AsyncQVI: Asynchronous Parallel Q-value Iteration for Markov Decision Processes

Yibo Zeng
Columbia University, IEOR

Fei Feng
UCLA, Math

Wotao Yin
UCLA, Math
Markov Decision Process

A framework for **Reinforcement Learning**.

- \(M := (S, A, p, r, \gamma) \).
- Transition kernel \(p(s_{t+1} | s_t, a_t) \) & reward function \(r(s_t, a_t, s_{t+1}) \)

- A **policy** \(\pi: S \rightarrow A \)
- We execute \(\pi \) to obtain a trajectory: \(s_0, a_0, r_0, s_1, a_1, r_1 \ldots \)

- **State-value function:**

\[
V^\pi(s) = E \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, \pi \right]
\]

- **Goal:** find a policy that maximizes the value function \(V^\pi \).
Recent Successes and Time Demands in RL

[DeepMind 2015]
Human-level performance on **Atari 2600**. Trained for **38 days** of game experience

[DeepMind 2017]
AlphaGo Zero. Trained for **40 days** to surpass all old versions.

[OpenAI 2019]
Defeating **Dota 2** world champion. Trained for **180 days**.

Parallel computing accelerates training.

[Minh et al. 2016]

Fei Feng @ UCLA MATH
Parallel Computing

Sync-parallel
- probably long idle time;
- little tolerant to communication glitches;
- keeps information consistent.

Async-parallel
- saves idle time;
- more tolerant to communication glitches;
- easier to incorporate new agents;
- information is delayed or inconsistent.

Our goal: a theoretically justified async-parallel algorithm for MDPs.
Review the Bellman Operator

• Initialize a table Q_0 of size $S \times A$.

• Bellman Operator (Q-value iteration):

$$Q_{t+1}(s, a) = T^B(Q_t) = E_{s' \sim p(\cdot | s, a)}[r(s, a) + \gamma \max_{a'} Q_t(s', a')]$$ \hspace{1cm} (1)

• The fixed point Q^* can induce an optimal policy [Sutton & Barto, 1999].

T^B is friendly for parallel design:

- A nice structure: linear (expectation) + simple nonlinear (max).
- A nice convergence property: γ-contraction under $|| \cdot ||_\infty$.

Fei Feng @ UCLA MATH
How we build AsyncQVI.

1. The original Q-value iteration:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), \quad \forall (s,a) \in S \times A.$$

2. Revise to a coordinate-update fashion:

$$Q_{s,a}(t+1) = \begin{cases}
\sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), & (s,a) = (s_{t+1}, a_{t+1}); \\
Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
\end{cases}$$

3. Implement in an asynchronous parallel manner:

$$Q_{s,a}(t+1) = \begin{cases}
\sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} \hat{Q}_{s',a'}), & (s,a) = (s_{t+1}, a_{t+1}); \\
Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
\end{cases}$$

4. Approximate with Samples:

$$Q_{s,a}(t+1) = \begin{cases}
\frac{1}{K} \sum_{k=1}^K (r_k + \gamma \max_{a'} \hat{Q}_{s_k,a'}(t)) - c, & (s,a) = (s_{t+1}, a_{t+1}); \\
Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
\end{cases}$$

Update ALL entries per iteration. Time complexity per iteration: $O(S^2 A)$.

Fei Feng @ UCLA MATH
How we build AsyncQVI.

1. The original Q-value iteration:
 \[Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), \quad \forall (s, a) \in S \times A. \]

2. Revise to a coordinate-update fashion:
 \[Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}). \end{cases} \]

3. Implement in an asynchronous parallel manner:
 \[Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}). \end{cases} \]

4. Approximate with Samples:
 \[Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} (r_k + \gamma \max_{a'} Q_{s_k',a'}(t)) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}) \end{cases} \]

Update ONE entry per iteration.
Time complexity per iteration: \(O(S) \).
How we build AsyncQVI.

1. The original Q-value iteration:

\[Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^{a} \left(r_{ss'}^{a} + \gamma \max_{a'} Q_{s',a'}(t) \right), \quad \forall (s, a) \in S \times A. \]

2. Revise to a coordinate-update fashion:

\[Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} \left(r_{ss'}^{a} + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}). \end{cases} \]

3. Implement in an asynchronous parallel manner:

\[Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} \left(r_{ss'}^{a} + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}). \end{cases} \]

4. Approximate with Samples:

\[Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} \left(r_{k} + \gamma \max_{a'} Q_{s_{k},a'}(t) \right) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}). \end{cases} \]

Parallel run with \(N \) agents.
Scatter computing load.
Asynchronous causes information delay.

Fei Feng @ UCLA MATH
How we build AsyncQVI.

1. **The original Q-value iteration:**
 \[
 Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), \quad \forall (s,a) \in S \times A.
 \]

2. **Revise to a coordinate-update fashion:**
 \[
 Q_{s,a}(t+1) = \begin{cases}
 \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), & (s,a) = (s_{t+1}, a_{t+1}); \\
 Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
 \end{cases}
 \]

3. **Implement in an asynchronous parallel manner:**
 \[
 Q_{s,a}(t+1) = \begin{cases}
 \sum_{s'} p_{ss'}^a (r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t)), & (s,a) = (s_{t+1}, a_{t+1}); \\
 Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
 \end{cases}
 \]

4. **Approximate with Samples:**
 \[
 Q_{s,a}(t+1) = \begin{cases}
 \frac{1}{K} \sum_{k=1}^K (r_k + \gamma \max_{a'} Q_{s',a'}(k)) - c, & (s,a) = (s_{t+1}, a_{t+1}); \\
 Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}).
 \end{cases}
 \]

Generative Model (GM):
- Input: any \((s,a)\)
- Output: \((s',r) \sim p(\cdot|s,a)\)

Stochastic approximation with a generative model. Scatter sampling load.
AsyncQVI

N computing agent continuously and asynchronously do:

- Selection can be random or cyclic.
- Memory complexity: $O(S)$;
- The copying can be done in a less frequent fashion;
- The overhead of updating lock is negligible;
- Parallel speedup: N times faster (ideally).
Theoretical Guarantee

Assumptions [partial asynchronism]:
1. Delay is uniformly bounded by B_1;
2. The time interval between consecutive updates for each entry is bounded by B_2.

The sample complexity of single-thread methods with a generative model is:

$$\tilde{O}\left(\frac{B_1 + B_2}{(1 - \gamma)^5 \epsilon^2} \log \left(\frac{1}{\delta}\right)\right).$$

[Azar et al. 2013, Agarwal et al. 2019]

If $B_1 + B_2 = O(SA)$, our sample complexity is near-optimal.
Related Works

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Setting</th>
<th>Async-parallel</th>
<th>Sample</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totally Async QVI(^2)</td>
<td>Full knowledge</td>
<td>Unbddd delay</td>
<td>N/A</td>
<td>(\mathcal{O}(SA))</td>
</tr>
<tr>
<td>Partially Async QVI(^3)</td>
<td>Full knowledge</td>
<td>Bdd delay</td>
<td>N/A</td>
<td>(\mathcal{O}(SA))</td>
</tr>
<tr>
<td>Async Q-learning(^4)</td>
<td>RL</td>
<td>Unbddd delay</td>
<td>N/A</td>
<td>(\mathcal{O}(SA))</td>
</tr>
<tr>
<td>VRVI(^5)</td>
<td>Generative model</td>
<td>(\times)</td>
<td>(\tilde{O}\left(\frac{SA}{(1-\gamma)^4\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right))</td>
<td>(\mathcal{O}(SA))</td>
</tr>
<tr>
<td>VRQVI(^6)</td>
<td>Generative model</td>
<td>(\times)</td>
<td>(\tilde{O}\left(\frac{SA}{(1-\gamma)^5\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right))</td>
<td>(\mathcal{O}(SA))</td>
</tr>
<tr>
<td>AsyncQVI</td>
<td>Generative model</td>
<td>Bdd delay</td>
<td>(\tilde{O}\left(\frac{SA}{(1-\gamma)^5\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right))</td>
<td>(\mathcal{O}(S))</td>
</tr>
</tbody>
</table>

\(^2\) Bertsekas and John N Tsitsiklis 1989.
\(^3\) Bertsekas and John N Tsitsiklis 1989.

AsyncQVI trades a few more samples for less running time and memory.
Numerical Experiment

- 100*100 grid world;
- Noises in transition;
- A big reward at the target;
- Minor traveling costs.

Parallel algorithms are run with 20 threads.
Conclusion:

• We propose an async-parallel algorithm for MDPs with a near-optimal sample complexity.
• AsyncQVI trades a little more samples for less time and memory.
• AsyncQVI has linear parallel speedup empirically.

Future work:

• Involve exploration.
• Consider function approximation.

Thank you!