices of 𝑁 and

𝑁* coincide: 𝑀(𝐺, 𝐽) =𝑀(𝐺*, 𝐽*).

Proposition 4.2.5. For each 𝑛 ≥ 1, there exists a unique boundary correlation matrix 𝑀0 ∈

𝒳 of some planar Ising network such that the element 𝜑(𝑀0) ∈ OG≥0(𝑛, 2𝑛) is cyclically

symmetric, i.e., satisfies 𝜑(𝑀0) · 𝑆 = 𝜑(𝑀0). For any planar Ising network 𝑁 = (𝐺, 𝐽)

satisfying 𝑀(𝐺, 𝐽) =𝑀 , we have 𝑀(𝐺, 𝐽) =𝑀(𝐺*, 𝐽*).

See Section 4.6 for the proof.

Remark 4.2.6. Consider a planar Ising network 𝑁 = (𝐺, 𝐽) such that 𝐺 is the intersection

of the square lattice of small side length 𝛿 with a disk, and let 𝐽𝑒 = 1
2
log(

√
2+ 1) be critical

for all 𝑒 ∈ 𝐸. The dual network 𝑁* = (𝐺*, 𝐽*) is “very close” to 𝑁 in the sense that it is

obtained by shifting 𝑁 by (𝛿/2, 𝛿/2) and making some adjustments near the boundary of

the disk. Thus one could argue that the boundary correlations of 𝑁 are “very close” to being

cyclically symmetric, in which case we can find them explicitly from (4.2.2) and (2.2.1). It
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𝑒
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𝑐𝑒

𝑠𝑒𝑠𝑒
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𝐺 𝐺� 𝐺×

Figure 4-2: Transforming a graph 𝐺 (left) with one edge 𝑒 connecting two boundary vertices
𝑏1 and 𝑏2 into a bipartite graph 𝐺� (middle) with eight edges. Four of those edges are
incident to the boundary and have weight 1, and the rest have weights 𝑠𝑒, 𝑐𝑒, 𝑠𝑒, 𝑐𝑒, as
shown in the figure. The corresponding medial graph 𝐺× from Section 4.2.5 is shown on the
right.

seems plausible to us that this approach may be applied to studying the universality of the

scaling limit as 𝛿 → 0. The notion of being “very close” is asymptotic and thus is left beyond

the scope of this paper.

4.2.3 Reduction to the dimer model

Lemma 4.2.2 shows that each two-point correlation function is a ratio of two sums of minors

of an element of OG≥0(𝑛, 2𝑛). In the next section, we apply a well known result that each

minor of an element of Gr≥0(𝑘,𝑁) is equal to a weighted sum of matchings in a certain

planar bipartite graph.

Suppose that we are given a planar Ising network𝑁 = (𝐺, 𝐽). We introduce two functions

𝑠, 𝑐 : 𝐸 → (0, 1) satisfying 𝑠2𝑒 + 𝑐2𝑒 = 1 for each 𝑒 ∈ 𝐸, as follows. Given 𝑒 ∈ 𝐸, we set

𝑠𝑒 := sech(2𝐽𝑒) =
2

exp(2𝐽𝑒) + exp(−2𝐽𝑒)
; 𝑐𝑒 := tanh(2𝐽𝑒) =

exp(2𝐽𝑒)− exp(−2𝐽𝑒)

exp(2𝐽𝑒) + exp(−2𝐽𝑒)
.

(4.2.5)

Next, we transform 𝐺 into a weighted planar bipartite graph (a plabic graph in the sense

of [Pos07]) 𝐺� embedded in a disk, as in Figures 4-2 and 4-4: we replace each edge 𝑒 ∈ 𝐸

of 𝐺 by a bipartite square as in Figure 4-2 (middle), and connect two such squares if the

corresponding edges of 𝐺 share both a vertex and a face of 𝐺. Additionally, we connect each

of the 2𝑛 boundary vertices of 𝐺�, which we label 𝑑1, . . . , 𝑑2𝑛 in counterclockwise order, to a

unique vertex of 𝐺� in the interior of the disk in an obvious way (as in Figure 4-4). Thus 𝑑𝑖

136



is a white (resp., black) vertex if 𝑖 is odd (resp., even). See Definitions 4.4.12 and 4.5.2 for

a precise description of the rules for constructing 𝐺� from 𝐺. We call 𝐺� the plabic graph

associated with 𝐺.

Let us now describe the boundary measurement map of [Pos07, Tal08], as explained

in [Lam16].

Definition 4.2.7. An almost perfect matching of 𝐺� is a collection 𝒜 of edges of 𝐺� such

that every vertex of 𝐺� is incident to at most one edge in 𝒜, and every non-boundary vertex

of 𝐺� is incident to exactly one edge in 𝒜. The boundary of 𝒜 is a subset 𝜕(𝒜) ⊂ [2𝑛] which

consists of all odd indices 𝑖 such that 𝑑𝑖 is not incident to an edge of 𝒜 together with all

even indices 𝑖 such that 𝑑𝑖 is incident to an edge of 𝒜. We define the weight wt(𝒜) of 𝒜 to

be the product of weights of all edges in 𝒜.

It is not hard to see that 𝜕(𝒜) has size 𝑛 for any almost perfect matching 𝒜 of 𝐺�. We

are prepared to give a formula for the boundary correlation functions which is very similar

to Kenyon and Wilson’s grove measurement formula [KW11]. See Section 4.6 for the proof.

Theorem 4.2.8. Let 𝑁 = (𝐺, 𝐽) be a planar Ising network and 𝑀 = 𝑀(𝐺, 𝐽) be its

boundary correlation matrix. Consider the element 𝜑(𝑀) ∈ OG≥0(𝑛, 2𝑛), and let 𝐺� be the

weighted planar bipartite graph described above. Then up to a common rescaling, for every

𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
we have

Δ𝐼(𝜑(𝑀)) =
∑︁

𝒜:𝜕(𝒜)=𝐼

wt(𝒜), (4.2.6)

where the sum is over almost perfect matchings 𝒜 of 𝐺� with boundary 𝐼.

For example, consider the graph 𝐺� in Figure 4-2 (middle). There is a single almost

perfect matching of 𝐺� with boundary {1, 2}, shown in Figure 4-3 (left). Similarly, there are

two almost perfect matchings of 𝐺� with boundary {1, 3} and one almost perfect matching

with boundary {1, 4}, also shown in Figure 4-3. Therefore by Theorem 4.2.8 we get

Δ12(𝜑(𝑀)) = 𝑐𝑒, Δ13(𝜑(𝑀)) = 𝑐2𝑒 + 𝑠2𝑒 = 1, Δ14(𝜑(𝑀)) = 𝑠𝑒,
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Figure 4-3: Some almost perfect matchings of 𝐺�, together with their boundaries and
weights.

up to a common rescaling. By (4.1.7), we should have

𝜎12 =
Δ12(𝜑(𝑀))

Δ13(𝜑(𝑀)) + Δ14(𝜑(𝑀))
=

𝑐𝑒
1 + 𝑠𝑒

, (4.2.7)

where 𝑠𝑒 = sech(2𝐽𝑒) and 𝑐𝑒 = tanh(2𝐽𝑒) are expressed in terms of 𝐽𝑒 as in (4.2.5). Simpli-

fying the expressions, we get

𝜎12 =
exp(𝐽𝑒)− exp(−𝐽𝑒)
exp(𝐽𝑒) + exp(−𝐽𝑒)

. (4.2.8)

On the other hand, by the definition of the Ising model, the partition function is equal to

𝑍 = 2(exp(𝐽𝑒) + exp(−𝐽𝑒)) and thus the correlation ⟨𝜎1𝜎2⟩ is

⟨𝜎1𝜎2⟩ =
2

𝑍
(exp(𝐽𝑒)− exp(−𝐽𝑒)) =

exp(𝐽𝑒)− exp(−𝐽𝑒)
exp(𝐽𝑒) + exp(−𝐽𝑒)

,

in agreement with Theorem 4.2.8.

Lemma 4.2.2 and Theorem 4.2.8 together give a new simple way to express boundary

correlations in terms of almost perfect matchings which we summarize in the following corol-

lary.

Corollary 4.2.9. Let 𝑁 = (𝐺, 𝐽) be a planar Ising network. Then for all 𝑖, 𝑗 ∈ [𝑛], the

corresponding boundary correlation function is given by

⟨𝜎𝑖𝜎𝑗⟩ =
∑︀

𝒜:𝜕(𝒜)∈ℰ𝑛({𝑖,𝑗}) wt(𝒜)∑︀
𝒜:𝜕(𝒜)∈ℰ𝑛(∅) wt(𝒜)

, (4.2.9)
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Figure 4-4: A planar graph 𝐺 embedded in a disk (left), its dual 𝐺* (middle), and the
corresponding plabic graph 𝐺� (right).

where the sums in the numerator and the denominator are over almost perfect matchings 𝒜

of 𝐺�.

Remark 4.2.10. Corollary 4.2.9 is related to Dubédat’s bosonization identity [Dub11]. Let

us introduce a planar bipartite graph ̂︀𝐺� which is obtained from 𝐺� by simply adding an

extra edge connecting 𝑑2𝑖−1 to 𝑑2𝑖 for all 𝑖 ∈ [𝑛]. Then there is an elegant formula (see

Proposition 4.5.8) expressing the squared boundary correlation ⟨𝜎𝑖𝜎𝑗⟩2 as a ratio of sums of

perfect matchings in ̂︀𝐺�. We explain how to relate this formula to (4.2.9) in Section 4.5.1.

We thank Marcin Lis for bringing the paper [Dub11] to our attention.

4.2.4 Generalized Griffiths’ inequalities

As we have already noted, the fact that we have 𝐽𝑒 > 0 for all edges 𝑒 implies that all

two-point correlation functions ⟨𝜎𝑢𝜎𝑣⟩ are nonnegative [Gri67]. Equation (4.2.1) shows that

⟨𝜎𝑢𝜎𝑣⟩ is a positive linear combination of the minors of ̃︁𝑀 , and thus its nonnegativity follows

from Theorem 4.1.3. More generally, for every subset 𝐴 ⊂ [𝑛], define

⟨𝜎𝐴⟩ := ⟨
∏︁
𝑖∈𝐴

𝜎𝑏𝑖⟩ =
∑︁

𝜎∈{−1,1}𝑉
P(𝜎)

∏︁
𝑖∈𝐴

𝜎𝑏𝑖

to be the expectation of the product of the spins in 𝐴. The following generalized Griffiths’

inequalities were proved in [KS68].
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Proposition 4.2.11 ([KS68]). For every 𝐴 ⊂ [𝑛], we have

⟨𝜎𝐴⟩ ≥ 0.

For every 𝐴,𝐵 ⊂ [𝑛], we have

⟨𝜎𝐴𝜎𝐵⟩ − ⟨𝜎𝐴⟩⟨𝜎𝐵⟩ ≥ 0.

Here ⟨𝜎𝐴𝜎𝐵⟩ = ⟨
∏︀

𝑖∈𝐴⊕𝐵 𝜎𝑏𝑖⟩, where 𝐴⊕ 𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴) denotes the symmetric

difference of 𝐴 and 𝐵.

The goal of our next result is to explain how both inequalities in Proposition 4.2.11 also

arise as positive linear combinations of the minors of the matrix ̃︁𝑀 , where 𝑀 =𝑀(𝐺, 𝐽) is

the boundary correlation matrix.

Definition 4.2.12. For 𝐴 ⊂ [𝑛], we define ̃︀𝐴 := {2𝑖 − 1 | 𝑖 ∈ 𝐴} ∪ {2𝑖 | 𝑖 ∈ 𝐴}, and for

𝜖 ∈ {0, 1}, we let 𝒟𝜖(𝐴) ⊂
(︀
[2𝑛]
𝑛

)︀
be the set of all 𝐼 ∈

(︀
[2𝑛]
𝑛

)︀
such that the sum of elements of

𝐼 ∩ ̃︀𝐴 is equal to 𝜖 modulo 2.

Recall also the notation ℰ𝑛(𝑆) from Definition 4.2.1. We prove the following result in

Section 4.7.

Theorem 4.2.13. For every 𝐴 ⊂ [𝑛], we have

⟨𝜎𝐴⟩ = 2−𝑛
∑︁

𝐼∈ℰ𝑛(𝐴)

Δ𝐼(̃︁𝑀). (4.2.10)

For every 𝐴,𝐵 ⊂ [𝑛], there exists 𝜖 ∈ {0, 1}, given explicitly in (4.7.1), such that

⟨𝜎𝐴𝜎𝐵⟩ − ⟨𝜎𝐴⟩⟨𝜎𝐵⟩ = 2−𝑛+1
∑︁

𝐼∈ℰ𝑛(𝐴⊕𝐵)∩𝒟𝜖(𝐵)

Δ𝐼(̃︁𝑀). (4.2.11)

Thus the inequalities of Proposition 4.2.11 become manifestly true when expressed in

terms of minors of ̃︁𝑀 , which are nonnegative by Theorem 4.1.3.

For example, when 𝑛 = 2 and 𝐴 = 𝐵 = {1, 2}, we have 𝜖 = 1 by (4.7.1), and thus (4.2.11)

140



𝑏1

𝑏2𝑏3

𝑏4

𝑏5 𝑏6

𝑒1

𝑒2
𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝑒8

𝑒9

𝑑1

𝑑2

𝑑3

𝑑4𝑑5

𝑑6

𝑑7

𝑑8

𝑑9

𝑑10 𝑑11

𝑑12

𝑑1

𝑑2

𝑑3

𝑑4𝑑5

𝑑6

𝑑7

𝑑8

𝑑9

𝑑10 𝑑11

𝑑12

𝐺 𝐺× 𝜏𝐺

Figure 4-5: A planar graph 𝐺 embedded in a disk (left), the corresponding medial graph
𝐺× (middle) and its medial strands (right).

becomes

1− 𝜎2
12 =

Δ14(̃︁𝑀) + Δ23(̃︁𝑀)

2
.

4.2.5 Inverse problem

In this section, we concentrate on answering the following question.

Question 4.2.14. Given a planar Ising network 𝑁 = (𝐺, 𝐽), is it possible to reconstruct

𝐽 from the matrix 𝑀(𝐺, 𝐽)? In other words, is it true that the function 𝐽 : 𝐸 → R>0 is

uniquely determined by 𝐺 and 𝑀(𝐺, 𝐽)?

Of course, the answer to this question is negative if, for example, 𝐺 has more than
(︀
𝑛
2

)︀
edges. In order to fix this, we introduce medial graphs. Namely, given a planar graph 𝐺

embedded in a disk, the medial graph 𝐺× associated with 𝐺 is a planar graph obtained from

𝐺 as in Figure 4-2 (right) and Figure 4-5 (middle). It has 2𝑛 boundary vertices 𝑑1, . . . , 𝑑2𝑛,

each of degree 1, and |𝐸| interior vertices, each of degree 4. See Section 4.5 for a precise

description.

Since each interior vertex of 𝐺× has degree 4, we define a medial strand in 𝐺× to be

a path that starts at a boundary vertex 𝑑𝑖 of 𝐺×, follows the only edge of 𝐺× incident

to it, and then goes “straight” at each interior vertex of degree 4, until it reaches another

boundary vertex 𝑑𝑗 of 𝐺×. (More precisely, a medial strand is determined by the condition

that whenever two of its edges share a vertex, they do not share a face.) Clearly there are
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𝑛 medial strands in 𝐺×, and each of them connects 𝑑𝑖 to 𝑑𝑗 for some 𝑖, 𝑗 ∈ [2𝑛], giving rise

to a matching 𝜏𝐺 on [2𝑛] called the medial pairing associated with 𝐺:

𝜏𝐺 :=
{︀
{𝑖, 𝑗} ⊂ [2𝑛] | a medial strand in 𝐺× starts at 𝑑𝑖 and ends at 𝑑𝑗

}︀
.

Thus 𝜏𝐺 is a partition of [2𝑛] into 𝑛 sets, each of size 2. For example, for the graph 𝐺 in

Figure 4-5 (left), there is a medial strand that starts at vertex 𝑑3, then follows the midpoints

of edges 𝑒2, 𝑒3, 𝑒8, 𝑒7, and then terminates at vertex 𝑑8. Thus the medial pairing 𝜏𝐺 of 𝐺

contains a pair {3, 8}. Following the other five medial strands, we find

𝜏𝐺 = {{1, 4}, {2, 11}, {3, 8}, {5, 9}, {6, 10}, {7, 12}} , (4.2.12)

see Figure 4-5 (right).

Definition 4.2.15. For 𝑖 < 𝑗, 𝑖′ < 𝑗′ ∈ [2𝑛], we say that pairs {𝑖, 𝑗} and {𝑖′, 𝑗′} form a

crossing if either 𝑖 < 𝑖′ < 𝑗 < 𝑗′ or 𝑖′ < 𝑖 < 𝑗′ < 𝑗. For a matching 𝜏 of [2𝑛], we let xing(𝜏)

denote the number of pairs in 𝜏 that form a crossing.

For example, if 𝜏𝐺 is given in (4.2.12) then xing(𝜏𝐺) = 9. We are now ready to state an

important definition, introduced in [CIM98].

Definition 4.2.16. We say that 𝐺 is reduced if its number |𝐸| of edges equals xing(𝜏𝐺).

For example, the graph 𝐺 in Figure 4-5 (left) is reduced since it has |𝐸| = 9 = xing(𝜏𝐺)

edges.

We will see later in Proposition 4.5.4 that if we fix 𝐺 and let 𝐽 vary, the space of matrices

𝑀(𝐺, 𝐽) obtained in such a way is an open ball of dimension xing(𝜏𝐺). Since 𝐽 varies over

R𝐸
>0, we see that if 𝐺 is not reduced (in which case clearly |𝐸| > xing(𝜏𝐺)) then the answer

to Question 4.2.14 is negative. On the other hand, if 𝐺 is reduced then the answer turns out

to be always positive, as we show in Section 4.6.

Theorem 4.2.17. Let 𝑁 = (𝐺, 𝐽) be a planar Ising network such that 𝐺 is reduced. Then

the map 𝐽 ↦→𝑀(𝐺, 𝐽) is injective, i.e., for each matrix 𝑀 ∈ Matsym𝑛 (R, 1), there is at most

one function 𝐽 : 𝐸 → R>0 such that 𝑀 =𝑀(𝐺, 𝐽).
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Theorem 4.1.3 combined with our results in Section 4.4 gives a simple explicit way to test

whether for a given reduced graph 𝐺 and a matrix 𝑀 ∈ Matsym𝑛 (R, 1) there exists a function

𝐽 : 𝐸 → R>0 such that 𝑀 =𝑀(𝐺, 𝐽).

In order to describe a recursive way of reconstructing 𝐽 from 𝑀(𝐺, 𝐽), we introduce

operations of adjoining a boundary spike and adjoining a boundary edge to 𝐺. An identical

construction in the case of electrical networks has been considered in [CIM98].

Definition 4.2.18. Let 𝑁 ′ = (𝐺′, 𝐽 ′) be a planar Ising network, where 𝐺′ = (𝑉 ′, 𝐸 ′) has 𝑛

boundary vertices. Given 𝑘 ∈ [𝑛], we say that another planar Ising network 𝑁 = (𝐺, 𝐽) with

𝑛 boundary vertices is obtained from 𝑁 ′ by adjoining a boundary spike at 𝑘 if the vertex 𝑏𝑘

in 𝐺 is incident to a single edge 𝑒 and contracting this edge in 𝐺 yields 𝐺′. Similarly, we say

that 𝑁 is obtained from 𝑁 ′ by adjoining a boundary edge between 𝑘 and 𝑘+1 if 𝐺 contains

an edge 𝑒 connecting 𝑏𝑘 and 𝑏𝑘+1, and removing this edge from 𝐺 yields 𝐺′. In both cases,

we additionally require that the restriction of 𝐽 : 𝐸 → R>0 to 𝐸 ′ = 𝐸 ∖ {𝑒} coincides with

𝐽 ′ : 𝐸 ′ → R>0.

When adjoining boundary edges, we allow for 𝑘 = 𝑛, in which case we set 𝑘+1 := 1. We

denote 𝑡 := 𝐽𝑒, and our first goal will be to reconstruct 𝑡 from the matrix 𝑀(𝐺, 𝐽).

Definition 4.2.19. Let 𝑖 ∈ [2𝑛]. Consider a total order ≺𝑖 on [2𝑛] given by

𝑖 ≺𝑖 𝑖+ 1 ≺𝑖 · · · ≺𝑖 2𝑛 ≺𝑖 1 ≺𝑖 · · · ≺𝑖 𝑖− 1,

where the indices are taken modulo 2𝑛. For a planar Ising network 𝑁 = (𝐺, 𝐽) and 𝑖 ∈ [2𝑛],

define subsets 𝐼min
𝑖 (𝐺), 𝐼max

𝑖 (𝐺) ∈
(︀
[2𝑛]
𝑛

)︀
whose disjoint union is [2𝑛] as follows. For each

unordered pair {𝑎, 𝑏} of 𝜏𝐺, we may assume that 𝑎 ≺𝑖 𝑏, and then we let 𝑎 ∈ 𝐼min
𝑖 (𝐺) and

𝑏 ∈ 𝐼max
𝑖 (𝐺). In particular, we always have 𝑖 ∈ 𝐼min

𝑖 (𝐺) and 𝑖− 1 ∈ 𝐼max
𝑖 (𝐺).

For example, recall that if𝐺 is the graph from Figure 4-5 (left) then 𝜏𝐺 is given by (4.2.12).

For 𝑖 = 7 and 𝑖 = 12, we have

𝐼min
7 (𝐺) = {7, 8, 9, 10, 11, 1}, 𝐼max

7 (𝐺) = {6, 5, 4, 3, 2, 12},

𝐼min
12 (𝐺) = {12, 1, 2, 3, 5, 6}, 𝐼max

12 (𝐺) = {11, 10, 9, 8, 7, 5}.
(4.2.13)
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We prove our next result in Section 4.6.

Theorem 4.2.20. Let 𝐺 be a reduced planar graph embedded in a disk.

∙ Suppose that 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining a boundary spike

𝑒 at 𝑘 ∈ [𝑛]. Let 𝑀 := 𝑀(𝐺, 𝐽), 𝑘 := 2𝑘 − 1, and 𝑡 := 𝐽𝑒. Then for 𝐼 := 𝐼min
𝑘+1

(𝐺), we

have

𝑠𝑒 = sech(2𝑡) =
Δ𝐼(𝜑(𝑀))

Δ𝐼∪{𝑘}∖{𝑘+1}(𝜑(𝑀))
.

∙ Suppose that 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining a boundary edge

𝑒 between 𝑘 ∈ [𝑛] and 𝑘 + 1. Let 𝑀 := 𝑀(𝐺, 𝐽), 𝑘 := 2𝑘, and 𝑡 := 𝐽𝑒. Then for

𝐼 := 𝐼max
𝑘+1

(𝐺), we have

𝑐𝑒 = tanh(2𝑡) =
Δ𝐼(𝜑(𝑀))

Δ𝐼∪{𝑘+1}∖{𝑘}(𝜑(𝑀))
.

For example, the graph 𝐺 in Figure 4-5 (left) can be obtained from another reduced

graph by adjoining a boundary spike 𝑒4 at 𝑘 = 6, so we have 𝑘 = 11 in the first part of

Theorem 4.2.20. Since 𝐼 = 𝐼min
12 (𝐺) = {1, 2, 3, 5, 6, 12} by (4.2.13), we have

𝑠𝑒4 =
Δ{1,2,3,5,6,12}(𝜑(𝑀))

Δ{1,2,3,5,6,11}(𝜑(𝑀))
.

Similarly, 𝐺 can be obtained from another reduced graph by adjoining a boundary edge 𝑒9

between 𝑘 = 3 and 𝑘 + 1 = 4, so we have 𝑘 = 6 in the second part of Theorem 4.2.20. Since

𝐼 = 𝐼max
7 (𝐺) = {2, 3, 4, 5, 6, 12} by (4.2.13), we have

𝑐𝑒9 =
Δ{2,3,4,5,6,12}(𝜑(𝑀))

Δ{2,3,4,5,7,12}(𝜑(𝑀))
.

Since both functions sech, tanh : (0,∞) → (0, 1) are strictly monotone, it follows from

Theorem 4.2.20 that we can reconstruct 𝑡 = 𝐽𝑒 uniquely from 𝑀(𝐺, 𝐽) whenever 𝑒 is either a

boundary spike or a boundary edge of 𝐺. This constitutes the first step of our reconstruction

algorithm, in view of the following result.
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Proposition 4.2.21. Suppose that 𝐺 is a connected reduced planar graph embedded in a disk,

having at least one edge. Then 𝐺 is obtained from another reduced graph 𝐺′ by adjoining

either a boundary spike or a boundary edge.

We note that the graph 𝐺′ above need not be connected. Also, if 𝐺 itself is not con-

nected then it is clearly enough to solve the inverse problem for each connected component

of 𝐺 separately, and thus we may assume that 𝐺 is connected. See Lemma 4.4.18 for a

generalization of Proposition 4.2.21.

Proposition 4.2.21 says that given a reduced graph 𝐺 and a matrix 𝑀(𝐺, 𝐽), we can

reconstruct 𝐽𝑒 for at least one edge 𝑒 of 𝐺. A natural thing to do now would be to contract 𝑒

if it is a boundary spike and remove 𝑒 if it is a boundary edge, obtaining the reduced graph

𝐺′. Our next goal is to explain the relationship between the matrices 𝑀(𝐺, 𝐽) and 𝑀(𝐺′, 𝐽 ′)

in the case when 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining either a boundary

spike or a boundary edge.

We note that these two operations look like they have a very different effect on the

boundary correlation matrix. For example, adjoining a boundary spike at 𝑘 only changes

the correlation ⟨𝜎𝑖𝜎𝑗⟩ when either 𝑖 or 𝑗 is equal to 𝑘, but adjoining a boundary edge between

𝑘 and 𝑘 + 1 in general changes all entries of the boundary correlation matrix. Surprisingly,

these two operations have exactly the same form when written in terms of the matrix ̃︁𝑀 ,

as we now explain. (In fact, it is clear that applying the duality from Section 4.2.2 switches

the roles of boundary spikes and boundary edges.)

Suppose that 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining a boundary spike 𝑒

at 𝑘 ∈ [𝑛] (resp., a boundary edge 𝑒 between 𝑘 and 𝑘+1). Define 𝑘 := 2𝑘−1 (resp., 𝑘 := 2𝑘),

𝑡 := 𝐽𝑒, 𝑠𝑒 := sech(2𝑡), 𝑐𝑒 := tanh(2𝑡), as in Theorem 4.2.20, and let 𝑔 = 𝑔𝑘(𝑡) be a 2𝑛× 2𝑛

matrix which coincides with the identity matrix except that it contains a 2× 2 block 𝑅𝑘 in

rows and columns indexed by 𝑘 and 𝑘 + 1. When 𝑘 is odd, we set 𝑅𝑘 :=

⎛⎝ 1/𝑐𝑒 𝑠𝑒/𝑐𝑒

𝑠𝑒/𝑐𝑒 1/𝑐𝑒

⎞⎠
and when 𝑘 is even, we set 𝑅𝑘 :=

⎛⎝ 1/𝑠𝑒 𝑐𝑒/𝑠𝑒

𝑐𝑒/𝑠𝑒 1/𝑠𝑒

⎞⎠. In the case where we have 𝑘 = 2𝑛, i.e.,

when we are adding a boundary edge between 𝑘 = 𝑛 and 𝑘 + 1 = 1, the relevant entries of

𝑔 are 𝑔2𝑛,2𝑛 = 𝑔1,1 = 1/𝑠𝑒 and 𝑔1,2𝑛 = 𝑔2𝑛,1 = (−1)𝑛−1𝑐𝑒/𝑠𝑒. This sign twist is related to the
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cyclic symmetry of Gr≥0(𝑛, 2𝑛) as we explained in Section 4.2.2. For example, for 𝑛 = 2 and

𝑘 = 1, 4, we have

𝑔1(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
1/𝑐𝑒 𝑠𝑒/𝑐𝑒 0 0

𝑠𝑒/𝑐𝑒 1/𝑐𝑒 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑔4(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
1/𝑠𝑒 0 0 −𝑐𝑒/𝑠𝑒
0 1 0 0

0 0 1 0

−𝑐𝑒/𝑠𝑒 0 0 1/𝑠𝑒

⎞⎟⎟⎟⎟⎟⎟⎠ .

Recall that given an element 𝑋 ∈ Gr(𝑛, 2𝑛) and a 2𝑛 × 2𝑛 invertible real matrix 𝑔, an

element 𝑋 · 𝑔 ∈ Gr(𝑛, 2𝑛) is well defined as the row span of 𝐴 · 𝑔 where 𝐴 is any 𝑛 × 2𝑛

matrix whose row span is 𝑋.

Theorem 4.2.22. Suppose that 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining a

boundary spike 𝑒 at 𝑘 ∈ [𝑛] (resp., a boundary edge 𝑒 between 𝑘 and 𝑘+1). Let 𝑀 =𝑀(𝐺, 𝐽),

𝑀 ′ =𝑀(𝐺′, 𝐽 ′), and 𝑔𝑘(𝑡) be as above. Then we have

𝜑(𝑀) = 𝜑(𝑀 ′) · 𝑔𝑘(𝑡).

Theorems 4.2.20 and 4.2.22 give the following inductive algorithm for reconstructing the

function 𝐽 : 𝐸 → R>0 for a given reduced graph 𝐺 = (𝑉,𝐸) from the matrix 𝑀 =𝑀(𝐺, 𝐽).

The problem is trivial when 𝐺 has no edges. Otherwise by Proposition 4.2.21, there is either

a boundary spike or a boundary edge 𝑒 in 𝐺. The matrix 𝑀 gives an element 𝜑(𝑀) ∈

OG≥0(𝑛, 2𝑛), from which we compute either 𝑠𝑒 or 𝑐𝑒 using Theorem 4.2.20 and thus find

𝑡 = 𝐽𝑒. After that, we contract 𝑒 in 𝐺 if it is a boundary spike and remove it if it is a

boundary edge, and also modify the matrix 𝑀 accordingly: we let

𝑋 ′ := 𝜑(𝑀) · (𝑔𝑘(𝑡))
−1 ∈ OG≥0(𝑛, 2𝑛),

where (𝑔𝑘(𝑡))
−1 can be found using

⎛⎝ 1/𝑐𝑒 𝑠𝑒/𝑐𝑒

𝑠𝑒/𝑐𝑒 1/𝑐𝑒

⎞⎠−1

=

⎛⎝ 1/𝑐𝑒 −𝑠𝑒/𝑐𝑒
−𝑠𝑒/𝑐𝑒 1/𝑐𝑒

⎞⎠ ,

⎛⎝ 1/𝑠𝑒 𝑐𝑒/𝑠𝑒

𝑐𝑒/𝑠𝑒 1/𝑠𝑒

⎞⎠−1

=

⎛⎝ 1/𝑠𝑒 −𝑐𝑒/𝑠𝑒
−𝑐𝑒/𝑠𝑒 1/𝑠𝑒

⎞⎠ .

146



By Lemma 4.2.2, we have𝑋 ′ = 𝜑(𝑀 ′) ∈ OG≥0(𝑛, 2𝑛) for a unique matrix𝑀 ′ ∈ Matsym𝑛 (R, 1).

We then express the entries of 𝑀 ′ in terms of the Plücker coordinates of 𝑋 ′ using (4.2.1).

It follows that this 𝑛 × 𝑛 matrix 𝑀 ′ is equal to 𝑀(𝐺′, 𝐽 ′), so we set 𝐺 := 𝐺′ and proceed

recursively until𝐺 has no edges left, splitting𝐺′ into connected components if necessary. This

finishes a constructive proof of Theorem 4.2.20. Alternatively, we deduce Theorem 4.2.20

from Theorem 4.1.3 at the end of Section 4.6.

Another question similar to Question 4.2.14 is the following.

Question 4.2.23. Given an 𝑛×𝑛 matrix 𝑀 ∈ Matsym𝑛 (R, 1), does there exist a planar Ising

network 𝑁 = (𝐺, 𝐽) such that 𝑀 =𝑀(𝐺, 𝐽)?

The answer to this question is provided by Theorem 4.1.3: the answer is “yes” if and

only if all minors of the matrix ̃︁𝑀 are nonnegative. There are exponentially many minors to

check, that is,
(︀
2𝑛
𝑛

)︀
, and in general one needs to check all of them to ensure that ̃︁𝑀 is totally

nonnegative. However, checking whether 𝜑(𝑀) ∈ OG(𝑛, 2𝑛) belongs to OG>0(𝑛, 2𝑛) :=

OG(𝑛, 2𝑛) ∩ Gr>0(𝑛, 2𝑛) (defined in (4.3.1)), as opposed to OG≥0(𝑛, 2𝑛), can be done in

polynomial time. More precisely, one needs to check only 𝑛2 + 1 minors of ̃︁𝑀 , as it follows

from the results of [Pos07]. These minors are algebraically independent as functions on

Gr(𝑛, 2𝑛), but when restricted to OG(𝑛, 2𝑛), this is no longer the case. Thus if all of them

are positive then it follows that 𝜑(𝑀) ∈ OG>0(𝑛, 2𝑛), but in general one could check less

minors and arrive at the same conclusion. See Section 4.8 for further discussion.

4.3 Background on the combinatorics of the totally non-

negative Grassmannian

In this section, we recall some combinatorial objects related to Gr≥0(𝑘, 𝑛) that were intro-

duced by Postnikov [Pos07]. Most of the results in this section can be found in either [Pos07]

or [Lam16].

Recall that the totally nonnegative Grassmannian Gr≥0(𝑘,𝑁) is the subset of the real

Grassmannian Gr(𝑘,𝑁) where all Plücker coordinates are nonnegative. Given a point 𝑋 ∈
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Gr≥0(𝑘,𝑁), define the matroid ℳ𝑋 ⊂
(︀
[𝑁 ]
𝑘

)︀
of 𝑋 by

ℳ𝑋 :=

{︂
𝐽 ∈

(︂
[𝑁 ]

𝑘

)︂
| Δ𝐽(𝑋) > 0

}︂
.

Given a collection ℳ ⊂
(︀
[𝑁 ]
𝑘

)︀
, define the positroid cell Π>0

ℳ ⊂ Gr≥0(𝑘,𝑁) by

Π>0
ℳ := {𝑋 ∈ Gr≥0(𝑘,𝑁) | ℳ𝑋 = ℳ}.

For example, one can take ℳ =
(︀
[𝑁 ]
𝑘

)︀
, in which case the positroid cell Π>0

ℳ coincides with

the totally positive Grassmannian Gr>0(𝑘, 𝑛):

Gr>0(𝑘,𝑁) :=

{︂
𝑋 ∈ Gr(𝑘,𝑁) | Δ𝐼(𝑋) > 0 for all 𝐼 ∈

(︂
[𝑁 ]

𝑘

)︂}︂
. (4.3.1)

A collection ℳ ⊂
(︀
[𝑁 ]
𝑘

)︀
is called a positroid if Π>0

ℳ is nonempty. Positroids are special

kinds of matroids, and have a very nice structure which we now explain.

Recall that for 𝑖 ∈ [𝑁 ], the total order ≺𝑖 on [𝑁 ] is given by 𝑖 ≺𝑖 𝑖 + 1 ≺𝑖 · · · ≺𝑖 𝑁 ≺𝑖

1 ≺𝑖 · · · ≺𝑖 𝑖− 1.

Definition 4.3.1. For two sets 𝐼, 𝐽 ∈
(︀
[𝑁 ]
𝑘

)︀
, we write 𝐼 ≺𝑖 𝐽 if 𝐼 = {𝑖1 ≺𝑖 · · · ≺𝑖 𝑖𝑘},

𝐽 = {𝑗1 ≺𝑖 · · · ≺𝑖 𝑗𝑘}, and 𝑖𝑠 ≺𝑖 𝑗𝑠 for 1 ≤ 𝑠 ≤ 𝑘. It turns out that if ℳ is a positroid then

for each 𝑖 it has a unique ≺𝑖-minimal element which we denote 𝐼min
𝑖 (ℳ). Thus 𝐼min

𝑖 (ℳ)

satisfies 𝐼min
𝑖 (ℳ) ≺𝑖 𝐽 for all 𝐽 ∈ ℳ. Similarly, we let 𝐼max

𝑖 (ℳ) be the unique ≺𝑖-maximal

element of ℳ.

Definition 4.3.2. A sequence ℐ := (𝐼1, . . . , 𝐼𝑁) of 𝑘-element subsets of [𝑁 ] is called a

Grassmann necklace if for each 𝑖 ∈ [𝑁 ] there exists 𝑗𝑖 ∈ [𝑁 ] such that 𝐼𝑖+1 = 𝐼𝑖 ∖ {𝑖} ∪ {𝑗𝑖}.

Here (and everywhere in this section) the index 𝑖+ 1 is taken modulo 𝑁 .

There is a simple bijection between positroids and Grassmann necklaces, which sends a

positroid ℳ to the sequence ℐ(ℳ) := (𝐼min
1 (ℳ), 𝐼min

2 (ℳ), . . . , 𝐼min
𝑁 (ℳ)), which is a Grass-

mann necklace for each positroid ℳ. Each Grassmann necklace ℐ is encoded by an as-

sociated decorated permutation 𝜋ℐ : [𝑁 ] → [𝑁 ] which sends 𝑖 ∈ [𝑁 ] to the index 𝑗𝑖 from

Definition 4.3.2. (When 𝑖 is a fixed point of 𝜋ℐ , i.e., 𝜋ℐ(𝑖) = 𝑖, there is an extra bit of data

148



in 𝜋ℐ recording whether 𝑖 ∈ 𝐼𝑖 or 𝑖 /∈ 𝐼𝑖, but this will not be important for our exposition.)

The map ℐ ↦→ 𝜋ℐ is a bijection between Grassmann necklaces and decorated permutations.

Remark 4.3.3. Under the above correspondence, a positroid ℳ gives rise to a decorated

permutation 𝜋ℳ such that for 𝑖 ∈ [𝑁 ], 𝜋ℳ(𝑖) is equal to the unique element of the set

𝐼min
𝑖+1 (ℳ) ∖ 𝐼min

𝑖 (ℳ), if it is nonempty, and is equal to 𝑖 otherwise. It is not hard to see that

𝜋−1
ℳ (𝑖) is the unique element of the set 𝐼max

𝑖 (ℳ) ∖ 𝐼max
𝑖+1 (ℳ).

See [Pos07, Section 16] for a detailed description of these objects and bijections between

them.

A plabic graph is a planar bipartite graph 𝐺� = (𝑉 �, 𝐸�) embedded in a disk such that

it has 𝑁 boundary vertices 𝑑1, . . . , 𝑑𝑁 , each of degree 1. (Postnikov considers more general

plabic graphs where vertices of the same color are allowed to be connected by an edge, but

for our purposes it is sufficient to work with bipartite graphs.) Recall that the notion of an

almost perfect matching is given in Definition 4.2.7. Given an almost perfect matching 𝒜 of

𝐺, we define its boundary 𝜕(𝒜) ⊂ [𝑁 ] to be the set

𝜕(𝒜) ={𝑖 ∈ [𝑁 ] | 𝑑𝑖 is black and is not incident to an edge of 𝒜}∪

{𝑖 ∈ [𝑁 ] | 𝑑𝑖 is white and is incident to an edge of 𝒜}.

It turns out that for every 𝐺� there exists an integer 0 ≤ 𝑘 ≤ 𝑁 such that every almost

perfect matching 𝒜 of 𝐺� satisfies |𝜕(𝒜)| = 𝑘. The number 𝑘 is given explicitly in terms of

the number of black and white vertices of 𝐺�, see [Lam16, Eq. (9)].

Definition 4.3.4. Each plabic graph 𝐺� gives rise to a decorated permutation 𝜋𝐺� , as

follows. A strand in 𝐺� is a path that turns maximally right (resp., maximally left) at each

black (resp., white) vertex. If a strand that starts at 𝑏𝑖 ends at 𝑏𝑗 for some 𝑖, 𝑗 ∈ [𝑁 ] then

we put 𝜋𝐺�(𝑖) := 𝑗, which defines a decorated permutation 𝜋𝐺� : [𝑛] → [𝑛]. (For each 𝑖 such

that 𝜋𝐺�(𝑖) = 𝑖, 𝜋𝐺� also contains the information whether 𝑖 was black or white in 𝐺�.)

Since decorated permutations are in bijection with Grassmann necklaces and positroids,

each plabic graph 𝐺� gives rise to a Grassmann necklace ℐ𝐺� and a positroid ℳ𝐺� .

A weighted plabic graph is a pair (𝐺�,wt) where 𝐺� is a plabic graph and wt : 𝐸� → R>0

is a weight function assigning positive real numbers to the edges of 𝐺�. For an almost
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perfect matching 𝒜 of 𝐺�, recall that wt(𝒜) is the product of weights of edges of 𝒜. We can

consider a collection Meas(𝐺�,wt) := (Δ𝐼(𝐺
�,wt))

𝐼∈([𝑁 ]
𝑘 )

∈ RP(
𝑁
𝑘)−1 of polynomials given

for 𝐼 ∈
(︀
[𝑁 ]
𝑘

)︀
by

Δ𝐼(𝐺
�,wt) :=

∑︁
𝒜:𝜕(𝒜)=𝐼

wt(𝒜), (4.3.2)

where the sum is over all almost perfect matchings 𝒜 of𝐺� with boundary 𝐼. It turns out that

(Δ𝐼(𝐺
�,wt))

𝐼∈([𝑁 ]
𝑘 )

is the collection of Plücker coordinates of some point 𝑋 ∈ Gr≥0(𝑘,𝑁).

The following result is implicit in [PSW09].

Theorem 4.3.5 ([Lam16, Corollary 7.14]). Given a weighted plabic graph (𝐺�,wt), there

exists a unique point 𝑋 ∈ Gr(𝑘,𝑁) such that

Meas(𝐺�,wt) = (Δ𝐼(𝑋))
𝐼∈([𝑁 ]

𝑘 )

as elements of the projective space RP(
𝑁
𝑘)−1. The point 𝑋 belongs to Gr≥0(𝑘,𝑁) and in fact

to the positroid cell Π>0
ℳ

𝐺�
, where ℳ𝐺� is the positroid whose decorated permutation is 𝜋𝐺�.

Every point 𝑋 ∈ Π>0
ℳ

𝐺�
arises in this way from some weight function wt : 𝐸� → R>0.

The map Meas(𝐺�, ·) : R𝐸�

>0 → Gr≥0(𝑘,𝑁) sending wt ↦→ 𝑋 is not usually injective.

To see this, observe that each interior vertex of 𝐺� is incident to precisely one edge of

each almost perfect matching 𝒜. Thus rescaling the weights of all edges incident to a single

interior vertex (i.e. applying a gauge transformation) does not change the value of Meas. We

denote by R𝐸�

>0 /Gauge the space of gauge-equivalence classes of functions wt : 𝐸� → R>0, so

that wt and wt′ are the same in R𝐸�

>0 /Gauge if and only if wt′ can be obtained from wt by a

sequence of gauge transformations. It is not hard to see that R𝐸�

>0 /Gauge is homeomorphic

to an open ball of dimension 𝐹 (𝐺�)− 1, where 𝐹 (𝐺�) denotes the number of faces of 𝐺�.

Thus by Theorem 4.3.5, Meas gives rise to a map

Meas : R𝐸�

>0 /Gauge → Π>0
ℳ

𝐺�
⊂ Gr≥0(𝑘,𝑁)

which turns out to be injective for some plabic graphs 𝐺�. More precisely, let us say that

𝐺� is reduced if all of the following conditions are satisfied:
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∙ no strand in 𝐺� intersects itself;

∙ there are no closed strands in 𝐺�;

∙ no two strands in 𝐺� have a bad double crossing.

Here two strands are said to form a bad double crossing if there are two vertices 𝑢, 𝑣 ∈ 𝑉 �

such that both strands first pass through 𝑢 and then through 𝑣. The following result can be

found in [Pos07, Lam16].

Theorem 4.3.6. For each positroid ℳ, there exists a reduced plabic graph 𝐺� such that

ℳ = ℳ𝐺�. Given a reduced plabic graph 𝐺�, the map Meas : R𝐸�

>0 /Gauge → Π>0
ℳ

𝐺�
is a

homeomorphism. Thus the positroid cell Π>0
ℳ

𝐺�
is homeomorphic to R𝐹 (𝐺�)−1. In addition,

we have

Gr≥0(𝑘,𝑁) =
⨆︁
ℳ

Π>0
ℳ , (4.3.3)

where the union is over all positroids ℳ ⊂
(︀
[𝑁 ]
𝑘

)︀
.

The last ingredient from the theory of plabic graphs that we will need is BCFW bridges,

introduced in [AHBC+16, BCFW05]. Our exposition will follow [Lam16, Section 7].

Recall that each boundary vertex of a plabic graph is incident to a unique edge.

Definition 4.3.7. Given 𝑖 ∈ [𝑁 ], we say that a plabic graph 𝐺� has a removable bridge

between 𝑖 and 𝑖+1 if there exists a path of length 3 between 𝑑𝑖 and 𝑑𝑖+1 in 𝐺�. (In particular,

these vertices have to be of different color).

Here we again allow 𝑖 = 𝑁 and 𝑖 + 1 = 1. We refer to the middle edge of this path

of length 3 as a bridge between 𝑖 and 𝑖 + 1. There are two types of bridges, since 𝑖 can

be incident either to a white or to a black interior vertex. It turns out that the weight of

the bridge can always be recovered from the minors of the corresponding element of the

Grassmannian. The following result can be found in [Lam16, Proposition 7.10] and [Lam18,

Proposition 3.10], and is the main ingredient of the proof of Theorem 4.2.20.

Theorem 4.3.8. Let (𝐺�,wt) be a weighted reduced plabic graph, and suppose that it has

a removable bridge between 𝑖 and 𝑖 + 1. Assume that the weights of the edges incident to
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𝑑𝑖 and 𝑑𝑖+1 are both equal to 1 (which can always be achieved using gauge transformations).

Let 𝑒 ∈ 𝐸� be the bridge between 𝑖 and 𝑖+ 1, and denote 𝑋 := Meas(𝐺�,wt) ∈ Gr≥0(𝑘,𝑁).

∙ If 𝑖 is white then for 𝐼 := 𝐼min
𝑖+1 (ℳ𝐺�), we have

wt(𝑒) =
Δ𝐼(𝑋)

Δ𝐼∪{𝑖}∖{𝑖+1}(𝑋)
.

∙ If 𝑖 is black then for 𝐼 := 𝐼max
𝑖+1 (ℳ𝐺�), we have

wt(𝑒) =
Δ𝐼(𝑋)

Δ𝐼∪{𝑖+1}∖{𝑖}(𝑋)
.

We will also need to explain how removing a bridge changes the corresponding element of

the Grassmannian. For 𝑖 ∈ [𝑁 −1] and 𝑡 ∈ R, define 𝑥𝑖(𝑡) ∈ Mat𝑁(R) to be a 𝑁 ×𝑁 matrix

with ones on the diagonal and a single nonzero off-diagonal entry in row 𝑖 and column 𝑖+ 1

equal to 𝑡. We also define 𝑥𝑁(𝑡) to be the matrix with ones on the diagonal and the entry

in row 𝑁 , column 1 equal to (−1)𝑘−1𝑡. We define 𝑦𝑖(𝑡) to be the matrix transpose of 𝑥𝑖(𝑡)

for 𝑖 ∈ [𝑁 ].

Lemma 4.3.9 ([Lam16, Lemma 7.6]). Let (𝐺�,wt) be a weighted plabic graph, and suppose

that it has a removable bridge between 𝑖 and 𝑖 + 1. Assume that the weights of the edges

incident to 𝑑𝑖 and 𝑑𝑖+1 are both equal to 1. Let 𝑒 ∈ 𝐸� be the bridge between 𝑖 and 𝑖+1 with

weight wt(𝑒) = 𝑡, and denote 𝑋 := Meas(𝐺�,wt) ∈ Gr≥0(𝑘,𝑁). Let (𝐺�′
,wt′) be obtained

from (𝐺�,wt) by removing 𝑒, and define 𝑋 ′ := Meas(𝐺�′
,wt). Then for all 𝐼 ∈

(︀
[𝑁 ]
𝑘

)︀
we

have the following.

∙ If 𝑖 is white then 𝑋 ′ = 𝑋 · 𝑥𝑖(−𝑡), and

Δ𝐼(𝑋
′) =

⎧⎪⎨⎪⎩Δ𝐼(𝑋)− 𝑡Δ𝐼∖{𝑖+1}∪{𝑖}(𝑋), if 𝑖+ 1 ∈ 𝐼 but 𝑖 /∈ 𝐼;

Δ𝐼(𝑋), otherwise.
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∙ If 𝑖 is black then 𝑋 ′ = 𝑋 · 𝑦𝑖(−𝑡), and

Δ𝐼(𝑋
′) =

⎧⎪⎨⎪⎩Δ𝐼(𝑋)− 𝑡Δ𝐼∖{𝑖}∪{𝑖+1}(𝑋), if 𝑖 ∈ 𝐼 but 𝑖+ 1 /∈ 𝐼;

Δ𝐼(𝑋), otherwise.

4.4 The totally nonnegative orthogonal Grassmannian

In this section, we discuss how the stratification of Gr(𝑛, 2𝑛) induces a stratification of the

totally nonnegative orthogonal Grassmannian OG≥0(𝑛, 2𝑛). We remark that some of the

statements below have appeared in [HW13, HWX14], but mostly without proofs.

Recall from Definition 4.1.1 that the orthogonal Grassmannian OG(𝑛, 2𝑛) ⊂ Gr(𝑛, 2𝑛) is

the set of 𝑋 ∈ Gr(𝑛, 2𝑛) such that Δ𝐼(𝑋) = Δ[2𝑛]∖𝐼(𝑋) for all 𝑛-element sets 𝐼 ⊂ [2𝑛]. In the

literature, the term “orthogonal Grassmannian” usually refers to the set of subspaces where

a certain non-degenerate symmetric bilinear form vanishes. Over the complex numbers,

there is only one such bilinear form up to isomorphism, but over the real numbers, one

needs to choose a signature. Following [HW13], define a non-degenerate symmetric bilinear

form 𝜂 : R2𝑛 × R2𝑛 → R by 𝜂(𝑢, 𝑣) := 𝑢1𝑣1 − 𝑢2𝑣2 + · · · + 𝑢2𝑛−1𝑣2𝑛−1 − 𝑢2𝑛𝑣2𝑛. Let us also

introduce another subset OG−(𝑛, 2𝑛) ⊂ Gr(𝑛, 2𝑛) consisting of all 𝑋 ∈ Gr(𝑛, 2𝑛) such that

Δ𝐼(𝑋) = −Δ[2𝑛]∖𝐼(𝑋) for all 𝑛-element sets 𝐼 ⊂ [2𝑛].2 We justify our terminology as follows.

Proposition 4.4.1. For a subspace 𝑋 ∈ Gr(𝑛, 2𝑛), the following are equivalent:

∙ 𝑋 ∈ OG(𝑛, 2𝑛) ⊔OG−(𝑛, 2𝑛);

∙ for any two vectors 𝑢, 𝑣 ∈ 𝑋 ⊂ R2𝑛, we have 𝜂(𝑢, 𝑣) = 0.

Proof. Given an 𝑘×𝑁 matrix 𝐴 = (𝑎𝑖,𝑗), define another 𝑘×𝑁 matrix alt(𝐴) := ((−1)𝑗𝑎𝑖,𝑗).

Taking row spans and setting 𝑘 := 𝑛, 𝑁 := 2𝑛, we get a map alt : Gr(𝑛, 2𝑛) → Gr(𝑛, 2𝑛).

It is a classical result (see e.g. [Hoc75, Section 7] or [Kar17, Lemma 1.11]) that for 𝑋 ∈

Gr(𝑛, 2𝑛) and 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
, we have Δ[2𝑛]∖𝐼(alt(𝑋

⊥)) = 𝑐Δ𝐼(𝑋), where ⊥ denotes the orthogonal

complement of 𝑋 ⊂ R2𝑛 with respect to the standard scalar product ⟨·, ·⟩ on R2𝑛 and 𝑐 ∈ R
2We thank David Speyer for suggesting to consider both OG(𝑛, 2𝑛) and OG−(𝑛, 2𝑛).
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is some nonzero constant. Note that 𝜂(𝑢, 𝑣) = ⟨ alt(𝑢), 𝑣⟩ for 𝑢, 𝑣 ∈ R2𝑛, which shows that 𝜂

vanishes on 𝑋 if and only if Δ𝐼(𝑋) = 𝑐Δ[2𝑛]∖𝐼(𝑋) for all 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
. Applying this equality

twice, we get Δ𝐼(𝑋) = 𝑐Δ[2𝑛]∖𝐼(𝑋) = 𝑐2Δ𝐼(𝑋), and thus 𝑐 = ±1. We are done with the

proof.

Remark 4.4.2. Lusztig [Lus94] has defined the totally nonnegative part (𝐺/𝑃 )≥0 of any

partial flag variety 𝐺/𝑃 inside a split reductive algebraic group 𝐺 over R. Rietsch showed

that the space Gr≥0(𝑘, 𝑛) is a special case of (𝐺/𝑃 )≥0, see [Lam16, Remark 3.8]. For a specific

choice of 𝐺 = 𝑂(𝑛, 𝑛) (i.e. the split orthogonal group, which corresponds to the Dynkin

diagram of type 𝐷𝑛) and a maximal parabolic subgroup 𝑃 ∼= SL𝑛(R) (corresponding to the

Dynkin diagram of type 𝐴𝑛−1, obtained from 𝐷𝑛 by removing a leaf adjacent to a degree 3

vertex), 𝐺/𝑃 becomes equal to OG(𝑛, 2𝑛). If we had (𝐺/𝑃 )≥0 = OG≥0(𝑛, 2𝑛) then the fact

that OG≥0(𝑛, 2𝑛) is a closed ball would follow from the results of [GKL18]. However, the

relationship between Lusztig’s (𝐺/𝑃 )≥0 and OG≥0(𝑛, 2𝑛) remains unclear to us. For instance,

the cell decomposition of (𝐺/𝑃 )≥0 conjectured by Lusztig and proved by Rietsch [Rie98,

Rie99] appears to have a different number of cells than the cell decomposition of OG≥0(𝑛, 2𝑛)

indexed by matchings on [2𝑛] that we consider in this paper. David Speyer [Spe18] has

also informed us that the space 𝐸𝑛 of electrical networks can be realized as a subset of

the Lagrangian Grassmannian LG(𝑛 − 1, 2𝑛 − 2), which is also equal to 𝐺/𝑃 when 𝐺 is

the symplectic group Sp2𝑛−2(C) (corresponding to the Dynkin diagram of type 𝐶𝑛−1). The

relationship between this subset and (𝐺/𝑃 )≥0 is again unclear in this case.

Remark 4.4.3. A different relation between the Ising model and spin representations of the

orthogonal group can be found in [Kau49, SMJ78, Pal07].

Remark 4.4.4. The generators 𝑔𝑖(𝑡) from Section 4.2.5 belong to 𝑂(𝑛, 𝑛), and moreover,

they are hyperbolic rotation matrices, since for 𝑡 ∈ R>0 and 𝑐 := tanh(2𝑡), 𝑠 := sech(2𝑡),

there exists a unique 𝑟(𝑡) ∈ R such that

⎛⎝1/𝑐 𝑠/𝑐

𝑠/𝑐 1/𝑐

⎞⎠ =

⎛⎝cosh(𝑟(𝑡)) sinh(𝑟(𝑡))

sinh(𝑟(𝑡)) cosh(𝑟(𝑡))

⎞⎠ . It would

thus be interesting to find an analog of the theory of [LP15] for the orthogonal group rather

than the symplectic group.
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Remark 4.4.5. A more standard choice of coordinates for OG(𝑛, 2𝑛) is to consider the

set OG′(𝑛, 2𝑛) of all 𝑋 ∈ Gr(𝑛, 2𝑛) where another symmetric bilinear form, 𝜂′(𝑢, 𝑣) :=

𝑢1𝑣𝑛+1 + 𝑢2𝑣𝑛+2 + · · ·+ 𝑢𝑛𝑣2𝑛, vanishes. Consider a 2𝑛× 2𝑛 matrix 𝐽 with the only nonzero

entries given by 𝐽2𝑗−1,𝑗 = 𝐽2𝑗,𝑗 = 𝐽2𝑗−1,𝑗+𝑛 = 1/2, 𝐽2𝑗,𝑗+𝑛 = −1/2, for all 𝑗 ∈ [𝑛]. Then the

map 𝑋 ↦→ 𝑋 ·𝐽 gives a bijection between OG(𝑛, 2𝑛)⊔OG−(𝑛, 2𝑛) and OG′(𝑛, 2𝑛). Moreover,

for 𝑀 ∈ Matsym𝑛 (R, 1), the matrix 𝑀 ·𝐽 has the form [𝐼𝑛|𝑀 ′] for a skew-symmetric matrix 𝑀 ′

given by 𝑚′
𝑖,𝑗 = (−1)𝑖+𝑗+1𝑚𝑖,𝑗 for 𝑖 ̸= 𝑗 and 𝑚′

𝑖,𝑗 = 0 for 𝑖 = 𝑗. A standard way to work with

OG′(𝑛, 2𝑛) is to consider spinor coordinates, which are essentially Pfaffians of the matrix 𝑀 ′

above, see e.g. [HS10, Section 5]. It was shown in [GBK78] that these Pfaffians are multi-

point boundary correlation functions for the Ising model, as we explain in Proposition 4.7.7.

We thank David Speyer for this remark.

Proposition 4.4.1 allows one to deduce that the image of the map 𝜑 is contained inside

the orthogonal Grassmannian.

Corollary 4.4.6. We have 𝜑(Matsym𝑛 (R, 1)) ⊂ OG(𝑛, 2𝑛).

Proof. Let 𝑀 ∈ Matsym𝑛 (R, 1). It is obvious from the definition of ̃︁𝑀 that if 𝑢, 𝑣 ∈ R2𝑛

are any two rows of ̃︁𝑀 then we have 𝜂(𝑢, 𝑣) = 0, and thus by Proposition 4.4.1 we get

𝜑(Matsym𝑛 (R, 1)) ⊂ OG(𝑛, 2𝑛) ⊔ OG−(𝑛, 2𝑛). But note that OG(𝑛, 2𝑛) and OG−(𝑛, 2𝑛) are

not connected to each other inside OG(𝑛, 2𝑛)⊔OG−(𝑛, 2𝑛), however, Matsym𝑛 (R, 1) ∼= R(
𝑛
2) is

connected. Thus 𝜑(Matsym𝑛 (R, 1)) is connected, and clearly the image of the identity matrix

𝐼𝑛 ∈ Matsym𝑛 (R, 1) belongs to OG(𝑛, 2𝑛) and not to OG−(𝑛, 2𝑛). The result follows.

Proposition 4.4.7. Let 𝑋 ∈ OG≥0(𝑛, 2𝑛), and let ℳ := ℳ𝑋 be the positroid of 𝑋 with

decorated permutation 𝜋ℳ. Then 𝜋ℳ is a fixed-point free involution: if 𝜋ℳ(𝑖) = 𝑗 then

𝑖 ̸= 𝑗 and 𝜋ℳ(𝑗) = 𝑖.

Proof. It is clear from Definition 4.3.1 that we have 𝐼min
𝑖 (ℳ) = [2𝑛] ∖ 𝐼max

𝑖 (ℳ), because

𝑋 ∈ OG(𝑛, 2𝑛). Suppose now that 𝜋ℳ(𝑖) = 𝑗 and that 𝑖 ̸= 𝑗. By Remark 4.3.3, 𝜋−1
ℳ (𝑖) is

the unique element of the set

𝐼max
𝑖 (ℳ) ∖ 𝐼max

𝑖+1 (ℳ) = ([2𝑛] ∖ 𝐼min
𝑖 (ℳ)) ∖ ([2𝑛] ∖ 𝐼min

𝑖+1 (ℳ)) = 𝐼min
𝑖+1 (ℳ) ∖ 𝐼min

𝑖 (ℳ),
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which is equal to {𝜋ℳ(𝑖)} = {𝑗}. Thus 𝜋−1
ℳ (𝑖) = 𝑗, equivalently, 𝜋ℳ(𝑗) = 𝑖, so 𝜋ℳ is an

involution. It remains to show that it is fixed-point free, i.e., that 𝜋ℳ(𝑖) ̸= 𝑖 for all 𝑖 ∈ [2𝑛].

We can have 𝜋ℳ(𝑖) = 𝑖 if either 𝑖 is a loop or a coloop of ℳ, that is, if either 𝑖 ∈ 𝐼 for

all 𝐼 ∈ ℳ or 𝑖 /∈ 𝐼 for all 𝐼 ∈ ℳ, respectively. Choose some 𝐼 ∈ ℳ. Then [2𝑛] ∖ 𝐼 also

belongs to ℳ, which shows that 𝑖 is neither a loop nor a coloop of ℳ. We are done with

the proof.

Remark 4.4.8. Recall that given a matching 𝜏 on [2𝑛], Definition 4.2.19 gives two disjoint

sets 𝐼min
𝑖 (𝜏) and 𝐼max

𝑖 (𝜏) for each 𝑖 ∈ [2𝑛]. It is easy to check that if 𝜋 is the fixed-point free

involution corresponding to 𝜏 then 𝐼min
𝑖 (ℳ𝜋) = 𝐼min

𝑖 (𝜏) and 𝐼max
𝑖 (ℳ𝜋) = 𝐼max

𝑖 (𝜏).

In Section 4.2.5, we described how to transform a planar graph 𝐺 embedded in a disk into

a medial graph 𝐺×, and then how to obtain a medial pairing 𝜏𝐺 from 𝐺×. Not all matchings

can be obtained in this way, for example, when 𝑛 = 2, the matching {{1, 4}, {2, 3}} is not a

medial pairing of any graph 𝐺. It will thus be more convenient for us to work with medial

graphs rather than matchings. In Section 4.5, we introduce generalized planar Ising networks

which correspond to all matchings on [2𝑛].

Definition 4.4.9. A medial graph is a planar graph 𝐺× = (𝑉 ×, 𝐸×) embedded in a disk,

such that it has 2𝑛 boundary vertices 𝑑1, 𝑑2, . . . , 𝑑2𝑛 ∈ 𝑉 × in counterclockwise order, each of

degree 1, and such that every other vertex of 𝐺× has degree 4.

The non-boundary vertices (the ones that have degree 4) are called interior vertices of

𝐺×, and we let 𝑉 ×
int := 𝑉 × ∖ {𝑑1, . . . , 𝑑2𝑛} denote the set of such vertices. Each medial graph

𝐺× gives rise to a medial pairing 𝜏𝐺× , as in Section 4.2.5. We say that a medial graph 𝐺× is

reduced if the number of its interior vertices equals xing(𝜏𝐺×). Equivalently, 𝐺× is reduced

if every edge of 𝐺× belongs to some medial strand connecting two boundary vertices, no

medial strand intersects itself, and no two medial strands intersect more than once.

Lemma 4.4.10. For every matching 𝜏 on [2𝑛], there exists a reduced medial graph 𝐺×

satisfying 𝜏𝐺× = 𝜏 .

Proof. For each pair {𝑖, 𝑗} ∈ 𝜏 , connect 𝑑𝑖 with 𝑑𝑗 by a straight line segment. Then perturb

each line segment slightly so that every point inside the disk would belong to at most two

156



segments, obtaining a pseudoline arrangement. Let 𝐺× be obtained from this pseudoline

arrangement by putting an interior vertex at each intersection point. It is clear that 𝐺× is

a reduced medial graph whose medial pairing is 𝜏 . Alternatively, 𝐺× can be constructed by

induction on xing(𝜏) in an obvious way using the poset 𝑃𝑛 from Definition 4.4.15.

Let us say that a medial network 𝑁× = (𝐺×, 𝐽×) is a medial graph 𝐺× together with a

function 𝐽× : 𝑉 ×
int → R>0. Thus if 𝑁 = (𝐺, 𝐽) is a planar Ising network then the edges of 𝐺

correspond to the interior vertices of the corresponding medial graph 𝐺× and thus the Ising

network 𝑁 gives rise to a medial network 𝑁× = (𝐺×, 𝐽×), as described in Sections 4.2.5

and 4.5. In the remainder of this section, we will work with medial networks rather than

with planar Ising networks.

Every medial graph gives rise to a plabic graph. In order to describe this correspondence,

we first introduce a canonical way to orient each medial graph, as described in [HWX14].

Proposition 4.4.11. Let 𝐺× be a medial graph. Then there exists a unique orientation of

the edges of 𝐺× such that:

1. for 𝑖 ∈ [2𝑛], 𝑑𝑖 is a source if and only if 𝑖 is odd;

2. each interior vertex 𝑣 ∈ 𝑉 ×
int of 𝐺× is incident to two incoming and two outgoing arrows

so that their directions alternate around 𝑣.

Proof. If 𝐺× is connected then it is easy to see that there are just two orientations satisfying

the second condition, since we can color the faces of 𝐺× in a bipartite way and then orient

all black faces clockwise and all white faces counterclockwise, or vice versa. One of these

two orientations will satisfy the first condition. If 𝐺× has 𝐶 connected components then

there are 2𝐶 orientations of 𝐺 satisfying the second condition, but there will still be one

of them that satisfies the first condition, because the number of vertices of each connected

component is even.

Definition 4.4.12. Given a medial network 𝑁× = (𝐺×, 𝐽×), the associated weighted plabic

graph (𝐺�,wt) is constructed as follows. First, orient the edges of 𝐺× as in Proposi-

tion 4.4.11, and then for each oriented edge 𝑒 of 𝐺×, put a white vertex 𝑒∘ of 𝐺� close

to the source of 𝑒 and a black vertex 𝑒∙ of 𝐺� close to the target of 𝑒. If the source (resp.,
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𝑖′𝑖

𝑗′ 𝑗

→
𝑖′𝑖

𝑗′ 𝑗

or
𝑖′𝑖

𝑗′ 𝑗

𝜏 𝜏 ′ 𝜏 ′′

Figure 4-6: Uncrossing the pairs {𝑖, 𝑗} and {𝑖′, 𝑗′}.

the target) of 𝑒 is a boundary vertex 𝑑𝑖 then we set 𝑒∘ := 𝑑𝑖 (resp., 𝑒∙ := 𝑑𝑖). Now, for

each edge 𝑒 ∈ 𝐸� of 𝐺�, connect 𝑒∙ and 𝑒∘ by an edge of 𝐺�, and set its weight to 1:

wt({𝑒∙, 𝑒∘}) := 1. Additionally for every interior vertex 𝑣 ∈ 𝑉 ×
int of 𝐺� incident to edges

𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ 𝐸� in counterclockwise order so that 𝑣 is the target of 𝑒1 and 𝑒3 and the

source of 𝑒2 and 𝑒4, add four edges {𝑒∙1, 𝑒∘2}, {𝑒∘2, 𝑒∙3}, {𝑒∙3, 𝑒∘4}, {𝑒∘4, 𝑒∙1} to 𝐺�. The weights of

these edges are given by

wt({𝑒∙1, 𝑒∘2}) = wt({𝑒∙3, 𝑒∘4}) := 𝑠𝑣, wt({𝑒∘2, 𝑒∙3}) = wt({𝑒∘4, 𝑒∙1}) := 𝑐𝑣, (4.4.1)

where 𝑠𝑣 and 𝑐𝑣 are given by (4.2.5), that is,

𝑠𝑣 := sech(2𝐽×
𝑣 ) =

2

exp(2𝐽×
𝑣 ) + exp(−2𝐽×

𝑣 )
; 𝑐𝑣 := tanh(2𝐽×

𝑣 ) =
exp(2𝐽×

𝑣 )− exp(−2𝐽×
𝑣 )

exp(2𝐽×
𝑣 ) + exp(−2𝐽×

𝑣 )
.

This defines a weighted plabic graph (𝐺�,wt) associated to the medial network 𝑁× =

(𝐺×, 𝐽×).

Recall that for a medial graph𝐺×, the corresponding medial pairing 𝜏𝐺× = {{𝑖1, 𝑗1}, . . . , {𝑖𝑛, 𝑗𝑛}}

is a matching on [2𝑛]. We define a permutation 𝜋𝐺× : [2𝑛] → [2𝑛] by setting 𝜋𝐺×(𝑖𝑘) := 𝑗𝑘

and 𝜋𝐺×(𝑗𝑘) := 𝑖𝑘 for all 𝑘 ∈ [2𝑛]. Thus 𝜋𝐺× is a fixed-point free involution.

Lemma 4.4.13. A medial graph 𝐺× is reduced if and only if the corresponding plabic graph

𝐺� is reduced. We have 𝜋𝐺× = 𝜋𝐺�.

Proof. This is straightforward to check from the definitions, since the medial strands corre-

spond to the strands in 𝐺� from Definition 4.3.4.
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Proposition 4.4.14. Given a medial network 𝑁× = (𝐺×, 𝐽×), let (𝐺�,wt) be the corre-

sponding weighted plabic graph. Then Meas(𝐺�,wt) yields an element of Π>0
ℳ ∩OG≥0(𝑛, 2𝑛),

where ℳ = ℳ𝜋𝐺× is the positroid corresponding to the fixed-point free involution 𝜋𝐺×.

Proof. By Lemma 4.4.13, we have 𝜋𝐺× = 𝜋𝐺� . Let 𝑋 ∈ Gr≥0(𝑛, 2𝑛) be the point given by

Meas(𝐺�,wt). By Theorem 4.3.5, 𝑋 belongs to Π>0
ℳ , and it remains to show that 𝑋 belongs

to OG≥0(𝑛, 2𝑛). Given an almost perfect matching 𝒜 of 𝐺�, let us define 𝑆×(𝒜) ⊂ 𝐸× to

be the set of edges 𝑒 of 𝐺× such that the edge {𝑒∙, 𝑒∘} of 𝐺� belongs to 𝒜. We claim that

for all sets 𝑅 ⊂ 𝐸× of edges of 𝐺×, we have

∑︁
𝑆×(𝒜)=𝑅

wt(𝒜) =
∑︁

𝑆×(𝒜)=𝐸×∖𝑅

wt(𝒜), (4.4.2)

where the sums are over almost perfect matchings of 𝐺�. The left hand side of (4.4.2) is

equal to the product over all interior vertices 𝑣 ∈ 𝑉 ×
int of 𝐺× of 𝑞(𝑣), where 𝑞(𝑣) is equal to

either 𝑐𝑒, 𝑠𝑒, 𝑐2𝑒+𝑠2𝑒, 1, or 0, depending on which of the four edges of 𝐺× adjacent to 𝑣 belong

to 𝑅. It is clear from Figure 4-3 that replacing 𝑅 with its complement does not affect this

product. (The only non-trivial change is replacing 𝑐2𝑒 + 𝑠2𝑒 with 1, but recall that we have

𝑐2𝑒+𝑠
2
𝑒 = 1 by construction.) This proves (4.4.2), and clearly if two almost perfect matchings

𝒜,𝒜′ of 𝐺� satisfy 𝑆×(𝒜′) = 𝐸×∖𝑆×(𝒜) then they also satisfy 𝜕(𝒜′) = [2𝑛]∖𝜕(𝒜), finishing

the proof.

For a matching 𝜏 on [2𝑛], let ℳ𝜏 be the positroid corresponding to the fixed-point free

involution 𝜋 : [2𝑛] → [2𝑛] associated with 𝜏 , and denote by Π>0
𝜏 := Π>0

ℳ𝜏
. Following [Lam18],

denote by 𝑃𝑛 the partially ordered set (poset) of all matchings 𝜏 on [2𝑛]. (It is easy to see

that 𝑃𝑛 has (2𝑛)!
𝑛!2𝑛

elements.) The covering relations of 𝑃𝑛 are described as follows. Given a

matching 𝜏 on [2𝑛], suppose that the pairs {𝑖, 𝑗}, {𝑖′, 𝑗′} ∈ 𝜏 form a crossing, as in Defini-

tion 4.2.15. Introduce two matchings

𝜏 ′ := 𝜏 ∖ {{𝑖, 𝑗}, {𝑖′, 𝑗′}} ∪ {{𝑖, 𝑗′}, {𝑖′, 𝑗}};

𝜏 ′′ := 𝜏 ∖ {{𝑖, 𝑗}, {𝑖′, 𝑗′}} ∪ {{𝑖, 𝑖′}, {𝑗, 𝑗′}}.
(4.4.3)
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Figure 4-7: The Hasse diagram of the poset 𝑃3.

Definition 4.4.15. We say that 𝜏 ′ and 𝜏 ′′ are obtained from 𝜏 by uncrossing the pairs {𝑖, 𝑗}

and {𝑖′, 𝑗′} (see Figure 4-6). In addition, if xing(𝜏 ′) + 1 = xing(𝜏) (resp., xing(𝜏 ′′) + 1 =

xing(𝜏)), we write 𝜏 ′ l 𝜏 (resp., 𝜏 ′′ l 𝜏), and let 𝑃𝑛 be the poset whose order relation ≤ is

the transitive closure of l.

Remark 4.4.16. Equivalently, as explained in [Lam18, Section 4.5], given a medial graph

𝐺× with medial pairing 𝜏 , we have 𝜏 ′l𝜏 if and only if “uncrossing” the unique vertex 𝑣 ∈ 𝑉 ×
int

of 𝐺× that belongs to the intersection of medial strands connecting 𝑑𝑖 to 𝑑𝑗 and 𝑑𝑖′ to 𝑑𝑗′

yields a reduced medial graph with medial pairing 𝜏 ′. Here uncrossing an interior vertex of a

medial graph means replacing its neighborhood in one of the two ways shown in Figure 4-6.

By [Lam18, Lemma 4.13], the poset 𝑃𝑛 is graded with grading given by xing(𝜏), and

by [HK18, Lam15], 𝑃𝑛 is a shellable Eulerian poset. See Figure 4-7 for the case 𝑛 = 3.

We are now ready to state the main result of this section.

Theorem 4.4.17.

(i) Given a reduced medial graph 𝐺×, let 𝐺� be the corresponding plabic graph with

positroid ℳ := ℳ𝐺�. Then the map 𝐽× ↦→ Meas(𝐺�,wt) is a homeomorphism be-

tween R𝐸×
>0 and Π>0

ℳ ∩OG≥0(𝑛, 2𝑛).
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(ii) The set OG≥0(𝑛, 2𝑛) is a disjoint union of cells

OG≥0(𝑛, 2𝑛) =
⨆︁
𝜏∈𝑃𝑛

(︀
Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛)

)︀
, (4.4.4)

and each cell Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛) is homeomorphic to Rxing(𝜏).

(iii) For 𝜏 ∈ 𝑃𝑛, the closure of the cell Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛) in Gr(𝑛, 2𝑛) equals

(Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛)) =

⨆︁
𝜎∈𝑃𝑛:𝜎≤𝜏

(︀
Π>0
𝜎 ∩OG≥0(𝑛, 2𝑛)

)︀
. (4.4.5)

Proof. As we have shown in Proposition 4.4.7, for every 𝑋 ∈ OG≥0(𝑛, 2𝑛), the decorated

permutation 𝜋 = 𝜋ℳ𝑋
associated with the positroid ℳ𝑋 of 𝑋 is a fixed-point free involution,

and thus (4.4.4) follows from (4.3.3). The remainder of part (ii) (that each cell is an open

ball) follows from part (i), which we prove now. Thus we fix a reduced medial graph 𝐺×

and the corresponding plabic graph 𝐺�, reduced by Lemma 4.4.13. Let 𝜓 : R𝐸×
>0 → Π>0

ℳ ∩

OG≥0(𝑛, 2𝑛) be the map that sends 𝐽× ↦→ Meas(𝐺�,wt). We first show that 𝜓 is injective.

By Theorem 4.3.6, it suffices to show that the map 𝐽× : 𝑉 ×
int → R>0 can be reconstructed

from the corresponding weight function wt ∈ R𝐸�

>0 /Gauge. Fix an interior vertex 𝑣 ∈ 𝑉 ×
int of

𝐺× and consider the corresponding four vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ 𝑉 � of 𝐺� on the four edges

of 𝐺× incident to 𝑣. Let 𝑒12, 𝑒23, 𝑒34, 𝑒14 be the four edges of 𝐺� forming a square around 𝑣.

We have wt(𝑒12) = wt(𝑒34) = 𝑠𝑣 and wt(𝑒23) = wt(𝑒14) = 𝑐𝑣, as in (4.4.1). Suppose that we

have applied a gauge transformation to wt obtaining another weight function wt′. Thus we

have rescaled all edges adjacent to the vertex 𝑣𝑘 by some number 𝑡𝑘 ∈ R>0 for 1 ≤ 𝑘 ≤ 4.

Therefore

wt′(𝑒12) = 𝑡1𝑡2𝑠𝑣, wt′(𝑒34) = 𝑡3𝑡4𝑠𝑣, wt′(𝑒23) = 𝑡2𝑡3𝑐𝑣, wt′(𝑒14) = 𝑡1𝑡4𝑐𝑣.

In order for wt′ to come from some other map (𝐽×)′ : 𝑉 ×
int → R>0, we must have

𝑡1𝑡2𝑠𝑣 = 𝑡3𝑡4𝑠𝑒 = 𝑠′𝑣, 𝑡2𝑡3𝑐𝑣 = 𝑡1𝑡4𝑐𝑒 = 𝑐′𝑣, (𝑠′𝑣)
2 + (𝑐′𝑣)

2 = 1,
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where 𝑠′𝑣 = sech(2(𝐽×)′𝑣) and 𝑐′𝑣 = tanh(2(𝐽×)′𝑣). But the above equations imply that

𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = 1, and it follows that 𝜓 is injective.

Clearly 𝜓 is continuous, and we now prove that it is surjective, and that its inverse is also

continuous. We need the following simple observation, whose proof we leave as an exercise

to the reader.

Lemma 4.4.18. Suppose that 𝐺× is a connected medial graph having at least one interior

vertex. Then there exists an interior vertex 𝑣 ∈ 𝑉 ×
int and an index 𝑖 ∈ [2𝑛] such that 𝑣 is

connected in 𝐺× to both 𝑑𝑖 and 𝑑𝑖+1 (modulo 2𝑛).

Note that Proposition 4.2.21 follows from Lemma 4.4.18 as an immediate corollary.

We now return to the proof of Theorem 4.4.17, part (i). Let 𝜏 be a matching on

[2𝑛], 𝜋 be the corresponding fixed-point free involution, ℳ = ℳ𝜋 be the corresponding

positroid. Choose a reduced medial graph 𝐺× with medial pairing 𝜏𝐺× = 𝜏 (which exists by

Lemma 4.4.10), and let 𝐺� be the associated plabic graph. If 𝐺× is not connected then each

of its connected components contains an even number of vertices. Moreover, in this case 𝐺�

induces the same partition of boundary vertices into connected components, and it is clear

from the definition of the map Meas and Theorem 4.3.5 that each minor of Meas(𝐺�,wt) is

a product of the individual minors for each of the connected components. Thus the problem

naturally separates into several independent problems, one for each connected component of

𝐺×, and in what follows, we assume that 𝐺× is connected.

Let 𝑋 ∈ Π>0
ℳ ∩ OG≥0(𝑛, 2𝑛). By Theorem 4.3.6, there exists a weight function wt :

𝐸� → R>0 such that Meas(𝐺�,wt) = 𝑋, and our goal is to show that there exists a unique

function 𝐽× : 𝑉 ×
int → R>0 such that 𝜓(𝐽×) : 𝐸� → R>0 is obtained from wt using gauge

transformations. Choose 𝑣 ∈ 𝑉 ×
int and 𝑖 ∈ [2𝑛] as in Lemma 4.4.18. Thus 𝐺� contains a

removable bridge between 𝑖 and 𝑖+ 1 (modulo 2𝑛). Denote by 𝑣1 and 𝑣2 the vertices of 𝐺�

adjacent to 𝑑𝑖 and 𝑑𝑖+1 respectively, and denote by 𝑣3 and 𝑣4 the other two vertices of 𝐺� so

that 𝑣1, 𝑣2, 𝑣3, 𝑣4 surround 𝑣 in counterclockwise order. Applying gauge transformations to

𝑣1 and 𝑣2, we may assume that wt({𝑣1, 𝑑𝑖}) = wt({𝑣2, 𝑑𝑖+1}) = 1. Let 𝑠 := wt({𝑣1, 𝑣2}) > 0.

Applying gauge transformations to 𝑣3 and 𝑣4, we may assume that wt({𝑣3, 𝑣4}) = 𝑠, and

wt({𝑣1, 𝑣4}) = wt({𝑣2, 𝑣3}) = 𝑐 for some 𝑐 ∈ R>0. Now, let 𝐼 := 𝐼min
𝑖+1 (ℳ) and 𝐽 := [2𝑛]∖𝐼 =
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𝐼max
𝑖+1 (ℳ). Thus 𝑖 + 1 ∈ 𝐼 and 𝑖 ∈ 𝐽 . Choose some 𝑛 × 2𝑛 matrix representing 𝑋 and

denote by 𝑋𝑘 ∈ R𝑛 its 𝑘-th column. For 𝑢 ∈ R𝑛 and 𝑘 ∈ [2𝑛], let 𝑋(𝑘 → 𝑢) denote the

matrix obtained from 𝑋 by replacing its 𝑘-th column with 𝑢. We introduce linear functions

ℎ𝐼 , ℎ𝐽 : R𝑛 → R as follows:

ℎ𝐼(𝑢) := Δ𝐼(𝑋(𝑖+ 1 → 𝑢)), ℎ𝐽(𝑢) := Δ𝐽(𝑋(𝑖→ 𝑢)).

Denote 𝑢 := 𝑋𝑖 and 𝑤 := 𝑋𝑖+1. Since 𝑋 ∈ OG(𝑛, 2𝑛), we get ℎ𝐼(𝑤) = ℎ𝐽(𝑢) and ℎ𝐼(𝑢) =

ℎ𝐽(𝑤). Let (𝐺�′
,wt′) be obtained from (𝐺�,wt) by removing the bridge {𝑣1, 𝑣2}, and let

𝑋 ′ ∈ Gr≥0(𝑛, 2𝑛) := Meas(𝐺�′
,wt′). By the first part of Theorem 4.3.8, we have 𝑠 =

ℎ𝐼(𝑤)/ℎ𝐼(𝑢). By Lemma 4.3.9, we have (𝑋 ′)𝑖 = 𝑢 while (𝑋 ′)𝑖+1 = 𝑤 − 𝑠𝑢. Now, after

removing degree 2 vertices3 𝑣1 and 𝑣2 from 𝐺�′ and denoting the resulting graph 𝐺�′′,

each of the vertices 𝑑𝑖 and 𝑑𝑖+1 changes color and becomes adjacent to an edge of weight

wt′({𝑑𝑖, 𝑣4}) = wt′({𝑑𝑖+1, 𝑣3}) = 𝑐. Let us define wt′′ to be the same as wt′ except that

wt′′({𝑑𝑖, 𝑣4}) = wt′′({𝑑𝑖+1, 𝑣3}) := 1, and let 𝑋 ′′ := Meas(𝐺�′′
,wt′′). It is clear from the

definition of Meas that (𝑋 ′′)𝑖 = 𝑐𝑢 and (𝑋 ′′)𝑖+1 =
1
𝑐
(𝑤 − 𝑠𝑢). Finally, 𝐺�′′ has a removable

bridge between 𝑖 and 𝑖+ 1 so by the second part of Theorem 4.3.8, the weight wt′′({𝑣3, 𝑣4})

of this bridge must be equal to

wt′′({𝑣3, 𝑣4}) =
Δ𝐽(𝑋

′′)

Δ𝐽∪{𝑖+1}∖{𝑖}(𝑋 ′′)
=

ℎ𝐽(𝑐𝑢)

ℎ𝐽
(︀
1
𝑐
(𝑤 − 𝑠𝑢)

)︀ ,
which after substituting 𝑠 := ℎ𝐼(𝑤)/ℎ𝐼(𝑢), ℎ𝐽(𝑤) := ℎ𝐼(𝑢), ℎ𝐽(𝑢) := ℎ𝐼(𝑤), and using the

linearity of ℎ𝐼 , transforms into

wt′′({𝑣3, 𝑣4}) =
𝑐2ℎ𝐼(𝑢)ℎ𝐼(𝑤)

ℎ𝐼(𝑢)2 − ℎ𝐼(𝑤)2
.

By construction, wt′′({𝑣3, 𝑣4}) is equal to 𝑠, and thus after substituting ℎ𝐼(𝑤) := 𝑠ℎ𝐼(𝑢) the

above equation becomes

𝑠 =
𝑐2𝑠ℎ𝐼(𝑢)

2

(1− 𝑠2)ℎ𝐼(𝑢)2
=

𝑐2𝑠

1− 𝑠2
,

3It is well known that adding/removing vertices of degree 2 does not affect the result of Meas, see [Lam16,
Section 4.5 (M2)].
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which is equivalent to 𝑐2+𝑠2 = 1. Since we have 𝑠, 𝑐 > 0, it follows that 0 < 𝑠, 𝑐 < 1 and thus

there exists a unique 𝑡 ∈ R>0 satisfying 𝑠 = sech(2𝑡) and 𝑐 = tanh(2𝑡). Moreover, it is clear

that 𝑡 depends continuously on the minors of 𝑋, since the denominators Δ𝐼(𝑋) = Δ𝐽(𝑋)

must be positive. Setting 𝐽×
𝑣 := 𝑡, we uncross (in the sense of Remark 4.4.16) the interior

vertex 𝑣 in 𝐺× so that the corresponding graph 𝐺� would be obtained by removing the

bridges {𝑣1, 𝑣2} and {𝑣3, 𝑣4}, and proceed by induction, finishing the proof of part (i) (and

therefore of part (ii) as well).

It remains to prove (4.4.5). There is a certain partial order (called the affine Bruhat

order) on the set of decorated permutations such that two decorated permutations 𝜋, 𝜎

satisfy 𝜎 ≤ 𝜋 if and only if the closure of the positroid cell Π>0
ℳ𝜋

contains Π>0
ℳ𝜎

. We have

Πℳ𝜋 =
⨆︁
𝜎≤𝜋

Π>0
ℳ𝜎

,

see e.g. [Lam16, Theorem 8.1]. Moreover, the restriction of the affine Bruhat order to the

set of fixed-point free involutions coincides with the poset 𝑃𝑛 from Definition 4.4.15. Thus

we have

(Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛)) ⊂

⨆︁
𝜎∈𝑃𝑛:𝜎≤𝜏

(︀
Π>0
𝜎 ∩OG≥0(𝑛, 2𝑛)

)︀
,

and it remains to prove that the left hand side of (4.4.5) contains the right hand side, i.e.,

that for all pairs 𝜎 ≤ 𝜏 in 𝑃𝑛, the cell Π>0
𝜎 ∩ OG≥0(𝑛, 2𝑛) is contained inside the closure of

Π>0
𝜏 ∩OG≥0(𝑛, 2𝑛). Clearly it is enough to consider the case 𝜎l 𝜏 . Then 𝜎 is obtained from

𝜏 by uncrossing some pairs {𝑖, 𝑗} and {𝑖′, 𝑗′}. Moreover, since 𝐺× is reduced, it contains a

unique vertex 𝑣 ∈ 𝑉 ×
int which belongs to the medial strands connecting 𝑖 to 𝑗 and 𝑖′ to 𝑗′,

and one of the two ways of uncrossing 𝑣 yields a reduced medial graph with medial pairing

𝜎, see Remark 4.4.16. But the two ways of uncrossing 𝑣 correspond to sending 𝐽×
𝑣 to either

0 or ∞, or equivalently, sending either 𝑠𝑣 → 1, 𝑐𝑣 → 0 or 𝑠𝑣 → 0, 𝑐𝑣 → 1. By part (i), we

indeed see that Π>0
𝜎 ∩OG≥0(𝑛, 2𝑛) is a subset of the closure of Π>0

𝜏 ∩OG≥0(𝑛, 2𝑛), finishing

the proof of Theorem 4.4.17.

164



4.5 From the Ising model to the orthogonal Grassman-

nian

In this section, we study the relationship between the space 𝒳 𝑛 and the space OG≥0(𝑛, 2𝑛).

We start by slightly extending the notion of a planar Ising network so that contracting

an edge in such a network would yield another such network. Throughout, we assume that

a planar graph embedded in a disk has no loops (i.e. edges connecting a vertex to itself) or

interior vertices of degree 1.

Definition 4.5.1. A generalized planar Ising network is a pair 𝑁 = (𝐺, 𝐽) where 𝐺 = (𝑉,𝐸)

is a planar graph embedded in a disk and 𝐽 : 𝐸 → R>0 ∪ {∞}. We denote 𝐸 = 𝐸fin ⊔ 𝐸∞,

where 𝐸∞ := {𝑒 ∈ 𝐸 | 𝐽𝑒 = ∞}. The Ising model associated to 𝑁 is a probability measure

on the space

{−1, 1}𝑉/𝐸∞ := {𝜎 : 𝑉 → {−1, 1} | 𝜎𝑢 = 𝜎𝑣 for all {𝑢, 𝑣} ∈ 𝐸∞}.

The definitions of the probability P(𝜎) of a spin configuration 𝜎 ∈ {−1, 1}𝑉/𝐸∞ , the partition

function 𝑍, and a two-point boundary correlation ⟨𝜎𝑖𝜎𝑗⟩ are obtained from the corresponding

definitions (4.1.1), (4.1.2), and (4.1.3) by replacing {−1, 1}𝑉 with {−1, 1}𝑉/𝐸∞ and 𝐸 with

𝐸fin. As before, we let 𝑀(𝐺, 𝐽) = (⟨𝜎𝑖𝜎𝑗⟩) ∈ Matsym𝑛 (R, 1) denote the boundary correlation

matrix. Thus we have 𝑚𝑖,𝑗 = 1 whenever there exists a path connecting 𝑏𝑖 to 𝑏𝑗 by edges in

𝐸∞.

Definition 4.5.2. To each generalized planar Ising network 𝑁 = (𝐺, 𝐽) we associate a

medial network 𝑁× = (𝐺×, 𝐽×). First suppose that 𝐸 = 𝐸fin, i.e., that 𝐽 only takes values

in R>0. Then the medial graph 𝐺× = (𝑉 ×, 𝐸×) is obtained from 𝐺 as in Figures 4-2 and 4-4.

More precisely, the vertex set 𝑉 × is given by

𝑉 × = {𝑑1, . . . , 𝑑2𝑛} ⊔ {𝑣𝑒 | 𝑒 ∈ 𝐸},

where the 𝑑1, . . . , 𝑑2𝑛 are boundary vertices placed counterclockwise on the boundary of the

disk so that 𝑏𝑖 is between 𝑑2𝑖−1 and 𝑑2𝑖, while 𝑣𝑒 is the midpoint of the edge 𝑒 ∈ 𝐸 of 𝐺.
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The edges of 𝐺× are described as follows. If 𝑒, 𝑒′ ∈ 𝐸 share both a vertex and a face then

we connect 𝑣𝑒 to 𝑣𝑒′ in 𝐺×. In addition, for each 𝑖 ∈ [𝑛], we connect 𝑑2𝑖−1 (resp., 𝑑2𝑖) with 𝑣𝑒

where 𝑒 ∈ 𝐸 is the first in the clockwise (resp., counterclockwise) order edge of 𝐺 incident

to 𝑏𝑖. If 𝑏𝑖 is isolated in 𝐺 then we connect 𝑑2𝑖−1 to 𝑑2𝑖 in 𝐺×. Thus each vertex 𝑣𝑒 ∈ 𝑉 ×

has degree 4, and each boundary vertex 𝑑𝑖, 𝑖 ∈ [2𝑛], has degree 1 in 𝐺×. Finally, we set

𝐽×
𝑣𝑒 := 𝐽𝑒.

Suppose now that 𝐸 ̸= 𝐸fin, and thus 𝐽 takes the value of ∞ on some edges of 𝐺. Let

𝑁fin = (𝐺, 𝐽fin) be obtained from 𝑁 by setting (𝐽fin)𝑒 := 1 for all 𝑒 ∈ 𝐸∞ and (𝐽fin)𝑒 := 𝐽𝑒

for 𝑒 ∈ 𝐸fin. Let 𝑁×
fin := (𝐺×

fin, 𝐽
×
fin) be the medial network associated to 𝑁fin. Then the

medial network 𝑁× = (𝐺×, 𝐽×) associated to 𝑁 is obtained from 𝑁×
fin by “uncrossing” (see

Remark 4.4.16) the vertices 𝑣𝑒 of 𝐺×
fin for all 𝑒 ∈ 𝐸∞. There are two ways to uncross the

vertex 𝑣𝑒 as in Figure 4-6, and we choose the one where no edge of the resulting graph 𝐺×

intersects the corresponding edge 𝑒 of 𝐺. This uniquely defines the medial graph 𝐺×, and

we set 𝐽×
𝑣𝑒 := 𝐽𝑒 for all 𝑒 ∈ 𝐸fin.

The notion of a generalized planar Ising network is equivalent to the notion of a cactus

network introduced in [Lam18, Section 4.1], where he also assigns a medial graph to it in

the same way as in Definition 4.5.2.

Remark 4.5.3. Given a planar Ising network 𝑁 = (𝐺, 𝐽), the above procedure assigns a

medial network 𝑁× = (𝐺×, 𝐽×) to it. In Section 4.4, we assign a weighted plabic graph

(𝐺�,wt) to 𝑁×. It is trivial to check that the same weighted plabic graph (𝐺�,wt) gets

assigned to 𝑁 = (𝐺, 𝐽) in the construction described in Section 4.2.3.

To each medial graph 𝐺× (and thus to each generalized planar Ising network) we have

associated a medial pairing 𝜏 in Section 4.2.5. Let us denote

𝒳𝜏 := {𝑀(𝐺, 𝐽) | 𝑁 = (𝐺, 𝐽) is a generalized planar Ising network with medial pairing 𝜏}.

The following stratification of 𝒳 𝑛 will be deduced from Theorem 4.1.3 at the end of Sec-

tion 4.6.
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Proposition 4.5.4. The space 𝒳 𝑛 decomposes as

𝒳 𝑛 =
⨆︁
𝜏∈𝑃𝑛

𝒳𝜏 , (4.5.1)

and for each 𝜏 ∈ 𝑃𝑛, 𝒳𝜏 is homeomorphic to Rxing(𝜏), with closure relations given by the

poset 𝑃𝑛.

Given a (generalized) planar Ising network 𝑁 = (𝐺, 𝐽), we have described two ways to

assign an element of 𝑋 ∈ OG≥0(𝑛, 2𝑛) to 𝑁 . First, one can take the boundary correlation

matrix 𝑀 =𝑀(𝐺, 𝐽), and let 𝑋 := 𝜑(𝑀), as we did in Section 4.1.3. Second, one can con-

struct a medial network 𝑁× = (𝐺×, 𝐽×) as above, transform it into a weighted plabic graph

(𝐺�,wt), and then put 𝑋 ′ := Meas(𝐺�,wt), as we did in Section 4.2.3. Theorem 4.4.17,

part (i) shows that the second map 𝐽 ↦→ Meas(𝐺�,wt) gives a homeomorphism between R𝐸
>0

and Π>0
𝜏 ∩ OG≥0(𝑛, 2𝑛), where 𝜏 is the medial pairing of 𝐺×. The goal of the rest of this

section is to show that the outputs 𝑋 = 𝜑(𝑀) and 𝑋 ′ = Meas(𝐺�,wt) of these two maps

coincide.

Theorem 4.5.5. Let 𝑁 = (𝐺, 𝐽) be a (generalized) planar Ising network with boundary

correlation matrix 𝑀 = 𝑀(𝐺, 𝐽). Define 𝑋 := 𝜑(𝑀). Let 𝑁× = (𝐺×, 𝐽×) and (𝐺�,wt)

be the medial network and the weighted plabic graph corresponding to 𝑁 , and put 𝑋 ′ :=

Meas(𝐺�,wt). Then 𝑋 = 𝑋 ′ in Gr(𝑛, 2𝑛).

We give two proofs of Theorem 4.5.5, one using Dubédat’s results [Dub11], and one using

a formula of Lis [Lis17] for boundary correlations in terms of the random alternating flow

model. Note that it suffices to prove Theorem 4.5.5 only for planar Ising networks, since

the corresponding statement for generalized planar Ising networks is obtained by taking the

limit 𝐽𝑒 → ∞ for all 𝑒 ∈ 𝐸∞.

Before we proceed with the proofs, we need several preliminary results.

Proof of Lemma 4.2.2. By (4.2.2), it is enough to show that 𝑚𝑖,𝑗 = 2−𝑛
∑︀

𝐼∈ℰ𝑛({𝑖,𝑗}) Δ𝐼(̃︁𝑀).

For 𝑘 ∈ [𝑛], denote by 𝑒𝑘 ∈ R𝑛 the 𝑘-th standard basis vector, and for 𝑘 ∈ [2𝑛], denote by
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(̃︁𝑀)𝑘 the 𝑘-th column of ̃︁𝑀 . Consider an 𝑛× 𝑛 matrix 𝐴 with columns

𝑒1, 𝑒2, . . . , 𝑒𝑖−1, (̃︁𝑀)2𝑖−1, (̃︁𝑀)2𝑖, 𝑒𝑖+1, . . . , 𝑒𝑗−1, 𝑒𝑗+1, . . . , 𝑒𝑛.

Since by Remark 4.1.2, 2𝑒𝑘 = (̃︁𝑀)2𝑘−1 + (̃︁𝑀)2𝑘 for all 𝑘 ∈ [𝑛], we can expand det𝐴 in terms

of minors of ̃︁𝑀 :

det𝐴 = 2−𝑛+2
∑︁

𝐼∈ℰ𝑛({𝑖,𝑗}):2𝑖−1,2𝑖∈𝐼

Δ𝐼(̃︁𝑀).

On the other hand, since most of the columns of 𝐴 are basis vectors, we can compute its

determinant directly: det𝐴 = 2𝑚𝑖,𝑗, where the sign in (4.1.4) is chosen so that we would

have det𝐴 = 2𝑚𝑖,𝑗 and not det𝐴 = −2𝑚𝑖,𝑗. Similarly, we can define an 𝑛×𝑛 matrix 𝐵 with

columns

𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑗−1, (̃︁𝑀)2𝑗−1, (̃︁𝑀)2𝑗, 𝑒𝑗+1, . . . , 𝑒𝑛.

We have det𝐵 = 2𝑚𝑖,𝑗 as well, and

det𝐵 = 2−𝑛+2
∑︁

𝐼∈ℰ𝑛({𝑖,𝑗}):2𝑗−1,2𝑗∈𝐼

Δ𝐼(̃︁𝑀).

It remains to note that for all 𝐼 ∈ ℰ𝑛({𝑖, 𝑗}), we have either 2𝑖− 1, 2𝑖 ∈ 𝐼 or 2𝑗 − 1, 2𝑗 ∈ 𝐼,

but not both. Thus

4𝑚𝑖,𝑗 = det𝐴+ det𝐵 = 2−𝑛+2
∑︁

𝐼∈ℰ𝑛({𝑖,𝑗})

Δ𝐼(̃︁𝑀),

finishing the proof.

Lemma 4.5.6. Let 𝐽 := {1, 3, . . . , 2𝑛 − 1} and 𝑋 ′ ∈ OG≥0(𝑛, 2𝑛). Then for all 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
,

we have

Δ𝐼(𝑋
′) ≤ Δ𝐽(𝑋

′).

Proof. This follows from Skandera’s inequalities [Ska04] for Gr≥0(𝑛, 2𝑛). Namely, by [FP16,

Theorem 6.1], we have Δ𝐼(𝑋
′)Δ[2𝑛]∖𝐼(𝑋

′) ≤ Δ𝐽(𝑋
′)Δ[2𝑛]∖𝐽(𝑋

′) for all 𝑋 ′ ∈ Gr≥0(𝑛, 2𝑛). In

particular, if 𝑋 ′ ∈ OG≥0(𝑛, 2𝑛), this becomes (Δ𝐼(𝑋
′))2 ≤ (Δ𝐽(𝑋

′))2, which finishes the

proof.
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An important consequence of the above lemma is that for 𝐽 := {1, 3, . . . , 2𝑛− 1} and all

𝑋 ′ ∈ OG≥0(𝑛, 2𝑛), we have Δ𝐽(𝑋
′) > 0, since we must have Δ𝐼(𝑋

′) > 0 for some 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
.

Lemma 4.5.7. The image 𝜑(Matsym𝑛 (R, 1)) contains OG≥0(𝑛, 2𝑛). Equivalently, for any

𝑋 ′ ∈ OG≥0(𝑛, 2𝑛), there exists a matrix 𝑀 ′ ∈ Matsym𝑛 (R, 1) such that 𝑋 ′ = 𝜑(𝑀 ′) as

elements of Gr(𝑛, 2𝑛).

Proof. We are going to use Lemma 4.2.2. Choose some 𝑛 × 2𝑛 matrix 𝐴 representing 𝑋 ′

in Gr(𝑛, 2𝑛), and let ̃︀𝐼𝑛 be the 𝑛 × 2𝑛 matrix given by ( ̃︀𝐼𝑛)𝑖,2𝑖−1 = ( ̃︀𝐼𝑛)𝑖,2𝑖 = 1 and the

remaining entries being zero. Remark 4.1.2 says that for a matrix 𝑀 ′ ∈ Matsym𝑛 (R, 1), we

have ̃︁𝑀 ′ · ( ̃︀𝐼𝑛)𝑇 = 2𝐼𝑛, where 𝐼𝑛 is the 𝑛×𝑛 identity matrix, and 𝑇 denotes matrix transpose.

Let 𝐵 := 𝐴 · ( ̃︀𝐼𝑛)𝑇 . We claim that if 𝑋 ′ ∈ OG≥0(𝑛, 2𝑛) then 𝐵 is an invertible matrix.

Indeed, by the multilinearity of the determinant, we have det𝐵 =
∑︀

𝐼∈ℰ𝑛(∅)Δ𝐼(𝐴). This sum

contains only nonnegative terms, and the term Δ{1,3,...,2𝑛−1}(𝐴) is positive by Lemma 4.5.6.

Thus 𝐵 ∈ GL𝑛(R) is invertible, and we can consider the matrix 𝐶 := 2 · 𝐵−1 · 𝐴, which

represents the same element 𝑋 ′ in Gr(𝑛, 2𝑛). The matrix 𝐶 satisfies 𝐶 · ( ̃︀𝐼𝑛)𝑇 = 2𝐼𝑛, in

particular, 𝐶𝑖,2𝑗−1 = −𝐶𝑖,2𝑗 for 𝑖 ̸= 𝑗 ∈ [𝑛]. We define the 𝑛 × 𝑛 matrix 𝑀 ′ = (𝑚′
𝑖,𝑗) by

𝑚′
𝑖,𝑖 := 1 and 𝑚′

𝑖,𝑗 := (−1)𝑖+𝑗+1(𝑖<𝑗)𝐶𝑖,2𝑗−1 for 𝑖 ̸= 𝑗 ∈ [𝑛], in agreement with (4.1.4). It turns

out that 𝑀 ′ is a symmetric matrix, since its entries can be recovered from the minors of 𝐶 as

follows. As we have mentioned in the proof of Lemma 4.2.2, for each 𝐼 ∈ ℰ𝑛({𝑖, 𝑗}), we have

either 2𝑖−1, 2𝑖 ∈ 𝐼 or 2𝑗−1, 2𝑗 ∈ 𝐼, but not both. Thus we can write𝑚′
𝑖,𝑗 = 2−𝑛+2

∑︀
𝐼 Δ𝐼(𝐶),

where the sum is over all 𝐼 ∈ ℰ𝑛({𝑖, 𝑗}) such that 2𝑖 − 1, 2𝑖 ∈ 𝐼. Similarly, we have 𝑚′
𝑗,𝑖 =

2−𝑛+2
∑︀

𝐼 Δ𝐼(𝐶), where the sum is over all 𝐼 ∈ ℰ𝑛({𝑖, 𝑗}) such that 2𝑗 − 1, 2𝑗 ∈ 𝐼. Since

Δ𝐼(𝐶) = Δ[2𝑛]∖𝐼(𝐶) (because 𝐶 represents 𝑋 ′ ∈ OG≥0(𝑛, 2𝑛)), we see that 𝑚′
𝑖,𝑗 = 𝑚′

𝑗,𝑖, and

thus 𝑀 ′ belongs to Matsym𝑛 (R, 1). Similarly, using

2𝑛−1𝐶𝑖,2𝑖−1 =
∑︁

𝐼∈ℰ𝑛(∅):2𝑖−1∈𝐼

Δ𝐼(𝐶) =
∑︁

𝐼∈ℰ𝑛(∅):2𝑖∈𝐼

Δ𝐼(𝐶) = 2𝑛−1𝐶𝑖,2𝑖,

and 𝐶𝑖,2𝑖−1 + 𝐶2𝑖 = 2, we get 𝐶𝑖,2𝑖−1 = 𝐶𝑖,2𝑖 = 1, and thus 𝜑(𝑀 ′) = 𝑋 ′. We are done with

the proof of Lemma 4.5.7.

In order to prove Theorem 4.5.5, we need to show that 𝑋 := 𝜑(𝑀) equals to 𝑋 ′ :=
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Meas(𝐺�,wt) as an element of Gr(𝑛, 2𝑛). By Theorem 4.4.17, we know that𝑋 ′ ∈ OG≥0(𝑛, 2𝑛).

By Lemma 4.5.7, we get a matrix 𝑀 ′ ∈ Matsym𝑛 (R, 1) such that 𝜑(𝑀 ′) = 𝑋 ′. Since

𝑋 = 𝜑(𝑀), we have 𝑋 = 𝑋 ′ if and only if 𝑀 =𝑀 ′. By Lemma 4.2.2, the entries 𝑚′
𝑖,𝑗 of 𝑀 ′

can be written as ratios of sums of minors of 𝑋 ′. By Theorem 4.3.5, each such minor is a

sum over almost perfect matchings of 𝐺� with prescribed boundary. Putting it all together,

we get the following: for 𝑖 ̸= 𝑗 ∈ [𝑛],

𝑚′
𝑖,𝑗 =

∑︀
𝒜:𝜕(𝒜)∈ℰ𝑛({𝑖,𝑗}) wt(𝒜)∑︀
𝒜:𝜕(𝒜)∈ℰ𝑛(∅) wt(𝒜)

, (4.5.2)

where the sums are over almost perfect matchings in 𝐺�. Our goal is to show that 𝑚′
𝑖,𝑗

equals to 𝑚𝑖,𝑗 := ⟨𝜎𝑖𝜎𝑗⟩.

4.5.1 Dubédat’s bosonization identity

Recall from Remark 4.2.10 that the planar bipartite graph ̂︀𝐺� = (̂︀𝑉 �, ̂︀𝐸�) is obtained from

𝐺� by adding an edge of weight 1 connecting 𝑑2𝑖−1 to 𝑑2𝑖 for each 𝑖 ∈ [𝑛]. We view ̂︀𝐺� as

a weighted graph embedded in the sphere, and for each 𝑖 ∈ [𝑛], we view the vertex 𝑏𝑖 of 𝐺

as a point inside of the square face of ̂︀𝐺� which contains 𝑑2𝑖−1 and 𝑑2𝑖. We let Match( ̂︀𝐺�)

denote the set of perfect matchings of ̂︀𝐺�. Given such a perfect matching 𝒜 ∈ Match( ̂︀𝐺�),

its weight is the product of weights of its edges. We say that a generic path is a continuous

path 𝑃 in the sphere whose endpoints belong to the interiors of faces of ̂︀𝐺�, and which

intersects every edge of ̂︀𝐺� at most once. Clearly every path in 𝐺 is a generic path. We

denote by ̂︀𝐸�
−(𝑃 ) ⊂ ̂︀𝐸� the set of edges of ̂︀𝐺� that intersect 𝑃 . Given a perfect matching

𝒜 ∈ Match( ̂︀𝐺�) and a generic path 𝑃 , we define wt−(𝒜, 𝑃 ) := (−1)|
̂︀𝐸�
−(𝑃 )∩𝒜| wt(𝒜). In

other words, wt−(𝒜, 𝑃 ) is the product of weights of edges in 𝒜, where the weight of every

edge that intersects 𝑃 is negated. We are ready to state Dubédat’s formula, as explained

in [dT14, Corollary 1]. See also [BdT12] and [DCL17, Remark 4] for related results.

Proposition 4.5.8 ([Dub11]). Let 𝑁 = (𝐺, 𝐽) be a planar Ising network with 𝑛 boundary

vertices. Let 𝑖, 𝑗 ∈ [𝑛], and choose some path 𝑃 connecting 𝑏𝑖 to 𝑏𝑗 in 𝐺. Then the squared
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boundary correlation function is given by

⟨𝜎𝑖𝜎𝑗⟩2 =
∑︀

𝒜∈Match( ̂︀𝐺�) wt−(𝒜, 𝑃 )∑︀
𝒜∈Match( ̂︀𝐺�) wt(𝒜)

. (4.5.3)

Example 4.5.9. If 𝐺 has two vertices and one edge as in Figure 4-2, then ̂︀𝐺� has the

following form:

𝑑4

𝑑3 𝑑2

𝑑1

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

There is exactly one path 𝑃 in 𝐺 that connects 𝑏1 to 𝑏2, and ̂︀𝐸�
−(𝑃 ) consists of two

edges of weight 𝑠𝑒. There are five perfect matchings of ̂︀𝐺� with weights 𝑠2𝑒, 𝑠𝑒, 𝑠𝑒, 1, and 𝑐2𝑒,

respectively. Thus (4.5.3) in this case becomes

⟨𝜎1𝜎2⟩2 =
1− 2𝑠𝑒 + 𝑠2𝑒 + 𝑐2𝑒
1 + 2𝑠𝑒 + 𝑠2𝑒 + 𝑐2𝑒

=
1− 𝑠𝑒
1 + 𝑠𝑒

.

Recall from (4.2.7) that (4.2.9) in this case yields ⟨𝜎1𝜎2⟩ = 𝑐𝑒
1+𝑠𝑒

. These two formulas agree:

(︂
𝑐𝑒

1 + 𝑠𝑒

)︂2

=
1− 𝑠𝑒
1 + 𝑠𝑒

⇐⇒ 𝑐2𝑒 = (1 + 𝑠𝑒)(1− 𝑠𝑒) ⇐⇒ 𝑐2𝑒 + 𝑠2𝑒 = 1.

First proof of Theorem 4.5.5. Recall that our goal is to show that 𝑚′
𝑖,𝑗 = ⟨𝜎𝑖𝜎𝑗⟩, where 𝑚′

𝑖,𝑗

is given by (4.5.2). Since the right hand side of (4.5.2) is manifestly positive, it is enough to

show (𝑚′
𝑖,𝑗)

2 = ⟨𝜎𝑖𝜎𝑗⟩2, which is given by (4.5.3). Observe that every perfect matching 𝒜′ of̂︀𝐺� restricts to an almost perfect matching 𝒜 of 𝐺� such that 𝜕(𝒜) ∈ ℰ𝑛(∅). Moreover, this

gives a weight-preserving bijection between Match( ̂︀𝐺�) and such almost perfect matchings

of 𝐺�. Thus the denominators of (4.5.2) and (4.5.3) are equal, and therefore it suffices to

show⎛⎝ ∑︁
𝒜:𝜕(𝒜)∈ℰ𝑛({𝑖,𝑗})

wt(𝒜)

⎞⎠2

=

⎛⎝ ∑︁
𝒜∈Match( ̂︀𝐺�)

wt−(𝒜, 𝑃 )

⎞⎠⎛⎝ ∑︁
𝒜∈Match( ̂︀𝐺�)

wt(𝒜)

⎞⎠ , (4.5.4)
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where the sum on the left is over almost perfect matchings of 𝐺�.

Denote 𝜕(𝑃 ) to be the set of 𝑖 ∈ [𝑛] such that {𝑑2𝑖−1, 𝑑2𝑖} intersects 𝑃 . The following

simple observation shows that the right hand side of (4.5.3) does not really depend on the

choice of a generic path 𝑃 .

Lemma 4.5.10. Let 𝑃, 𝑃 ′ be two generic paths with the same endpoints. Then we have

(−1)|
̂︀𝐸�
−(𝑃 )|+|𝜕(𝑃 )|

⎛⎝ ∑︁
𝒜∈Match( ̂︀𝐺�)

wt−(𝒜, 𝑃 )

⎞⎠ = (−1)|
̂︀𝐸�
−(𝑃 ′)|+|𝜕(𝑃 ′)|

⎛⎝ ∑︁
𝒜∈Match( ̂︀𝐺�)

wt−(𝒜, 𝑃 ′)

⎞⎠ .

Proof. Since we can transform 𝑃 continuously into 𝑃 ′ in a generic way, it is enough to

show the above equality when there is a single vertex 𝑣 of ̂︀𝐺� that lies inside the region

bounded by 𝑃 and 𝑃 ′. If 𝑣 belongs to the interior of the disk then it has degree 3 in ̂︀𝐺�,

so |𝜕(𝑃 )| = |𝜕(𝑃 ′)| but | ̂︀𝐸�
−(𝑃 )| and | ̂︀𝐸�

−(𝑃
′)| have different parity. Similarly, if 𝑣 = 𝑑𝑗 for

some 𝑗 ∈ [2𝑛] then it has degree 2 in ̂︀𝐺� and thus | ̂︀𝐸�
−(𝑃 )|+ |𝜕(𝑃 )| and | ̂︀𝐸�

−(𝑃
′)|+ |𝜕(𝑃 ′)|

again have different parity. On the other hand, each perfect matching 𝒜 of ̂︀𝐺� contains

exactly one edge incident to 𝑣, and thus we also have wt−(𝒜, 𝑃 ) = −wt−(𝒜, 𝑃 ′). The result

follows.

Observe that when 𝑃 is a path in 𝐺, it necessarily intersects an even number of edges

of ̂︀𝐺�, and 𝜕(𝑃 ) = ∅. Suppose now that 𝑃 connects 𝑏𝑖 to 𝑏𝑗. Consider another generic

path 𝑃 ′ which connects 𝑏𝑖 to 𝑏𝑗 but only intersects two edges of ̂︀𝐺�, namely, {𝑑2𝑖−1, 𝑑2𝑖} and

{𝑑2𝑗−1, 𝑑2𝑗}. By Lemma 4.5.10, we have
∑︀

𝒜∈Match( ̂︀𝐺�) wt−(𝒜, 𝑃 ) =
∑︀

𝒜∈Match( ̂︀𝐺�) wt−(𝒜, 𝑃 ′),

and thus it suffices to show (4.5.4) for 𝑃 replaced with 𝑃 ′.

For simplicity, we denote 𝑎 := 𝑑2𝑖−1, 𝑏 := 𝑑2𝑖, 𝑐 := 𝑑2𝑗−1, 𝑑 := 𝑑2𝑗. Define ̂︀𝐺�
𝑖,𝑗 to

be the subgraph obtained from ̂︀𝐺� by removing the edges {𝑎, 𝑏} and {𝑐, 𝑑}. Given a set

𝑆 ⊂ {𝑎, 𝑏, 𝑐, 𝑑}, denote by ̂︀𝐺�
𝑖,𝑗(𝑆) the graph obtained from ̂︀𝐺�

𝑖,𝑗 by removing the vertices of

{𝑎, 𝑏, 𝑐, 𝑑} ∖ 𝑆 (each such vertex is removed together with the unique edge incident to it).

Finally, define

𝜅𝑆 :=
∑︁

𝒜∈Match( ̂︀𝐺�
𝑖,𝑗(𝑆))

wt(𝒜)

for each 𝑆 ⊂ {𝑎, 𝑏, 𝑐, 𝑑}. Thus we have 𝜅𝑆 = 𝜅{𝑎,𝑏,𝑐,𝑑}∖𝑆 for all 𝑆 by Proposition 4.4.14. After
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replacing 𝑃 with 𝑃 ′, (4.5.4) becomes

(𝜅𝑎,𝑑 + 𝜅𝑏,𝑐)
2 = (𝜅𝑎,𝑏,𝑐,𝑑 − 𝜅𝑎,𝑏 − 𝜅𝑐,𝑑 + 𝜅∅) (𝜅𝑎,𝑏,𝑐,𝑑 + 𝜅𝑎,𝑏 + 𝜅𝑐,𝑑 + 𝜅∅) , (4.5.5)

where we denote 𝜅{𝑎,𝑑} = 𝜅𝑎,𝑑, etc. Since 𝜅𝑎,𝑑 = 𝜅𝑏,𝑐, the left hand side equals 4𝜅2𝑎,𝑑 =

4𝜅𝑎,𝑑𝜅𝑏,𝑐. Similarly, the right hand side equals 4(𝜅∅ − 𝜅𝑎,𝑏)(𝜅∅ + 𝜅𝑎,𝑏) = 4(𝜅2∅ − 𝜅2𝑎,𝑏) =

4(𝜅𝑎,𝑏,𝑐,𝑑𝜅∅ − 𝜅𝑎,𝑏𝜅𝑐,𝑑). Thus we need to show 𝜅𝑎,𝑑𝜅𝑏,𝑐 = 𝜅𝑎,𝑏,𝑐,𝑑𝜅∅ − 𝜅𝑎,𝑏𝜅𝑐,𝑑, or equivalently,

𝜅𝑎,𝑑𝜅𝑏,𝑐 + 𝜅𝑎,𝑏𝜅𝑐,𝑑 = 𝜅𝑎,𝑏,𝑐,𝑑𝜅∅. (4.5.6)

This is easy to prove bijectively using standard double-dimer arguments. For instance, su-

perimposing a pair of matchings (𝒜,𝒜′) ∈ Match( ̂︀𝐺�
𝑖,𝑗({𝑎, 𝑑})) × Match( ̂︀𝐺�

𝑖,𝑗({𝑏, 𝑐})) gives

a union of cycles in ̂︀𝐺�
𝑖,𝑗 together with a path 𝑄 connecting 𝑎 to 𝑑 and a path 𝑅 connect-

ing 𝑏 to 𝑐. Thus 𝒜 ⊕ 𝑅 (the symmetric difference of sets of edges) is a perfect match-

ing of ̂︀𝐺�
𝑖,𝑗({𝑎, 𝑏, 𝑐, 𝑑}), while 𝒜′ ⊕ 𝑅 is a perfect matching of ̂︀𝐺�

𝑖,𝑗(∅). The case (𝒜,𝒜′) ∈

Match( ̂︀𝐺�
𝑖,𝑗({𝑎, 𝑏}))×Match( ̂︀𝐺�

𝑖,𝑗({𝑐, 𝑑})) is completely similar, and together they give a bi-

jection between the left and the right hand sides of (4.5.6). We are done with the first proof

of Theorem 4.5.5.

4.5.2 Random alternating flows of Lis

For our second proof, we use a formula due to Lis [Lis17], which he proved using the random

currents model of [GHS70], see also [DC16, LW16]. Let us say that a clockwise bidirected

edge (resp., a counterclockwise bidirected edge) is a directed cycle of length two in the plane

which is oriented clockwise (resp., counterclockwise).

Suppose we are given a planar Ising network 𝑁 = (𝐺, 𝐽) with 𝑛 boundary vertices and

two disjoint subsets 𝐴,𝐵 ⊂ [𝑛] of the same size. We define 𝐺𝐴⊔𝐵 = (𝑉 𝐴⊔𝐵, 𝐸𝐴⊔𝐵) to be the

graph obtained from 𝐺 by adding a boundary spike at 𝑏𝑖 for all 𝑖 ∈ 𝐴 ⊔𝐵.

An (𝐴,𝐵)-alternating flow 𝐹 on 𝐺 is a graph obtained from 𝐺𝐴⊔𝐵 by replacing each

edge {𝑢, 𝑣} ∈ 𝐸𝐴⊔𝐵 of 𝐺𝐴⊔𝐵 by either

(a) an undirected edge, or
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(b) a directed edge 𝑢→ 𝑣 or 𝑣 → 𝑢, or

(c) a clockwise or a counterclockwise bidirected edge,

so that the vertex 𝑏𝑖 is incident to an outgoing (resp., incoming) edge if 𝑖 ∈ 𝐴 (resp., if

𝑖 ∈ 𝐵), and so that every other vertex 𝑣 ∈ 𝑉 of 𝐺 is incident to an even number of directed

edges of 𝐹 , and their directions alternate around 𝑣. The set of all (𝐴,𝐵)-alternating flows

on 𝐺 is denoted ℱ𝐴,𝐵(𝐺).

For 𝑒 ∈ 𝐸, we put

𝑥𝑒 := tanh(𝐽𝑒) =
exp(𝐽𝑒)− exp(−𝐽𝑒)
exp(𝐽𝑒) + exp(−𝐽𝑒)

, 𝑦𝑒 := sech(𝐽𝑒) =
2

exp(𝐽𝑒) + exp(−𝐽𝑒)
.

(Recall that 𝑥𝑒 and 𝑦𝑒 are not the same as 𝑐𝑒 = tanh(2𝐽𝑒) and 𝑠𝑒 = sech(2𝐽𝑒).) Given an

edge 𝑒 ∈ 𝐸𝐴⊔𝐵 and an (𝐴,𝐵)-alternating flow 𝐹 ∈ ℱ𝐴,𝐵(𝐺), we set

w(𝐹, 𝑒) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝑥𝑒/𝑦

2
𝑒 , if 𝑒 is a directed edge in 𝐹 ;

2𝑥2𝑒/𝑦
2
𝑒 , if 𝑒 is a bidirected edge in 𝐹 ;

1, otherwise.

Following [Lis17, Eq. (4.2)], the weight of an (𝐴,𝐵)-alternating flow 𝐹 is given by

w(𝐹 ) := 2|𝐴|−|𝑉 (𝐹 )|
∏︁

𝑒∈𝐸𝐴⊔𝐵

w(𝐹, 𝑒), (4.5.7)

where 𝑉 (𝐹 ) denotes the set of vertices 𝑣 ∈ 𝑉 𝐴⊔𝐵 ∖{𝑏𝑖 | 𝑖 ∈ 𝐴⊔𝐵} incident to a directed or a

bidirected edge in 𝐹 (note that 𝑏𝑖 is always incident to a directed edge in 𝐹 when 𝑖 ∈ 𝐴⊔𝐵).

Remark 4.5.11. The equivalence of (4.5.7) and [Lis17, Eq. (4.2)] is explained in the proof

of [Lis17, Lemma 4.2].

We will be interested in the two special cases 𝐴 = 𝐵 = ∅ and 𝐴 = {𝑎}, 𝐵 = {𝑏} for

𝑎 ̸= 𝑏 ∈ [𝑛]. We denote the corresponding graphs by 𝐺∅ and 𝐺𝑎,𝑏, respectively. Denote also

ℱ∅(𝐺) := ℱ∅,∅(𝐺) and ℱ𝑎,𝑏(𝐺) := ℱ{𝑎},{𝑏}(𝐺).
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Lemma 4.5.12 ([Lis17, Lemma 5.2]). Let 𝑁 = (𝐺, 𝐽) be a planar Ising network with 𝑛

boundary vertices, and let 𝑖 ̸= 𝑗 ∈ [𝑛]. Then the boundary correlation ⟨𝜎𝑖𝜎𝑗⟩ equals

⟨𝜎𝑖𝜎𝑗⟩ =
∑︀

𝐹∈ℱ𝑎,𝑏(𝐺) w(𝐹 )∑︀
𝐹∈ℱ∅(𝐺) w(𝐹 )

. (4.5.8)

Second proof of Theorem 4.5.5. For a flow 𝐹 ∈ ℱ𝐴,𝐵(𝐺), let 𝑈(𝐹 ) denote the set of vertices

𝑣 ∈ 𝑉 𝐴⊔𝐵 that are not incident to a directed or a bidirected edge of 𝐹 . Thus |𝑈(𝐹 )| =

|𝑉 | − |𝑉 (𝐹 )|, and we set

w̃(𝐹 ) := 2|𝑉 | w(𝐹 ) = 2|𝐴|+|𝑈(𝐹 )|
∏︁

𝑒∈𝐸𝐴⊔𝐵

w(𝐹, 𝑒).

Suppose that we are given a flow 𝐹 ∈ ℱ𝐴,𝐵(𝐺) together with a map 𝛼 : 𝑈(𝐹 ) → {−1, 1}.

We say that the pair (𝐹, 𝛼) is a spinned flow. The weight of a spinned flow is defined to be

w̃(𝐹, 𝛼) = 2|𝐴|
∏︀

𝑒∈𝐸𝐴⊔𝐵 w(𝐹, 𝑒), so that w̃(𝐹 ) =
∑︀

𝛼∈{−1,1}𝑈(𝐹 ) w̃(𝐹, 𝛼). We then define an

order relation ≤ on spinned flows by writing (𝐹, 𝛼) ≤ (𝐹 ′, 𝛼′) if all of the following conditions

are satisfied:

∙ 𝐹 ′ is obtained from 𝐹 by making some undirected edges bidirected (thus 𝑈(𝐹 ′) ⊂

𝑈(𝐹 )),

∙ the restriction of 𝛼 to 𝑈(𝐹 ′) equals 𝛼′, and

∙ for every vertex 𝑣 ∈ 𝑈(𝐹 )∖𝑈(𝐹 ′) such that 𝛼(𝑣) = 1 (resp., 𝛼(𝑣) = −1), all bidirected

edges of 𝐹 ′ incident to 𝑣 are clockwise (resp., counterclockwise) bidirected edges.

Even though 𝛼′ can be obtained from 𝛼 by restricting it to 𝑈(𝐹 ′) ⊂ 𝑈(𝐹 ), we can also

reconstruct 𝛼 from (𝐹 ′, 𝛼′), since every vertex 𝑣 ∈ 𝑈(𝐹 ) ∖ 𝑈(𝐹 ′) is incident to at least one

bidirected edge of 𝐹 ′, and either all such edges are clockwise (in which case we must have

𝛼(𝑣) = 1) or counterclockwise (in which case we must have 𝛼(𝑣) = −1).

Given a spinned flow (𝐹, 𝛼), we say that an undirected edge 𝑒 of 𝐹 is active if there exists

a spinned flow (𝐹 ′, 𝛼′) > (𝐹, 𝛼) such that 𝑒 is bidirected in 𝐹 ′. Thus any (𝐹 ′, 𝛼′) > (𝐹, 𝛼) is

obtained from (𝐹, 𝛼) by making some active edges bidirected. (An active edge can become

either a clockwise or a counterclockwise bidirected edge but not both.) Equivalently, for
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𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

𝑐𝑒

𝑐𝑒

𝑠𝑒𝑠𝑒

wt(𝒜) = 𝑐𝑒 wt(𝒜) = 𝑐𝑒 wt(𝒜) = 𝑠𝑒 wt(𝒜) = 𝑠𝑒 wt(𝒜) = 1 wt(𝒜) = 𝑠2𝑒 wt(𝒜) = 𝑐2𝑒

𝑒 𝑒 𝑒

− +
𝑒

+ −
𝑒

+ +
𝑒

− −
𝑒

− −

Figure 4-8: The correspondence 𝜃 between almost perfect matchings of 𝐺� (top) and minimal
spinned flows (bottom), where + (resp., −) next to a vertex 𝑣 denotes 𝛼(𝑣, 𝑒) = 1 (resp.,
𝛼(𝑣, 𝑒) = −1).

every undirected edge 𝑒 of 𝐹 and a vertex 𝑣 incident to 𝑒, we set 𝛼(𝑣, 𝑒) := 𝛼(𝑣) if 𝑣 ∈ 𝑈(𝐹 ),

and 𝛼(𝑣, 𝑒) := 1 (resp., 𝛼(𝑣, 𝑒) := −1) if 𝑣 ∈ 𝑉 ∖ 𝑈(𝐹 ) and after replacing 𝑒 by a clockwise

(resp., counterclockwise) bidirected edge, the directions of edges still alternate around 𝑣.

Then an undirected edge 𝑒 = {𝑢, 𝑣} of 𝐹 is active if and only if we have 𝛼(𝑣, 𝑒) = 𝛼(𝑢, 𝑒).

We say that a spinned flow (𝐹, 𝛼) is minimal if it is minimal with respect to our order

relation ≤. Equivalently, (𝐹, 𝛼) is minimal if 𝐹 has no bidirected edges. We denote ℱmin
𝐴,𝐵(𝐺)

the set of all minimal spinned flows (𝐹, 𝛼) where 𝐹 ∈ ℱ𝐴,𝐵(𝐺). For (𝐹, 𝛼) ∈ ℱmin
𝐴,𝐵(𝐺), we

define its weight

w̄(𝐹, 𝛼) :=
∑︁

(𝐹 ′,𝛼′)≥(𝐹,𝛼)

w̃(𝐹 ′, 𝛼′) = 2|𝐴|
∏︁

𝑒∈𝐸𝐴⊔𝐵

w̄(𝐹, 𝛼, 𝑒),

where

w̄(𝐹, 𝛼, 𝑒) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝑥𝑒/𝑦

2
𝑒 , if 𝑒 is a directed edge in 𝐹 ;

1 + 2𝑥2𝑒/𝑦
2
𝑒 = (1 + 𝑥2𝑒)/𝑦

2
𝑒 , if 𝑒 is an active edge of (𝐹, 𝛼);

1, otherwise.

(4.5.9)

Here we used the fact that 𝑥2𝑒 + 𝑦2𝑒 = 1.

It thus follows that

∑︁
𝐹∈ℱ𝐴,𝐵(𝐺)

w̃(𝐹 ) =
∑︁

(𝐹,𝛼)∈ℱmin
𝐴,𝐵(𝐺)

w̄(𝐹, 𝛼).
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Our goal is to give a map 𝜃 from almost perfect matchings of 𝐺� to minimal spinned flows,

which locally is defined in Figure 4-8. Namely, each edge 𝑒 = {𝑢, 𝑣} of 𝐺 corresponds to four

interior vertices of 𝐺�, as in Figure 4-2. Every almost perfect matching 𝒜 of 𝐺� assigns a

single edge to each of those four vertices, and there are seven ways to do so, as in Figure 4-8

(top). The product of the weights of edges of 𝒜 incident to one of the four vertices of 𝐺�

equals, respectively, to 𝑐𝑒, 𝑐𝑒, 𝑠𝑒, 𝑠𝑒, 1, 𝑠2𝑒, 𝑐2𝑒, see Figure 4-8 (top).

Similarly, for every minimal spinned flow (𝐹, 𝛼), 𝑒may be directed from 𝑢 to 𝑣, or directed

from 𝑣 to 𝑢, or undirected, in which case the functions 𝛼(𝑢, 𝑒), 𝛼(𝑣, 𝑒) ∈ {−1, 1} are well

defined. As shown in Figure 4-8, the two matchings of weight 𝑐𝑒 correspond to the case where

𝑒 is directed in 𝐹 , and the remaining five matchings correspond to 𝑒 being undirected in 𝐹 .

Specifically, the two matchings of weight 𝑠𝑒 correspond to the two cases where 𝛼(𝑢, 𝑒) ̸=

𝛼(𝑣, 𝑒), the matching of weight 1 corresponds to the case 𝛼(𝑢, 𝑒) = 𝛼(𝑣, 𝑒) = 1, and the two

matchings of weights 𝑠2𝑒, 𝑐2𝑒 correspond to a single case 𝛼(𝑢, 𝑒) = 𝛼(𝑣, 𝑒) = −1.

It is straightforward to check that these rules give a well defined map 𝜃 from the set

of almost perfect matchings of 𝐺� to the set of minimal spinned flows on 𝐺. Moreover,

it is easy to check that the set 𝐽 := 𝜕(𝒜) ⊂ [2𝑛] determines uniquely two disjoint sets

𝐴,𝐵 ⊂ [𝑛] such that 𝜃(𝒜) ∈ ℱmin
𝐴,𝐵(𝐺). Namely, we have 𝐴 = {𝑖 ∈ [𝑛] | 2𝑖 − 1, 2𝑖 /∈ 𝐽} and

𝐵 = {𝑖 ∈ [𝑛] | 2𝑖− 1, 2𝑖 ∈ 𝐽}. Finally, let (𝐹, 𝛼) ∈ ℱmin
𝐴,𝐵(𝐺) be a minimal spinned flow, then

we claim that

w̄(𝐹, 𝛼) =
1∏︀

𝑒∈𝐸 𝑠𝑒

∑︁
𝒜:𝜃(𝒜)=(𝐹,𝛼)

wt(𝒜), (4.5.10)

where the sum is over almost perfect matchings 𝒜 of 𝐺�. To see why this is the case, note

that the multiplicative contribution of an edge 𝑒 ∈ 𝐸 to w̄(𝐹, 𝛼) is given by (4.5.9). On

the other hand, it is clear from Figure 4-8 that for any two almost perfect matchings 𝒜,𝒜′

such that 𝜃(𝒜) = 𝜃(𝒜′), we have 𝑆×(𝒜) = 𝑆×(𝒜′), where 𝑆×(𝒜) is defined in the proof of

Proposition 4.4.14. Thus the total weight of almost perfect matchings in the preimage of

(𝐹, 𝛼) under 𝜃 equals to the product over all edges 𝑒 ∈ 𝐸 of 𝑞(𝑒), defined in the proof of
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Proposition 4.4.14 as

𝑞(𝑒) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑐𝑒, if 𝑒 is a directed edge in 𝐹 ;

1 = 𝑠2𝑒 + 𝑐2𝑒, if 𝑒 is an active edge of (𝐹, 𝛼);

𝑠𝑒, otherwise.

(4.5.11)

Indeed, if 𝑒 = {𝑢, 𝑣} is an active edge of (𝐹, 𝛼) then we either have 𝛼(𝑢, 𝑒) = 𝛼(𝑣, 𝑒) = 1

in which case 𝑒 corresponds locally to a single matching of weight 1, or we have 𝛼(𝑢, 𝑒) =

𝛼(𝑣, 𝑒) = −1 in which case 𝑒 corresponds locally to two matchings of weights 𝑠2𝑒 and 𝑐2𝑒,

which can be interchanged in every almost perfect matching in the preimage of (𝐹, 𝛼) under

𝜃. It remains to note that the right hand side of (4.5.11) can be obtained from the right

hand side of (4.5.9) by multiplying by 𝑠𝑒:

𝑠𝑒w̄(𝐹, 𝛼, 𝑒) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝑥𝑒𝑠𝑒/𝑦

2
𝑒 = 𝑐𝑒, if 𝑒 is a directed edge in 𝐹 ;

(1 + 𝑥2𝑒)𝑠𝑒/𝑦
2
𝑒 = 1, if 𝑒 is an active edge of (𝐹, 𝛼);

𝑠𝑒, otherwise.

Thus 𝑠𝑒w̄(𝐹, 𝛼, 𝑒) = 𝑞(𝑒), which proves (4.5.10). This implies that the right hand sides

of (4.5.8) and (4.5.2) are equal, finishing the second proof of Theorem 4.5.5.

4.6 Cyclic symmetry and a homeomorphism with a ball

By Theorems 4.5.5 and 4.4.17, the map 𝜑 is a stratification-preserving homeomorphism from

𝒳 𝑛 to OG≥0(𝑛, 2𝑛), which is the first part of Theorem 4.1.3. In this section, we follow the

strategy of Chapter 2 to prove the second part of Theorem 4.1.3, which states that 𝒳 𝑛 is

homeomorphic to a closed ball of dimension
(︀
𝑛
2

)︀
.

Recall that the cyclic shift 2𝑛 × 2𝑛 matrix 𝑆 was defined in Section 4.2.2. We let 𝑆𝑇

denote the matrix transpose of 𝑆. Also, recall from Corollary 2.2.4 that exp(𝑡(𝑆+𝑆𝑇 )) sends

Gr≥0(𝑘,𝑁) to Gr>0(𝑘,𝑁) for all 𝑡 > 0. Here the totally positive Grassmannian Gr>0(𝑘,𝑁)

is defined in (4.3.1). Let us define the totally positive orthogonal Grassmannian to be the
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intersection

OG>0(𝑛, 2𝑛) := Gr>0(𝑛, 2𝑛) ∩OG(𝑛, 2𝑛).

Lemma 4.6.1. For all 𝑋 ∈ OG≥0(𝑛, 2𝑛) and all 𝑡 > 0, we have 𝑋 · exp(𝑡(𝑆 + 𝑆𝑇 )) ∈

OG>0(𝑛, 2𝑛).

Proof. In view of Corollary 2.2.4, it suffices to show that 𝑋 · exp(𝑡(𝑆 + 𝑆𝑇 )) ∈ OG(𝑛, 2𝑛).

By Proposition 4.4.1, it is enough to prove that exp(𝑡(𝑆 + 𝑆𝑇 )) belongs to the Lie group

𝑂(𝑛, 𝑛) consisting of all 2𝑛 × 2𝑛 matrices 𝑔 preserving the bilinear form 𝜂, i.e., satisfying

𝜂(𝑔𝑢, 𝑔𝑣) = 𝜂(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ R2𝑛. It is a standard fact from Lie theory that exp(𝑡(𝑆+𝑆𝑇 ))

is such a matrix if and only if 𝑆 + 𝑆𝑇 belongs to the Lie algebra of 𝑂(𝑛, 𝑛). Let 𝐷 :=

diag(1,−1, 1,−1, . . . , 1,−1) be a 2𝑛×2𝑛 diagonal matrix with 𝐷𝑖,𝑖 = (−1)𝑖−1 for 1 ≤ 𝑖 ≤ 2𝑛.

Then the Lie algebra of 𝑂(𝑛, 𝑛) consists of all 2𝑛×2𝑛 matrices 𝐵 such that 𝐵 ·𝐷 = −𝐷 ·𝐵𝑇 .

It is easy to check that 𝑆 + 𝑆𝑇 belongs to this Lie algebra. We are done with the proof.

Example 4.6.2. For 𝑛 = 2, the computation we need to check that 𝑆 + 𝑆𝑇 belongs to the

Lie algebra of 𝑂(𝑛, 𝑛) goes as follows.

(𝑆 + 𝑆𝑇 ) ·𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 0 1

1 0 1 0

0 −1 0 −1

−1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ;

𝐷 · (𝑆 + 𝑆𝑇 )𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 −1

−1 0 −1 0

0 1 0 1

1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

This shows (𝑆 + 𝑆𝑇 ) ·𝐷 = −𝐷 · (𝑆 + 𝑆𝑇 )𝑇 for 𝑛 = 2.

Remark 4.6.3. For all 𝑋 ∈ Gr≥0(𝑛, 2𝑛), it was shown in Chapter 2 that the limit of

𝑋 · exp(𝑡(𝑆 + 𝑆𝑇 )) as 𝑡→ ∞ is the unique cyclically symmetric element 𝑋0 ∈ Gr≥0(𝑛, 2𝑛)

from Section 2.2.1. It follows from Lemma 4.6.1 that this point 𝑋0 belongs to OG≥0(𝑛, 2𝑛).
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Proof of Theorem 4.1.3. As we have already discussed, the first part is a direct consequence

of Theorems 4.5.5 and 4.4.17. The second part follows from Lemma 4.6.1 together with an

argument completely identical to the one in Chapter 2, which we briefly outline here.

It was shown in Section 2.2 that the space Gr≥0(𝑛, 2𝑛) can be explicitly realized as a subset

of R𝑁 so that the image of Gr>0(𝑛, 2𝑛) would be an embedded submanifold of R𝑁 , and that

the action of exp(𝑡(𝑆 + 𝑆𝑇 )) on Gr≥0(𝑛, 2𝑛) extends to a contractive flow on R𝑁 . Since

OG(𝑛, 2𝑛) is an embedded submanifold of Gr(𝑛, 2𝑛), we see that 𝑄 := OG>0(𝑛, 2𝑛) becomes

an embedded submanifold of R𝑁 whose closure is 𝑄 := OG≥0(𝑛, 2𝑛) in R𝑁 . By Lemma 4.6.1,

the contractive flow exp(𝑡(𝑆+𝑆𝑇 )) restricts to OG≥0(𝑛, 2𝑛) and satisfies (2.1.1). The result

follows.

Theorem 4.1.3 establishes the correspondence between the planar Ising model and the

totally nonnegative orthogonal Grassmannian. Having finished its proof, we are in a position

to deduce several other results stated in Section 4.2.

Proof of Theorem 4.2.4. This follows easily from studying the relationship of the map

(𝐺, 𝐽) ↦→ (𝐺�,wt) ↦→ Meas(𝐺�,wt) ∈ OG≥0(𝑛, 2𝑛)

with the duality map (𝐺, 𝐽) ↦→ (𝐺*, 𝐽*). Namely, a planar Ising network 𝑁 = (𝐺, 𝐽)

corresponds to a weighted plabic graph (𝐺�,wt) then the dual planar Ising network 𝑁* =

(𝐺*, 𝐽*) corresponds to a weighted plabic graph ((𝐺*)�,wt*) so that (𝐺*)� is obtained from

𝐺� by switching the colors of all vertices and cyclically relabeling boundary vertices (i.e.,

𝑑*𝑖 := 𝑑𝑖+1), and wt* is obtained from wt by swapping 𝑠𝑒 and 𝑐𝑒 for all 𝑒 ∈ 𝐸. More precisely,

for each 𝑒 ∈ 𝐸 we have sinh(2𝐽𝑒) sinh(2𝐽
*
𝑒*) = 1 by (4.2.4). On the other hand, by (4.2.5),

we have sinh(2𝐽𝑒) =
𝑐𝑒
𝑠𝑒

and sinh(2𝐽*
𝑒*) =

𝑐𝑒*
𝑠𝑒*

, so 𝑠𝑒* = 𝑐𝑒 and 𝑐𝑒* = 𝑠𝑒. It thus follows from

the definition of Meas given in (4.3.2) that the minor Δ𝐼 of Meas(𝐺�,wt) equals the minor

Δ𝐼′ of Meas((𝐺*)�,wt*) where 𝐼 ′ = {𝑖 + 1 | 𝑖 ∈ 𝐼} (modulo 2𝑛) for all 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
. This is

equivalent to having Meas(𝐺�,wt) · 𝑆 = Meas((𝐺*)�,wt*), which finishes the proof.

Proof of Proposition 4.2.5. We know from Section 2.2.1 that there exists a unique cyclically

symmetric element 𝑋0 ∈ Gr≥0(𝑛, 2𝑛), and by Remark 4.6.3, we have 𝑋0 ∈ OG≥0(𝑛, 2𝑛). By
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Theorem 4.1.3, 𝑋0 corresponds to a unique boundary correlation matrix 𝑀0 ∈ 𝒳 of a planar

Ising network (i.e., 𝜑(𝑀0) = 𝑋0). Since the operation 𝑁 = (𝐺, 𝐽) ↦→ 𝑁* = (𝐺*, 𝐽*) amounts

to applying the cyclic shift on OG≥0(𝑛, 2𝑛) by Theorem 4.2.4, we see that 𝑀0 =𝑀(𝐺, 𝐽) if

and only if 𝑀(𝐺*, 𝐽*) =𝑀(𝐺, 𝐽).

Proof of Theorem 4.2.8. This also follows easily from Theorem 4.1.3 combined with (4.3.2).

Proof of Theorem 4.2.17. Follows from Theorem 4.1.3 and part (i) of Theorem 4.4.17.

Proof of Theorem 4.2.20. Follows from Theorems 4.3.8 and 4.1.3.

Proof of Theorem 4.2.22. Indeed, adjoining a boundary spike 𝑒 to 𝐺′ amounts to adding a

pair of bridges to (𝐺′)�. Adding bridges to (𝐺′)� translates into acting by 𝑥𝑘(𝑠𝑒) and 𝑦𝑘+1(𝑠𝑒)

on Meas((𝐺′)�,wt′) by Lemma 4.3.9. However, we also rescale the edges incident to 𝑘 and

𝑘 + 1 by 𝑐𝑒 between adding the two bridges, which amounts to multiplying Meas((𝐺′)�,wt)

by a diagonal matrix 𝐷𝑘(𝑐𝑒) whose (𝑘, 𝑘)-th and (𝑘 + 1, 𝑘 + 1)-th entries are equal to 𝑐𝑒

and 1/𝑐𝑒, respectively. Thus if 𝑁 = (𝐺, 𝐽) is obtained from 𝑁 ′ = (𝐺′, 𝐽 ′) by adjoining a

boundary spike, then the matrices 𝑀 =𝑀(𝐺, 𝐽) and 𝑀 ′ =𝑀(𝐺′, 𝐽 ′) are related by

𝜑(𝑀) = Meas(𝐺�,wt) = Meas((𝐺′)�,wt′) ·𝑥𝑘(𝑠𝑒) ·𝐷𝑘(𝑐𝑒) ·𝑦𝑘+1(𝑠𝑒) = Meas((𝐺′)�,wt′) ·𝑔𝑘(𝑡),

which is equal to 𝜑(𝑀 ′) · 𝑔𝑘(𝑡). Here 𝑥𝑘(𝑠𝑒) ·𝐷𝑘(𝑐𝑒) ·𝑦𝑘+1(𝑠𝑒) = 𝑔𝑘(𝑡) reduces to the following

2× 2 matrix computation, which relies on 𝑠2𝑒 + 𝑐2𝑒 = 1:

⎛⎝1 𝑠𝑒

0 1

⎞⎠ ·

⎛⎝𝑐𝑒 0

0 1/𝑐𝑒

⎞⎠ ·

⎛⎝ 1 0

𝑠𝑒 1

⎞⎠ =

⎛⎝ 1/𝑐𝑒 𝑠𝑒/𝑐𝑒

𝑠𝑒/𝑐𝑒 1/𝑐𝑒

⎞⎠ .

We are done with the case of adjoining a boundary spike. The case of adjoining a boundary

edge is completely similar, and also follows by applying the duality from Section 4.2.2, which

switches between 𝑠𝑒 and 𝑐𝑒 due to (4.2.4). We are done with the proof.

Proof of Proposition 4.5.4. It follows from Theorem 4.5.5 that 𝜑 sends 𝒳𝜏 homeomorphically

onto the cell Π>0
𝜏 ∩ OG≥0(𝑛, 2𝑛), and thus the result follows from Theorem 4.1.3 combined
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with Theorem 4.4.17 (ii).

4.7 Generalized Griffiths’ inequalities

In this section, our goal is to prove Theorem 4.2.13. Note that (4.2.10) follows from (4.2.11)

by taking disjoint 𝐴 and 𝐵 such that |𝐵| = 1. We thus focus on proving (4.2.11). Let us fix

two subsets 𝐴,𝐵 ⊂ [𝑛], and let 𝐶 := 𝐴⊕𝐵 be their symmetric difference. If 𝐶 has odd size

then both sides of (4.2.11) become zero. Thus we assume that the size of 𝐶 is even. Recall

that ℰ𝑛(𝐶) ⊂
(︀
[2𝑛]
𝑛

)︀
consists of all 𝑛-element subsets 𝐼 of [2𝑛] such that 𝐼 ∩ {2𝑖 − 1, 2𝑖} has

even size if and only if 𝑖 ∈ 𝐶. (In particular, ℰ𝑛(𝐶) is empty when 𝐶 has odd size.)

Throughout, we also fix a matrix 𝑀 = (𝑚𝑖,𝑗) ∈ Matsym𝑛 (R, 1), and we treat the entries

𝑚𝑖,𝑗 = 𝑚𝑗,𝑖 as indeterminates for 𝑖 ̸= 𝑗.

Our first goal is to give a formula for the minors Δ𝐼(̃︁𝑀) for 𝐼 ∈ ℰ𝑛(𝐶).

Definition 4.7.1. Denote 𝑛′ := 𝑛 − |𝐶|/2. Let 𝛼 : [2𝑛] → [2𝑛′] be the unique order-

preserving map such that 𝛼(2𝑖 − 1) = 𝛼(2𝑖) if and only if 𝑖 ∈ 𝐶. Let 𝛽 : [2𝑛′] → [𝑛] be the

unique order-preserving map such that the composition 𝛽 ∘ 𝛼 : [2𝑛] → [𝑛] sends both 2𝑖− 1

and 2𝑖 to 𝑖 for all 𝑖 ∈ [𝑛].

Example 4.7.2. Suppose that 𝑛 = 4 and 𝐶 = {1, 3}. Then 𝑛′ = 3, and the map 𝛼 : [8] → [6]

sends the top row entries of the 2-line array
1 2 3 4 5 6 7 8

1 1 2 3 4 4 5 6
to the corresponding

bottom row entries (i.e., 𝛼(1) = 𝛼(2) = 1, 𝛼(3) = 2, etc.). Similarly, 𝛽 : [6] → [4] sends

the top row entries of
1 2 3 4 5 6

1 2 2 3 4 4
to its bottom row entries, giving rise to a composite

map 𝛽 ∘ 𝛼 represented by a 3-line array
1 2 3 4 5 6 7 8

1 1 2 3 4 4 5 6

1 1 2 2 3 3 4 4

.

For disjoint subsets 𝐼, 𝐽 ⊂ [2𝑁 ] of the same size, we say that 𝜋 is a matching between 𝐼

and 𝐽 if 𝜋 contains |𝐼| = |𝐽 | pairs, and for each pair {𝑖, 𝑗} ∈ 𝜋, we have either 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 or

𝑖 ∈ 𝐽, 𝑗 ∈ 𝐼. The set of matchings between 𝐼 and 𝐽 is denoted by Match(𝐼, 𝐽). For a subset

𝐾 ⊂ [2𝑁 ] of even size, a matching on 𝐾 is a partition of 𝐾 into |𝐾|/2 disjoint subsets of size

2, and we let Match(𝐾) denote the set of matchings on𝐾. Thus Match(𝐼, 𝐽) ⊂ Match(𝐼⊔𝐽),
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and Match([2𝑛]) is as a set equal to 𝑃𝑛. The function xing naturally extends to Match(𝐼, 𝐽)

and Match(𝐾).

For each 𝐼 ∈ ℰ𝑛(𝐶), we denote 𝐼 ′ := 𝛼(𝐼), and it is easy to check that we have 𝐼 ′ ∈
(︀
[2𝑛′]
𝑛′

)︀
for 𝐼 ∈ ℰ𝑛(𝐶). Given a matching 𝜋 on [2𝑛′], we define a monomial 𝑚𝛽,𝜋 :=

∏︀
{𝑖,𝑗}∈𝜋𝑚𝛽(𝑖),𝛽(𝑗).

Similarly, given a subset 𝐾 ⊂ [𝑛] of even size and a matching 𝜋 ∈ Match(𝐾), we set

𝑚𝜋 :=
∏︀

{𝑖,𝑗}∈𝜋𝑚𝑖,𝑗.

Proposition 4.7.3. For 𝐼 ∈ ℰ𝑛(𝐶), we have

Δ𝐼(̃︁𝑀) = 2|𝐶|/2
∑︁

𝜋∈Match(𝐼′,[2𝑛′]∖𝐼′)

(−1)xing(𝜋)𝑚𝛽,𝜋.

Proof. This is essentially [Pos07, Proposition 5.2], see also [Lis17, Eq. (2.2)].

Remark 4.7.4. For any 𝐼 ∈
(︀
[2𝑛]
𝑛

)︀
, there exists a unique 𝐶 ⊂ [𝑛] such that 𝐼 ∈ ℰ𝑛(𝐶). Thus

Proposition 4.7.3 actually gives a formula for all maximal minors of ̃︁𝑀 in terms of the entries

of 𝑀 .

Example 4.7.5. Let 𝑛 = 4 and 𝐶 = {1, 3} as in Example 4.7.2, so 𝑛′ = 3. The matrices 𝑀

and ̃︁𝑀 are given in Figure 4-1. Let 𝐼 := {1, 2, 4, 7}. We have 𝐼 ∈ ℰ𝑛(𝐶) since |𝐼 ∩{1, 2}| = 2

and |𝐼 ∩ {5, 6}| = 0 are both even, while |𝐼 ∩ {3, 4}| = |𝐼 ∩ {7, 8}| = 1 are both odd. Next,

𝐼 ′ = 𝛼(𝐼) = {1, 3, 5} ∈
(︀
[2𝑛′]
𝑛′

)︀
. Computing the maximal minor Δ𝐼(̃︁𝑀), we find

Δ𝐼(̃︁𝑀) = 2(𝑚14𝑚23𝑚24 −𝑚13𝑚
2
24 +𝑚12𝑚24𝑚34 +𝑚12𝑚23 +𝑚14𝑚34 +𝑚13).

These six terms correspond to the six elements of Match(𝐼 ′, [2𝑛′]∖𝐼 ′) = Match({1, 3, 5}, {2, 4, 6}).

For instance, the term −𝑚13𝑚
2
24 comes from the matching 𝜋 = {{1, 4}, {3, 6}, {5, 2}} with

xing(𝜋) = 3, while the term 𝑚13 comes from the matching 𝜋 = {{1, 4}, {3, 2}, {5, 6}} with

xing(𝜋) = 0.

Definition 4.7.6. We introduce two disjoint subsets 𝐴′, 𝐵′ ⊂ [2𝑛′] by:

𝐴′ := {𝑖 ∈ [2𝑛′] | 𝛽(𝑖) ∈ 𝐴 ∖𝐵} ∪ {𝑖 ∈ [2𝑛′] | 𝛽(𝑖) = 𝛽(𝑖+ 1) ∈ 𝐴 ∩𝐵};

𝐵′ := {𝑖 ∈ [2𝑛′] | 𝛽(𝑖) ∈ 𝐵 ∖ 𝐴} ∪ {𝑖+ 1 ∈ [2𝑛′] | 𝛽(𝑖) = 𝛽(𝑖+ 1) ∈ 𝐴 ∩𝐵}.
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Define the number 𝜖 ∈ {0, 1} mentioned in Theorem 4.2.13 by

𝜖 ≡ 1 +
∑︁
𝑖∈𝐵′

𝑖 (mod 2). (4.7.1)

Next, we state a classical result expressing correlations of the Ising model in terms of

Pfaffians. Given a set 𝐾 ⊂ [𝑛] of even size, we define

Pf𝐾(𝑀) :=
∑︁

𝜋∈Match(𝐾)

(−1)xing(𝜋)𝑚𝜋.

If the size of 𝐾 is odd, we set Pf𝐾(𝑀) := 0. The following classical result expresses multi-

point correlations in terms of two-point correlations.

Proposition 4.7.7 ([GBK78, Theorem A]). Given a planar Ising network 𝑁 = (𝐺, 𝐽), let

𝑀 =𝑀(𝐺, 𝐽) be its boundary correlation matrix. Then for every set 𝐾 ⊂ [𝑛], we have

⟨𝜎𝐾⟩ = Pf𝐾(𝑀) =
∑︁

𝜋∈Match(𝐾)

(−1)xing(𝜋)
∏︁

{𝑖,𝑗}∈𝜋

⟨𝜎𝑖𝜎𝑗⟩.

Thus Theorem 4.2.13 becomes a consequence of the following result.

Theorem 4.7.8. We have

Pf𝐶(𝑀)− Pf𝐴(𝑀) Pf𝐵(𝑀) =
1

2𝑛−1

∑︁
𝐼∈ℰ𝑛(𝐴⊕𝐵)∩𝒟𝜖(𝐵)

Δ𝐼(̃︁𝑀). (4.7.2)

Both sides of (4.7.2) are polynomials in the entries of 𝑀 by Propositions 4.7.3 and 4.7.7.

Remark 4.7.9. It may look like the right hand side of (4.7.2) is not symmetric with respect

to 𝐴 and 𝐵, but in fact it is easy to see that

ℰ𝑛(𝐴⊕𝐵) ∩ 𝒟𝜖(𝐵) = ℰ𝑛(𝐴⊕𝐵) ∩ 𝒟𝜖′(𝐴),

where 𝜖′ ≡ 1 + 𝑛+
∑︀

𝑖∈𝐴′ 𝑖 (mod 2).

Before we prove Theorem 4.7.8, we state a lemma which will be used repeatedly later.
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Lemma 4.7.10. Let [2𝑁 ] = 𝐾1 ⊔𝐾2 for two sets 𝐾1, 𝐾2 of even size. Let 𝜋1 ∈ Match(𝐾1),

𝜋2 ∈ Match(𝐾2), and let 𝜋1 ⊔ 𝜋2 ∈ Match([2𝑁 ]) be obtained by superimposing 𝜋1 and 𝜋2.

Then

xing(𝜋1 ⊔ 𝜋2)− xing(𝜋1)− xing(𝜋2) ≡ |𝐾1|/2 +
∑︁
𝑖∈𝐾1

𝑖 ≡ |𝐾2|/2 +
∑︁
𝑖∈𝐾2

𝑖 (mod 2). (4.7.3)

Proof. Suppose that there is 𝑖 ∈ 𝐾1 such that 𝑖 > 1 and 𝑖− 1 /∈ 𝐾1. Then replacing 𝐾1 with

𝐾1 ∖{𝑖}∪{𝑖−1} and modifying 𝜋1, 𝜋2 accordingly changes the parity of each side of (4.7.3).

Applying this operation repeatedly until 𝐾1 = [|𝐾1|], the result follows.

Proof of Theorem 4.7.8. First, it is straightforward to check that if 𝑖 ∈ [𝑛] ∖ (𝐴 ∪ 𝐵) then

removing 𝑖 from [𝑛] does not affect the left and right hand sides of (4.7.2). Thus from now

on we assume that 𝐴 ∪𝐵 = [𝑛].

Assume first that 𝐴∩𝐵 = ∅. This implies 𝐶 = 𝐴⊔𝐵 = [𝑛], 𝑛 is even, 𝑛′ = 𝑛/2, 𝐴′ = 𝐴,

and 𝐵′ = 𝐵. For a matching 𝜋 ∈ Match([𝑛]), we are going to compare the coefficients of 𝑚𝜋

on both sides of (4.7.2), and show that in all cases they are equal.

Here for two disjoint subsets 𝐼 and 𝐽 , we say that a matching 𝜋 ∈ Match(𝐼 ⊔ 𝐽) restricts

to 𝐼 and 𝐽 and write 𝜋 ∈ Match |res𝐼,𝐽 if for all {𝑖, 𝑗} ∈ 𝜋 we have either {𝑖, 𝑗} ⊂ 𝐼 or {𝑖, 𝑗} ⊂ 𝐽 .

We denote by 𝜋|𝐼 ∈ Match(𝐼) and 𝜋|𝐽 ∈ Match(𝐽) the corresponding restricted matchings.

Thus the set Match |res𝐼,𝐽 ⊂ Match(𝐼 ⊔ 𝐽) is in bijection with Match(𝐼)×Match(𝐽).

For 𝜋 ∈ Match([𝑛]), the coefficient of 𝑚𝜋 in Pf𝐶(𝑀)− Pf𝐴(𝑀) Pf𝐵(𝑀) is equal to

𝑐left(𝜋) =

⎧⎪⎨⎪⎩(−1)xing(𝜋) − (−1)xing(𝜋|𝐴)(−1)xing(𝜋|𝐵) if 𝜋 ∈ Match |res𝐴,𝐵;

(−1)xing(𝜋) otherwise.

For the right hand side of (4.7.2), observe that by Definition 4.2.12, a given set 𝐼 ∈ ℰ𝑛(𝐶)

belongs to 𝒟𝜖(𝐵) if and only if

∑︁
𝑖∈𝐼∩ ̃︀𝐵

𝑖 ≡ 1 +
∑︁
𝑖∈𝐵

𝑖 (mod 2),

because 𝐵 = 𝐵′. Since 𝐶 = [𝑛], we have 𝐼 ∈ ℰ𝑛(𝐶) if and only if 𝐼∩{2𝑖−1, 2𝑖} has even size
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for all 𝑖 ∈ [𝑛]. Let us say that a set 𝐼 ∈ ℰ𝑛(𝐶) is compatible with 𝜋 if 𝜋 ∈ Match(𝐼 ′, [2𝑛′]∖𝐼 ′).

It is clear that the coefficient of 𝑚𝜋 in the right hand side of (4.7.2) is equal to

𝑐right(𝜋) :=
2𝑛/2

2𝑛−1
(−1)xing(𝜋)𝑁(𝜋),

where 𝑁(𝜋) is the number of 𝐼 ∈ ℰ𝑛(𝐶) ∩𝒟𝜖(𝐵) compatible with 𝜋. We claim that 𝑁(𝜋) is

given by

𝑁(𝜋) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝑛/2 if 𝜋 ∈ Match |res𝐴,𝐵 and |𝐵|/2 ≡ 1 +

∑︀
𝑖∈𝐵 𝑖 (mod 2);

0 if 𝜋 ∈ Match |res𝐴,𝐵 and |𝐵|/2 ̸≡ 1 +
∑︀

𝑖∈𝐵 𝑖 (mod 2);

2𝑛/2−1 if 𝜋 /∈ Match |res𝐴,𝐵.

(4.7.4)

Indeed, assume first 𝜋 /∈ Match |res𝐴,𝐵. Then there exists a pair {𝑖, 𝑗} ∈ 𝜋 such that 𝑖 ∈ 𝐴

and 𝑗 ∈ 𝐵. Note that there are a total of 2𝑛/2 sets 𝐼 ∈ ℰ𝑛(𝐶) compatible with 𝜋. Each

such set satisfies either 2𝑖− 1, 2𝑖 ∈ 𝐼, 2𝑗 − 1, 2𝑗 /∈ 𝐼 or 2𝑗 − 1, 2𝑗 ∈ 𝐼, 2𝑖− 1, 2𝑖 /∈ 𝐼, so they

naturally split into pairs {𝐼, 𝐼⊕{2𝑖−1, 2𝑖, 2𝑗−1, 2𝑗}}. Exactly one set 𝐼 in each pair satisfies∑︀
𝑖∈𝐼∩ ̃︀𝐵 𝑖 ≡ 𝜖 (mod 2). Thus the total number 𝑁(𝜋) of sets 𝐼 ∈ ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵) compatible

with 𝜋 equals 2𝑛/2−1 in this case.

Assume now that 𝜋 ∈ Match |res𝐴,𝐵. Then for any 𝐼 ∈ ℰ𝑛(𝐶) compatible with 𝜋, we have∑︀
𝑖∈𝐼∩ ̃︀𝐵 𝑖 ≡ |𝐵|/2 (mod 2). Thus, either all 𝐼 compatible with 𝜋 belong to ℰ𝑛(𝐶)∩𝒟𝜖(𝐵), in

which case we get 2𝑛/2 of them, or they all belong to ℰ𝑛(𝐶)∩𝒟1−𝜖(𝐵), in which case we get

𝑁(𝜋) = 0. It is easy to check that the former case happens exactly when |𝐵|/2 ≡ 1+
∑︀

𝑖∈𝐵 𝑖

(mod 2). This shows (4.7.4), which, combined with (4.7.3), clearly implies 𝑐left(𝜋) = 𝑐right(𝜋).

We are done with the case 𝐴 ∩𝐵 = ∅.

Assume now that 𝐴 ∩ 𝐵 ̸= ∅. Since we are assuming 𝐴 ∪ 𝐵 = [𝑛], we have 2𝑛′ =

𝑛+ |𝐴 ∩𝐵|, and [2𝑛′] = 𝐴′ ⊔𝐵′.

For 𝑘, 𝑘 + 1 ∈ [2𝑛′] such that 𝛽(𝑘) = 𝛽(𝑘 + 1) = 𝑗, let the flipping of a matching

𝜋 ∈ Match([2𝑛′]) at 𝑗 be a matching 𝜋′ obtained from 𝜋′ by “swapping” the elements 𝑘, 𝑘+1,

i.e., 𝜋′ = 𝜋 ∖ {{𝑎, 𝑘}, {𝑏, 𝑘+ 1}} ∪ {{𝑎, 𝑘+ 1}, {𝑏, 𝑘}} for some 𝑎, 𝑏 ∈ [2𝑛′]. (If {𝑘, 𝑘+ 1} ∈ 𝜋

then we set 𝜋′ := 𝜋.)
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Note that two different matchings 𝜋, 𝜋′ ∈ Match([2𝑛′]) can yield the same monomial 𝑚𝛽,𝜋

if they differ by a flipping at some 𝑗 ∈ 𝐴 ∩ 𝐵. We write in this case 𝜋 ∼ 𝜋′, and denote

Π = [𝜋] the equivalence class of matchings 𝜋 ∈ Match([2𝑛′]) with respect to this equivalence

relation. Thus we have 𝑚𝛽,𝜋 = 𝑚𝛽,𝜋′ if and only if 𝜋 ∼ 𝜋′, and we denote 𝑚𝛽,[𝜋] = 𝑚𝛽,𝜋.

We say that 𝜋 is trivial on 𝑗 ∈ 𝐴 ∩ 𝐵, denoted 𝜋 ⊥ 𝑗, if the pair {𝑘, 𝑘 + 1} = 𝛽−1(𝑗)

belongs to 𝜋. We say that 𝜋 is trivial on 𝐴 ∩ 𝐵, denoted 𝜋 ⊥ 𝐴 ∩ 𝐵, if 𝜋 is trivial on all

elements of 𝐴 ∩ 𝐵. It is easy to see that triviality depends only on the equivalence class of

𝜋, justifying the notation Π ⊥ 𝑗 and Π ⊥ 𝐴 ∩ 𝐵. In the case Π ⊥ 𝐴 ∩ 𝐵, Π consists of just

a single element 𝜋, so we define xing(Π) := xing(𝜋) in this case.

Let 𝜋 ∈ Match([2𝑛′]) be a matching. Consider a graph Γ𝜋 = ([2𝑛′], 𝐸(𝜋)) with vertex set

[2𝑛′] and edge set

𝐸(𝜋) = 𝜋 ∪ {{𝑘, 𝑘+1} | 𝑘 ∈ [2𝑛′] is such that 𝛽(𝑘) = 𝛽(𝑘+1)} = 𝜋 ∪ {𝛽−1(𝑗) | 𝑗 ∈ 𝐴∩𝐵}.

(Here if 𝜋 is trivial on 𝑗 then the corresponding pair {𝑘, 𝑘 + 1} = 𝛽−1(𝑗) belongs to both 𝜋

and {𝛽−1(𝑗) | 𝑗 ∈ 𝐴 ∩𝐵}, so Γ𝜋 contains two edges connecting 𝑘 to 𝑘 + 1.)

Each connected component of Γ𝜋 contains an even number of vertices and is either a cycle

or a path. We denote by Conn(Γ𝜋) the set of connected components of Γ𝜋 and by Cyc(Γ𝜋) ⊂

Conn(Γ𝜋) the set of cycles of Γ𝜋. Clearly, flipping 𝜋 at 𝑗 ∈ 𝐴∩𝐵 preserves the set of vertices

of each connected component of Γ𝜋. In particular, we have cyc(𝜋) := |Cyc(𝜋)| = |Cyc(𝜋′)|

for all 𝜋 ∼ 𝜋′, and thus we set cyc([𝜋]) := cyc(𝜋).

For each equivalence class Π of matchings we are going to compare the coefficients of 𝑚𝛽,Π

on both sides of (4.7.2), and show that they are equal. (Recall that we have 𝑚𝛽,𝜋 = 𝑚𝛽,𝜋′ if

and only if 𝜋 ∼ 𝜋′, and in particular we have 𝑚𝛽,Π ̸= 𝑚𝛽,Π′ for Π ̸= Π′.)

The coefficient of 𝑚𝛽,Π in the left hand side of (4.7.2) equals

𝑐left(Π) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)xing(Π) if Π ∩Match |res𝐴′,𝐵′ = ∅ and Π ⊥ 𝐴 ∩𝐵;

−(−1)xing(𝜋|𝐴′ )+xing(𝜋|𝐵′ )2cyc(Π) if 𝜋 ∈ Π ∩Match |res𝐴′,𝐵′ and Π ̸⊥ 𝐴 ∩𝐵;

0 if Π ∩Match |res𝐴′,𝐵′ = ∅ and Π ̸⊥ 𝐴 ∩𝐵.
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Note that the case Π ∩ Match |res𝐴′,𝐵′ ̸= ∅, Π ⊥ 𝐴 ∩ 𝐵 is impossible because 𝐴 ∩ 𝐵 ̸= ∅.

For the second case 𝜋 ∈ Π ∩Match |res𝐴′,𝐵′ , Π ̸⊥ 𝐴 ∩ 𝐵, the parity of xing(𝜋|𝐴′) + xing(𝜋|𝐵′)

is uniquely determined, even if 𝜋 itself may not be uniquely determined. Indeed, any two

𝜋, 𝜋′ ∈ Π ∩ Match |res𝐴′,𝐵′ can be obtained from each other by flipping all 𝑗 ∈ 𝑆 for some

𝑆 ⊂ 𝐴 ∩ 𝐵 such that 𝛽−1(𝑆) is a union of cycles of Γ𝜋 (and thus a union of cycles of Γ𝜋′).

Clearly in this case we have xing(𝜋|𝐴′) + xing(𝜋|𝐵′) = xing(𝜋′|𝐴′) + xing(𝜋′|𝐵′).

Recall that 𝐼 ∈ ℰ𝑛(𝐶) is compatible with 𝜋 if 𝜋 ∈ Match(𝐼 ′, [2𝑛′]∖𝐼 ′). In this case we also

say that 𝐼 ′ is compatible with 𝜋. Note that the map 𝐼 ↦→ 𝐼 ′ = 𝛼(𝐼) is injective on ℰ𝑛(𝐶), and

we denote by ℰ ′
𝑛(𝐶) := {𝐼 ′ | 𝐼 ∈ ℰ𝑛(𝐶)} ⊂

(︀
[2𝑛′]
𝑛′

)︀
the image of this map. Thus 𝐼 ′ ∈ ℰ ′

𝑛(𝐶) if

and only if |𝐼 ′| = 𝑛′ and |𝐼 ′ ∩ {𝑘, 𝑘 + 1}| = 1 for all 𝑘 ∈ [2𝑛′] such that 𝛽(𝑘) = 𝛽(𝑘 + 1).

It is clear that the coefficient of 𝑚𝛽,Π in the right hand side of (4.7.3) is equal to

𝑐right(Π) =
2𝑛−𝑛

′

2𝑛−1

∑︁
(𝜋,𝐽)

(−1)xing(𝜋),

where the sum is over all pairs (𝜋, 𝐽) such that 𝜋 ∈ Π and 𝐽 ∈ ℰ𝑛(𝐶) is compatible with 𝜋.

We claim that this sum equals

∑︁
(𝜋,𝐽)

(−1)xing(𝜋) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)xing(Π)2𝑛

′−1 if Π ∩Match |res𝐴′,𝐵′ = ∅ and Π ⊥ 𝐴 ∩𝐵;

−(−1)xing(𝜋|𝐴′ )+xing(𝜋|𝐵′ )2𝑛
′−1+cyc(Π) if 𝜋 ∈ Π ∩Match |res𝐴′,𝐵′ and Π ̸⊥ 𝐴 ∩𝐵;

0 if Π ∩Match |res𝐴′,𝐵′ = ∅ and Π ̸⊥ 𝐴 ∩𝐵.

Consider the first case Π ∩ Match |res𝐴′,𝐵′ = ∅, Π ⊥ 𝐴 ∩ 𝐵. Let 𝜋 be the unique element

of Π. Pick some 𝑗 ∈ 𝐴 ∩ 𝐵, and let {𝑘, 𝑘 + 1} := 𝛽−1(𝑗). For each pair {𝑖, 𝑖′} ∈ 𝜋 except

for {𝑘, 𝑘 + 1}, choose arbitrarily which of 𝑖 and 𝑖′ belongs to 𝐽 ′ and which does not. There

are total 2𝑛′−1 ways to do this. For each of the 2𝑛
′−1 ways, the condition

∑︀
𝑖∈𝐽∩ ̃︀𝐵 𝑖 ≡ 𝜖

(mod 2) uniquely determines whether 𝑘 or 𝑘 + 1 must belong to 𝐽 ′ in order for 𝐽 to belong

to ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵). We are done with the first case.

Consider now the third case Π ∩Match |res𝐴′,𝐵′ = ∅, Π ̸⊥ 𝐴 ∩ 𝐵. It follows that there is a

pair {𝑖, 𝑖′} common to all 𝜋 ∈ Π such that 𝛽(𝑖) ∈ 𝐴 ∖ 𝐵 and 𝛽(𝑖′) ∈ 𝐵 ∖ 𝐴. There is also a

pair {𝑘, 𝑘+1} = 𝛽−1(𝑗) for some 𝑗 ∈ 𝐴∩𝐵 such that 𝑘 and 𝑘+1 are not connected to each

188



other in any 𝜋 ∈ Π. Consider a map 𝛾 : ℰ𝑛(𝐶)∩𝒟𝜖(𝐵) → ℰ𝑛(𝐶)∩𝒟𝜖(𝐵) defined as follows.

We put 𝛾(𝐼) = 𝐽 for 𝐼, 𝐽 ∈ ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵) if 𝐽 ′ = 𝐼 ′ ⊕ {𝑖, 𝑖′, 𝑘, 𝑘 + 1}. Let 𝜋′ be obtained

from 𝜋 by flipping at 𝑗. We claim that 𝐼 ∈ ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵) is compatible with 𝜋 if and only

if 𝛾(𝐼) ∈ ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵) is compatible with 𝜋′. Moreover, xing(𝜋′) differs from xing(𝜋) by

1. Thus, we have a sign-reversing involution that cancels all the terms in
∑︀

(𝜋,𝐽)(−1)xing(𝜋),

proving that it is equal to 0 in the third case.

Finally, consider the second case 𝜋 ∈ Π∩Match |res𝐴′,𝐵′ , Π ̸⊥ 𝐴∩𝐵. We are going to show

that ∑︁
(𝜋,𝐽)

(−1)xing(𝜋) = −(−1)xing(𝜋|𝐴′ )+xing(𝜋|𝐵′ )2𝑛
′−1+cyc(Π).

Fix a matching 𝜋 ∈ Π ∩Match |res𝐴′,𝐵′ . We claim that for any 𝜋′ ∈ Π, there exists 𝜖𝜋′ ∈ {0, 1}

such that for all 𝐼 ∈ ℰ𝑛(𝐶) compatible with 𝜋′, we have 𝐼 ∈ 𝒟𝜖𝜋′ (𝐵), that is,

∑︁
𝑖∈𝐼∩ ̃︀𝐵

𝑖 ≡ 𝜖𝜋′ (mod 2).

Indeed, each component of Γ𝜋′ is a bipartite graph (a path or a cycle with an even number

of vertices) so let us color its vertices black and white in a bipartite way. It is easy to check

that 𝐼 ∈ ℰ𝑛(𝐶) is compatible with 𝜋′ if and only if for each connected component of Γ𝜋′ , 𝐼 ′

contains either all white vertices or all black vertices of this component. Let 𝑆 ⊂ [2𝑛′] be the

set of vertices of a connected component of Γ𝜋′ , and let 𝐽 ∈ ℰ𝑛(𝐶) be such that 𝐽 ′ = 𝐼 ′ ⊕ 𝑆

(thus 𝐽 ′ is obtained from 𝐼 ′ by switching from white to black inside the component 𝑆). It is

straightforward to check that because 𝜋′ is equivalent to 𝜋 ∈ Match |res𝐴′,𝐵′ , we have

∑︁
𝑖∈𝐼∩ ̃︀𝐵

𝑖 ≡
∑︁
𝑖∈𝐽∩ ̃︀𝐵

𝑖 (mod 2).

We thus define 𝜖𝜋′ :=
∑︀

𝑖∈𝐼∩ ̃︀𝐵 𝑖 for some 𝐼 ∈ ℰ𝑛(𝐶) compatible with 𝜋′, and we have shown

that 𝜖𝜋′ does not depend on the choice of 𝐼.

Next, flipping 𝜋′ at some 𝑗 ∈ 𝐴 ∩ 𝐵 changes 𝜖𝜋′ into 1 − 𝜖𝜋′ . Thus we have 𝜖𝜋′ = 𝜖 for

precisely half of the matchings 𝜋′ ∈ Π, and for each such matching 𝜋′, there are 2|Conn(Γ𝜋′ )| =

2𝑛
′−|𝐴∩𝐵| sets 𝐽 ∈ ℰ𝑛(𝐶) compatible with 𝜋′. Since Π ∩Match |res𝐴′,𝐵′ ̸= ∅, we have Π ̸⊥ 𝑗 for
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each 𝑗 ∈ 𝐴∩𝐵, and thus |Π| = 2|𝐴∩𝐵|. Therefore the total number of pairs (𝜋′, 𝐽) such that

𝜋′ ∈ Π and 𝐽 ∈ ℰ𝑛(𝐶) ∩ 𝒟𝜖(𝐵) equals 2𝑛
′−1, and for each of them, the parity of xing(𝜋′) is

the same, because it satisfies

𝜖𝜋 − 𝜖 ≡ xing(𝜋)− xing(𝜋′).

Thus in order to finish the proof, it suffices to show that

xing(𝜋)− xing(𝜋|𝐴′)− xing(𝜋|𝐵′) ̸≡ 𝜖𝜋 − 𝜖 (mod 2). (4.7.5)

Let 𝐽 ∈ ℰ𝑛(𝐶) be compatible with 𝜋. Then by the definition of 𝜖𝜋 and 𝜖, we have

𝜖𝜋 − 𝜖 ≡
∑︁
𝑖∈𝐽∩ ̃︀𝐵

𝑖+
∑︁
𝑖∈𝐵′

𝑖+ 1 (mod 2).

Combining this with Lemma 4.7.10, Equation (4.7.5) transforms into

|𝐵′|/2 +
∑︁
𝑖∈𝐵′

𝑖 ≡
∑︁
𝑖∈𝐽∩ ̃︀𝐵

𝑖+
∑︁
𝑖∈𝐵′

𝑖 (mod 2),

equivalently, |𝐵′|/2 ≡
∑︀

𝑖∈𝐽∩ ̃︀𝐵 𝑖 (mod 2), which follows in a straightforward way since 𝜋 ∈

Match |res𝐴′,𝐵′ , 𝐽 contains either all white or all black vertices in each connected component of

Γ𝜋, and hence the contribution of each connected component to the left and right hand side

is the same. We are done with the proof of Theorem 4.7.8, which implies Theorem 4.2.13 as

discussed previously.

4.8 Open problems and future directions

In this section, we briefly list several questions that in our opinion would be worth exploring

further.

According to (4.4.4), OG≥0(𝑛, 2𝑛) is a union of cells labeled by matchings 𝜏 on [2𝑛],

and each such cell Π>0
𝜏 ∩ OG≥0(𝑛, 2𝑛) is homeomorphic to Rxing(𝜏). It would be nice to

understand the topology closures of these cells. In fact, we have a conjecture, analogous
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to [Pos07, Conjecture 3.6].

Conjecture 4.8.1. The cell decomposition (4.4.4) gives a regular CW complex structure on

OG≥0(𝑛, 2𝑛). In other words, the closure of each cell Π>0
𝜏 ∩ OG≥0(𝑛, 2𝑛), given by (4.4.5),

is homeomorphic to a closed xing(𝜏)-dimensional ball.

As we have already mentioned, the poset 𝑃𝑛 of cells in OG≥0(𝑛, 2𝑛) has been studied

in the context of electrical networks. In particular, it has been shown to be shellable and

Eulerian by [Lam15, HK18], which shows that 𝑃𝑛 is the face poset of some regular CW

complex by a result of [Bjö84]. This leads to our next question.

Question 4.8.2. Does there exist a natural stratification-preserving homeomorphism be-

tween the compactification 𝐸𝑛 of the space of response matrices of planar electrical networks

(as studied in [Lam18]) and the space 𝒳 𝑛 of boundary correlation matrices of planar Ising

networks?

Recall that both spaces have cell decompositions into cells indexed by matchings on

[2𝑛], and both spaces are homeomorphic to a closed
(︀
𝑛
2

)︀
-dimensional ball by Theorems 1.5.1

and 4.1.3. Similarly to Conjecture 4.8.1, the space 𝐸𝑛 is believed to be a regular CW complex

with face poset 𝑃𝑛. There are many more surprising analogies between the two spaces:

∙ In both cases, a planar graph yields a point in the cell corresponding to its medial

pairing.

∙ Two reduced planar graphs yield the same point if and only if they are connected by

the corresponding 𝑌 −Δ (or star-triangle) moves.4

∙ In both cases, there is an embedding of the space of boundary measurements into the

totally nonnegative Grassmannian, as in Theorem 4.1.3 and [Lam18, Theorem 5.8].5

4In fact, under our map 𝐺 ↦→ 𝐺�, applying a 𝑌 −Δ move to 𝐺 corresponds to applying the superurban
renewal of [KP16] to 𝐺�.

5The corresponding decorated permutations differ by a “shift by 1”, i.e., if 𝜋 : [𝑛] → [𝑛] is a fixed-point
free involution then Lam embeds the electrical response matrix into the cell Π>0

𝜋′ of Gr≥0(𝑛− 1, 2𝑛), where
𝜋′(𝑖) := 𝜋(𝑖) − 1 modulo 𝑛 for all 𝑖 ∈ [𝑛]. An analogous construction in the context of the amplituhedron
of [AHT14] is related to going from the momentum space to the momentum-twistor space, where one performs
a “shift by 2”. It remains an open problem to define the amplituhedron and related objects in the context of
ABJM amplitudes. We thank Thomas Lam for pointing this out to us.
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∙ Both spaces can be realized as subsets of the partial flag variety 𝐺/𝑃 for a suitable

choice of 𝐺 and 𝑃 , see Remark 4.4.2.

∙ The cyclic shift inside the corresponding Grassmannian amounts to the duality oper-

ation for Ising networks as in Section 4.2.2, and for electrical networks it corresponds

to taking the dual graph and replacing each conductance by its reciprocal, as easily

follows from the results of [Lam18, Section 5].

∙ Adding boundary spikes and boundary edges translates into adding pairs of bridges to

the corresponding plabic graph, see Theorem 4.2.20 and [Lam18, Proposition 5.12].

Our next question is related to Remark 4.2.6.

Problem 4.8.3. Explain rigorously the relationship between the scaling limit of planar

Ising networks at critical temperature and the unique cyclically symmetric point 𝑋0 ∈

OG≥0(𝑛, 2𝑛) from Section 2.2.1.

Our main result establishes a correspondence between total positivity and planar Ising

networks, and thus potentially allows to apply results and intuition from one area to an-

other. For example, asymptotic properties of plabic graphs have not yet been studied, while

asymptotic properties of planar Ising networks have rich and important well-studied struc-

ture. Similarly, the space Gr≥0(𝑘, 𝑛) is usually studied in the context of cluster algebras and

canonical bases of Lusztig, see e.g. [FZ02, Lus97]. For instance, Theorem 4.2.13 expresses

Griffiths’ inequalities as positive linear sums of minors of 𝜑(𝑀). But the theory of cluster

algebras gives a much larger family of rational functions of the minors that all take positive

values on Gr≥0(𝑘, 𝑛).

Problem 4.8.4. Give an interpretation of the values of other cluster variables in the cluster

algebra of the Grassmannian in terms of the planar Ising model.

Another direction is related to Question 4.2.23 and the discussion after it: what is the

minimal number of minors one needs to check in order to test whether a given element

𝑋 ∈ OG(𝑛, 2𝑛) belongs to OG≥0(𝑛, 2𝑛)? A similar question for electrical networks has been

discussed in [Ken12, Section 4.5.3]. This question also makes sense when 𝑋 belongs to a
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lower-dimensional cell inside OG≥0(𝑛, 2𝑛). Note also that in the case of the Grassmannian,

collections of such minors have a very nice structure [OPS15] as they form clusters in the as-

sociated cluster algebra. It is not clear to us whether there exists a similar “cluster structure”

on OG≥0(𝑛, 2𝑛).

Finally, there has been a rich interplay between the areas of scattering amplitudes and

total positivity, giving rise to canonical differential forms on positroid cells inside Gr≥0(𝑘, 𝑛),

see [AHT14, AHBC+16, AHBL17, GL18]. A similar result for electrical networks can be

found in [Ken12, Theorem 4.13], which gives an explicit expression for the Jacobian of a

certain natural map. In [HWX14, Section 2.4.2], an expression for another Jacobian was

given for OG≥0(𝑛, 2𝑛) in the context of ABJM scattering amplitudes. It would thus be

interesting to understand their Jacobian in the language of planar Ising networks, as well as

develop an analog of the amplituhedron for which OG≥0(𝑛, 2𝑛) plays the role of Gr≥0(𝑘, 𝑛).
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