Instructions: click on blue and green circles until the number of crossings in the picture is minimal possible (see 'Minimal possible length' below).
Both types of circles correspond to conjugation moves , but blue circles preserve the number of crossings, and green circles decrease it by 2.
Press the "Run ODE" button to solve the problem using a system of linear ODE:
where is the horizontal coordiante of the two points labeled at the top and bottom row of the picture. See the proof of Proposition 4.13 in arXiv:2212.12962 for more details.
Plot
undo
Speed:
Run ODE
Level 1
-7 -7 -6 -6 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20
Length: 4 . Minimal possible length: 0 .
1 , 4 . Number of cycles: 1 .
Choose a demo example:
Prev <
0. Generic example
1.
2.
3. Length = 6
4. Two cycles - not c-reduced
5. c-reduced 1-cycle
6. Same slope c-reduced
7. Same slope c-reduced big
8. ODE 1-cycle
9. ODE 3-cycle
> Next
Choose a level:
Prev <
1. Easy (n=5, ncyc=1, difficulty=4)
2. Easy (n=5, ncyc=1, difficulty=5)
3. Easy (n=5, ncyc=1, difficulty=6)
4. Easy (n=6, ncyc=2, difficulty=7)
5. Easy (n=6, ncyc=1, difficulty=8)
6. Easy (n=6, ncyc=1, difficulty=9)
7. Easy (n=6, ncyc=1, difficulty=11)
8. Easy (n=6, ncyc=2, difficulty=12)
9. Easy (n=7, ncyc=1, difficulty=12)
10. Easy (n=7, ncyc=1, difficulty=13)
11. Easy (n=7, ncyc=2, difficulty=14)
12. Medium (n=7, ncyc=2, difficulty=15)
13. Medium (n=7, ncyc=2, difficulty=16)
14. Medium (n=7, ncyc=1, difficulty=17)
15. Medium (n=7, ncyc=2, difficulty=18)
16. Medium (n=7, ncyc=1, difficulty=19)
17. Medium (n=8, ncyc=2, difficulty=21)
18. Medium (n=7, ncyc=3, difficulty=26)
19. Medium (n=8, ncyc=2, difficulty=26)
20. Medium (n=9, ncyc=1, difficulty=29)
21. Medium (n=9, ncyc=2, difficulty=29)
22. Medium (n=9, ncyc=1, difficulty=30)
23. Medium (n=9, ncyc=3, difficulty=33)
24. Medium (n=9, ncyc=2, difficulty=34)
25. Medium (n=8, ncyc=2, difficulty=36)
26. Medium (n=9, ncyc=2, difficulty=37)
27. Medium (n=8, ncyc=1, difficulty=38)
28. Medium (n=9, ncyc=1, difficulty=39)
29. Medium (n=9, ncyc=3, difficulty=39)
30. Medium (n=9, ncyc=2, difficulty=40)
31. Medium (n=9, ncyc=3, difficulty=40)
32. Medium (n=9, ncyc=1, difficulty=41)
33. Medium (n=9, ncyc=2, difficulty=42)
34. Medium (n=9, ncyc=3, difficulty=43)
35. Medium (n=8, ncyc=2, difficulty=45)
36. Medium (n=9, ncyc=2, difficulty=45)
37. Medium (n=9, ncyc=1, difficulty=47)
38. Medium (n=9, ncyc=1, difficulty=49)
39. Medium (n=9, ncyc=1, difficulty=58)
40. Hard (n=10, ncyc=2, difficulty=64)
41. Hard (n=9, ncyc=3, difficulty=66)
42. Hard (n=10, ncyc=1, difficulty=67)
43. Hard (n=10, ncyc=1, difficulty=75)
44. Hard (n=11, ncyc=3, difficulty=75)
45. Hard (n=11, ncyc=1, difficulty=76)
46. Hard (n=9, ncyc=2, difficulty=77)
47. Hard (n=11, ncyc=3, difficulty=78)
48. Hard (n=10, ncyc=2, difficulty=87)
49. Hard (n=10, ncyc=4, difficulty=102)
50. Hard (n=10, ncyc=1, difficulty=120)
> Next