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Introduction

Let Ω be a smooth bounded domain in Rn. Consider a Lorentzian
metric in the cylinder R× Ω

n∑
j ,k=0

gjk(x)dxjdxk , (1)

where x0 ∈ R, x ∈ Rn, x0 is the time variable, x = (x1, ..., xn) ∈ Ω.
We assume that metric tensor [gjk(x)]nj ,k=0 is independent of x0, and
the signature of the matrix [gjk ]nj ,k=0 is (+,−, ...,−).

Let [g jk(x)]nj ,k=0 =
(
[gjk ]nj ,k=0

)−1 be the inverse metric tensor.
Denote by H(x , ξ0, ξ) the Hamiltonian, i.e.

H(x , ξ0, ξ) =
1
2

n∑
j ,k=0

g jk(x)ξjξk . (2)



The Hamiltonian system corresponding to the Hamiltonian H(x , ξ0, ξ)
is

dx

dt
=
∂H

∂ξ
,

dξ

dt
= −∂H

∂x
, (3)

dx0

dt
=
∂H

∂ξ0
,

dξ0
dt

= − ∂H
∂x0

= 0, (4)

since H is independent of x0. Here x = (x1, ..., xn), ξ = (ξ1, ..., ξn)
and since dξ0

dt = 0, ξ0 is independent of t, ξ0(t) = η0.



The initial conditions for (3), (4) are

x(0) = y , ξ(0) = η, ξ0(t) = ξ0(0) = η0, x0(0) = 0. (5)

We have

dH(x(t), ξ0(t), ξ(t))

dt
=
∂H

∂x

dx

dt
+
∂H

∂ξ

dξ

dt
+
∂H

∂ξ0

dξ0
dt

. (6)

Substituting (3), (4) into (6) we get

dH(x(t), ξ0(t), ξ(t))

dt
=
∂H

∂x

∂H

∂ξ
− ∂H

∂ξ

∂H

∂x
= 0,

since dξ0
dt = 0. Thus H(x(t), ξ0(t), ξ(t)) = H(y , η0, η), ∀t.



The solution (x0(t), x(t), ξ0(t), ξ(t)) of (3), (4) such that
H(y , η0, η) = 0, is called null-bicharacteristic.
The restriction of (x0(t), x(t)), ξ0(t), ξ(t)) to the x-space is called
null-geodesics.
We also call the restriction of (x0(t), x(t), ξ0(t), ξ(t))
to (x0, x) space the time-space null-geodesics.
The null-bicharacteristic or null-geodesic are called forward
if dx0

dt > 0. It follows from (4) that the null-bicharacteristic is forward
if ∂H
∂ξ0

> 0.
Note that when x̂ = (x0, x) and if s(x̂) is a diffeomorphism of
R × Rn, s(x̂) = x̂ for |x̂ | large, then the inverse metric tensor has
the form (∂s

∂x̂

)T
g(x̂)

∂s(x̂)

∂x̂
(7)

in new coordinates.



We can use the change of coordinates to simplify the inverse metric
tensor. In particular, we can make the change of variables such that

ĝ00 = 1, ĝ0j = ĝ j0 = 0, 1 ≤ j ≤ n. (8)

Then the Hamiltonian system, after simplifying notations, will have
the form

dx0

dt
= 1,

dx

dt
= ĝξ,

dξ

dt
= −1

2
∂ĝ

∂x
ξ · ξ, (9)

where ĝ = [ĝ jk ]nj ,k=1.



Denote by L(q,T , y , η) the integral over the time-space geodesics
x0 = x0(t, y , η), x = x(t, y , η) starting at (0, y , η) at t = 0 and
ending when t = T at the point x0(T ), xT = x(T , y , η). We have
that the length of this time-space geodesic is

L(q,T , y , η) =

T∫
0

√(dx0

dt

)2
+ |xt |2dt, |xt |2 =

n∑
k=1

∣∣∣dxk
dt

∣∣∣2. (10)

Let y0 ∈ ∂Ω and γy0(ε) be an ε-neighborhood of y0 in ∂Ω. Denote
by Γy0 the union of all time-space null-geodesics in R × Ω starting
on γy0(ε). Consider all null-bicharacteristics x = x(t, y , η), ξ =
ξ(t, y , η) where t ≥ 0, y ∈ γy0(ε), η is fixed. Let T = T (y , η)
be such that xT = x(T , y , η) ∈ ∂Ω. We shall call such T (y , η)
maximal.
Consider the time-space forward null-geodesic x0 = x0(t, y , η), x =
x(t, y , η) that enters the cylinder R× Ω at point (0, y) at the time
t = 0, stays in R × Ω for 0 < t < T and reaches again R × ∂Ω at
point x0(T ), xT = x(T , y , η) at the time t = T .



The main result of the talk is the following theorem:

Theorem
Let
∑n

j ,k=0 qpjk(x)dxjdxk be two metrics, p = 1, 2, and let (x0(qp), x(qp)))
be the time-space null-geodesics with the same initial conditions
x0 = 0, x = y and ξ = η. Suppose Γy0 Is a union of all time-space
null-geodesics in R × Ω starting on γy0(ε). Let T ′(y , η) be maxi-
mal in q1-metric for any y ∈ γy0(ε). Then if L(q2,T

′(y , η), y , η) =
L(q1,T

′(y , η), y , η) for all y ∈ γy0(ε) and if q2 and q1 are sufficiently
close in Γy0 then q2 = q1 in Γy0 .
Note that since q1 and q2 are independent of x0, q1 = q2 on Γy0

is equivalent to q1 = q2 on the projection of Γy0 on Ω, where the
projection consists of all null-geodesics in Ω starting at y ∈ γy0(ε).



There are many works on the rigidity of the Riemannian metric,
i.e. the rigidity with respect to the distance d(x , y), where x , y are
boundary points and d(x , y) is the length of the geodesics connecting
x and y ( [P.Stefanov, G.Uhlmann, 1998], [M.Lassas, V.Sharifutdinov,
G.Uhlmann, 2003], [G.Eskin, 1998], [P.Stefanov, G.Uhlmann, A.Vasy,
2016], [P.Stefanov, G.Uhlmann, A.Vasy, H.Zhou, 2019]). In recent
paper [G.Uhlmann, Yang Yang, H.Zhou, 2020] the boundary rigid-
ity problem for some class of Lorentzian metrics is proven. We also
study the case of Lorentzian metric. The main novelty of our talk is
that we consider the null-geodesics. We also use here some ideas of
[G.Eskin, 1998].



Estimates for the null-geodesics

Let

Hp =
1
2

n∑
j ,k=0

qjkp (x)ξjξk =
1
2
q00
p ξ

2
0 +

n∑
j=1

q0j
p ξjξ0 +

1
2
q′pξ · ξ,

p = 1, 2, be two Hamiltonians. Denote

q = q1 + τ(q2 − q1), 0 ≤ τ ≤ 1. (11)

Let xτ , ξτ be solution of the Hamiltonian system
dxτ
dt

= q′(xτ (t))ξτ (t), (12)

dξτ
dt

= −1
2
∂q′(xτ (t))

∂x
ξτ (t) · ξτ (t),

xτ (t, y , η)
∣∣∣
t=0

= y , ξτ (t, y , η)
∣∣∣
t=0

= η,

and let

dxτ0
dt

= q00
τ (x)ξ0 +

n∑
j=1

q0j
τ ξj , xτ0 (0) = 0.



We shall study the behavior of (xτ (t, y , η), ξτ (t, y , η) and xτ0 with
respect to τ . Differentiating (12) in τ we get

d

dt

d

dτ
xτ =

(
q′2(xτ (t))− q′1(xτ (t))

)
ξτ (t) +

∂q′1(xτ (t))

∂x

dxτ
dτ

ξτ (t)

(13)

+q′1(xτ (t))
dξτ
dτ

+ O(τ(q′2 − q′1)2)ξτ (t),

d

dt

d

dτ
ξτ =− 1

2

(∂2q′1(xτ )

∂x2
dxτ
dτ

ξτ

)
· ξτ −

∂

∂x
q′1(xτ (t))ξτ

dξτ
dτ

− 1
2

((∂q′2
∂x
− ∂q′1

∂x

)
ξτ

)
· ξτ +

(
O
(
τ
(∂q′2
∂x
− ∂q′1

∂x

)2)
ξτ

)
· ξτ .



Thus
d

dt

( dxτ
dτ
dξτ
dτ

)
= Q

( dxτ
dτ
dξτ
dτ

)
+ F (14)

where

Q =

[
∂q′1
∂x ξτ q′1

−1
2

(∂2q′1
∂x2 ξτ

)
· ξτ −∂q′1(xτ )ξτ

∂x

]
, (15)

F =

[
(q′2 − q′1)ξτ + O(τ(q′2 − q′1)2)ξτ

−1
2

((∂q′2
∂x −

∂q′1
∂x

)
ξτ
)
ξτ +

(
O
(
τ
(∂q′2
∂x −

∂q′1
∂x

)2)
ξτ
)
· ξτ

]
.

Note that
dxτ
dτ

∣∣∣
t=0

= 0,
dξτ
dτ

∣∣∣
t=0

= 0 (16)

since xτ
∣∣
t=0 = y , ξτ

∣∣
t=0 = η.



We shall write the solution of the Cauchy problem (14), (16) in the
form [ dxτ

dτ
dξτ
dτ

]
= R(t)F , (17)

where R(t) is the solution operator of the equation (14).
If N is large enough then the following estimate for the solution of
the Cauchy problem (14), (16) holds:

max
0≤t≤T

e−Nt
(∣∣∣dxτ

dτ

∣∣∣+
∣∣∣dξτ
dτ

∣∣∣) ≤ CN

T∫
0

e−Nt |F (xτ (t))|dt.

Since q′2 − q′1 is bounded, τ(q′2 − q′1)2 ≤ C |q′2 − q′1|. Thus |F | ≤
C |q′2 − q′1|+ C

∣∣ ∂
∂x (q′2 − q′1)

∣∣. Therefore
max

0≤t≤T
e−Nt

(∣∣∣dxτ
dτ

∣∣∣+∣∣∣dξτ
dτ

∣∣∣) ≤ CN sup
τ

T∫
0

e−Nt
∣∣(q′2−q′1)(xτ (t))

∣∣dt
+ CN sup

τ

T∫
0

e−Nt
∣∣∣∂(q′2 − q′1)

∂x
(xτ (t))

∣∣∣dt (18)

where here and below CN means various constants depending on N.



To prove the estimate (18) we take the inner product of (14) with

e−2Nt
( dxτ

dτ
dξτ
dτ

)
and integrate it in t from 0 to t0, where |xτ (t0)| =

max
0≤t≤T

|xτ (t)|. Note that for any ϕ

t0∫
0

dϕ

dt
e−2Ntϕdt =

1
2

t0∫
0

e−2Nt d

dt
ϕ2dt (19)

=
1
2
ϕ2(t0)e−2Nt0 + N

t0∫
0

e−2Ntϕ2dt

Also we use in the proof of (18) that N is large such that(
(NI − Q)

( dxτ
dτ
dξτ
dτ

)
,

( dxτ
dτ
dξτ
dτ

))
> 0, (20)

where I is the identity operator.



In addition to (18) we shall estimate also d2xτ
dτ2 ,

d2ξτ
dτ2 :

Differentiating (14) in τ we get

d

dt

[
d2xτ
dτ2
d2ξτ
dτ2

]
= Q

[
d2xτ
dτ2
d2ξτ
dτ2

]
+

dQ

dτ

[ dxτ
dτ
dξτ
dτ

]
+

dF

dτ
. (21)

Therefore as in (13) we get[
d2xτ
dτ2
d2ξτ
dτ2

]
= R(t)

(dQ
dτ

[ dxτ
dτ
dξτ
dτ

]
+

dF

dτ

)
, (22)

where R(t) is the same as in (17).
Note that (cf. (15))

dQ

dτ
= O

(∣∣∣dxτ
dτ

∣∣∣+
∣∣∣dξτ
dτ

∣∣∣) (23)

and

dF

dτ
=


(

(q′2 − q′1) + O
(
(q′2 − q′1)2))dξτ

dτ

−
((

∂q′2
∂x −

∂q′1
∂x

)
+ O

(
∂q′2
∂x −

∂q′1
∂x

)2)
ξτ

dξτ
dτ





Since dF
dτ can be estimated as in (18) we get, again using (18):

max
0≤t≤T

e−2Nt
(∣∣∣d2xτ

dτ2

∣∣∣+∣∣∣d2ξτ
dτ2

∣∣∣) ≤ CN

T∫
0

e−2Nt
(∣∣∣dxτ

dτ

∣∣∣2+
∣∣∣dξτ
dτ

∣∣∣2)dt
+CN

( T∫
0

e−Nt |(q′2−q′1)(xτ )|dt
)2

+CN

( T∫
0

e−Nt
∣∣∣ ∂
∂x

((q′2−q′1)(xτ ))
∣∣∣dt)2

.

(24)

Note that
T∫
0
e−Nt |ϕ(t)|dt >

T∫
0
e−2Nt |ϕ(t)|dt ≥ e−NT

T∫
0
e−Nt |ϕ)|dt.



Now we shall study the behavior in τ of

dxτ0
dt

= q00
τ (xτ (t))ξ0 +

n∑
j=1

q0j(xτ (t))ξj(t), xτ0 (0) = 0. (25)

Note that
q0j
τ = q0j

1 + τ(q0j
2 − q0j

1 ), 0 ≤ j ≤ n. (26)

Therefore

d

dt

d

dτ
xτ0 =

n∑
j=0

(
(q0j

2 −q
0j
1 )ξj+O

(
τ(q0j

2 −q
0j
1 )2)ξj)+ n∑

j=0

∂q0j
1

∂x

dxτ

dτ
ξj

+
n∑

j=1

q0j
1 (xτ )

dξj
dτ

. (27)

Note that ξ0 = η0.



Thus

d

dτ
xτ0 =

n∑
j=0

t∫
0

(
(q0j

2 −q
0j
1 )+O

(
τ(q0j

2 −q
0j
1 )2))ξjdt ′+O

(∣∣∣dxτ
dτ

∣∣∣+∣∣∣dξτ
dτ

∣∣∣).
(28)

Denote

‖q0
2 − q0

1‖0 =
n∑

j=0

sup
τ

T∫
0

|(q0j
2 − q0j

1 )(xτ (t))|dt. (29)

Then ∣∣∣dxτ0
dτ

∣∣∣ ≤ C‖q0
2 − q0

1‖0 + max
0≤t≤T

(∣∣∣dxτ
dτ

∣∣∣+
∣∣∣dξτ
dτ

∣∣∣). (30)



Lengths of null-geodesics

The length of time-space null-geodesics x0 = x0(t, y , η), x = x(t, y , η),
0 ≤ t ≤ T , where x(T , y , η) ∈ ∂Ω, is equal to

L(q,T , y , η) =

T∫
0

√(dx0

dt

)2
+
(dx(q′)

dt

)2
dt (31)

where x(q′)(t) is the solution of Hamiltonian system

dx(q′, t, y , η)

dt
= q′(x(t))ξ(t),

dξ(q′, t, y , η)

dt
= −1

2

(∂q′(x)

∂x
ξ(t)

)
·ξ(t),

x
∣∣∣
t=0

= y , ξ
∣∣∣
t=0

= η, 0 ≤ t ≤ T ,
∣∣∣dx
dt

∣∣∣ =

√√√√ n∑
k=1

(dxk
dt

)2
.

Remind that q′(x , t) = [g jk(x , t)]nj ,k=1. Also

dx0

dt
=

n∑
j=1

q0j(x(t))ξj(t) + q00(x(t))η0, x0(0) = 0.



Let q = q1 + τ(q2 − q1), 0 ≤ τ ≤ 1. We have

∂L(q,T , y , η)

dτ
=

T∫
0

((dx0

dt

)2
+
∣∣∣dx
dt

∣∣∣2)− 1
2
(dx
dt
,
d

dτ

dx

dt

)
dt

+

T∫
0

((dx0

dt

)2
+
∣∣∣dx
dt

∣∣∣2)− 1
2
(dx0

dt
,
d

dτ

dx0

dt

)
dt. (32)

Note that

d

dτ

dx

dt
=

d

dτ
(q′ξ) =

(
(q′2 − q′1) + O

(
τ(q′2 − q′1)2))ξ

+
∂q′1(x(t))

∂x

dx

dτ
ξ + q′1(x)

dξ

dτ
.



Therefore

∂L

∂τ

∣∣∣
τ=0

=

T∫
0

((dx0

dt

)2
+
∣∣∣dx
dt

∣∣∣2)− 1
2
(
q′1(x(t))ξ(t), (q′2−q′1)ξ+

∂q′1
∂x

ξ
dx

dτ
+q′1(x)

dξ

dτ

)
+
(dx0

dt
,
d

dτ

dx0

dt

∣∣∣
t=0

))
dt. (33)

Thus by the Taylor’s formula

L(q2,T , y , η)− L(q1,T , y , η) = τ
∂L(q,T , y , η)

∂τ

∣∣∣
τ=0

+ G2, (34)

where

G2 =
1
2
∂2

∂τ2L(q1 + θ(q2− q1),T , y , η)(q2− q1)2, 0 < θ < 1. (35)

Note that
τ
∂L(q1, y ,T , η)

∂τ

∣∣
τ=0 = l(τ(q2 − q1)) (36)

is the linear part of L(q2)− L(q1).



Let

‖q2 − q1‖ = sup
τ

T∫
0

e−2Nt |(q′2 − q′1)(xτ (t)|dt

+ sup
τ

T∫
0

e−2Nt
∣∣∣ ∂
∂x

(q′2 − q′1)(xτ (t))
∣∣∣dt + ‖q0

2 − q0
1‖0, (37)

where ‖q0
2 −q0

1‖0 is the same as in (29). Since l(q2−q1) is nonzero
linear functional bounded in the norm (37) and since the kernel of
l(q2 − q1) has the co-dimension one, we have

|l(q2 − q1)| ≥ l0‖q2 − q1‖. (38)



Now estimate G2. Differentiating L(q1 + τ(q2 − q1)) twice in τ we
get

G2 =

T∫
0

((dx0

dt

)2
+
∣∣∣dx
dt

∣∣∣2)− 1
2
[(dx

dt
,
d2

dτ2
dx

dt

)
+
( d

dτ

dx

dt
,
d

dτ

dx

dt

)
(39)

+
(dx0

dt
,
d2

dτ2
dx0

dt

)
+
( d

dτ

dx0

dt
,
d

dτ

dx0

dt

)]
dt

+ C

T∫
0

((dx0

dt

)2
+
∣∣∣dx
dt

∣∣∣2)− 3
2
((dx

dt
,
d

dτ

dx

dt

)2
+
(dx0

dt
,
d

dτ

dx0

dt

)2)
dt.

Estimating the right hand sides in (39) as in (18), (24), (30) we get

|G2| ≤ C

T∫
0

[(∣∣∣d2x

dτ2

∣∣∣+∣∣∣d2ξ

dτ2

∣∣∣+∣∣∣d2x0

dτ2

∣∣∣)+C
(∣∣∣ dx

dτ

∣∣∣2+
∣∣∣dξ
dτ

∣∣∣2+
(dx0

dτ

)2)]
dt.

(40)



Using (24) and (30) we obtain

|G2| ≤ CN‖q2 − q1‖2. (41)

Since

L(q2,T , y , η)− L(q1,T , y , η) = l(q2 − q1) + G2, (42)

we have, using (40) and (41),

l0‖q2−q1‖ ≤ |L(q2,T , y , η)−L(q1,T , y , η)|+CN‖q2−q1‖2. (43)

, Therefore

l0‖q2 − q1‖
(
1− CN

l0
‖q2 − q1‖

)
≤ |L(q2,T , y , η)− L(q1,T , y , η)|.

(44)
Assuming that ‖q2 − q1‖ < l0

2CN
we obtain

2l0‖q2 − q1‖ ≤ |L(q2,T , y , η)− L(q1,T , y , η)|. (45)



Thus L(q2,T , y , η) = L(q1,T , y , η) implies that ‖q2 − q1‖ = 0 for
y ∈ γ0(ε). It follows from (37) that ‖q2 − q1‖ = 0 is equivalent
to ‖q′2 − q′1‖ = 0 and ‖q0

2 − q0
1‖ = 0 for y ∈ γ0(ε). In particular,

q′1(x0(t)) = q′2(x0(t), q0
1(x0(t)) = q0

2(x0(t)), where x0(t) is the null-
geodesic in q′1 metric starting at y0 when t = 0. Thus q1(x0(t)) =
q2(x0(t)).
Let x ′0(t) be a null-geodesic in Γy0 starting at y ′ ∈ γy0(ε) when
t = 0 and reaching R × ∂Ω at t = T ′(y ′, η). Let x ′1(t) be a
null-geodesic in q2 metric having the same initial conditions (y ′, η)
as x ′0(t). Then repeating the same proof as above we get that if
L(q2,T

′, y ′, η) = L(q1,T
′, y ′, η) then q2(x ′0(t)) = q1(x ′0(t)). Since

x ′0(t) is arbitrary in Γy0 we obtain that q2(x) = q1(x) in Γy0 .
This completes the proof of Theorem 1.



Now we shall prove a global variant of Theorem 1. Let z0 be an
arbitrary point of Ω. Consider the metric q1 as in Theorem 1. Let
z0(t) be the forward null-geodesic starting at z0 for t = 0. It will
reach the boundary ∂Ω at some point z1 when t = T1 > 0. If we
continue z0(t) backward from z0 starting at t = 0 we will reach ∂Ω
at some point z2 at the time −T2. Thus we will get forward null-
geodesic z0(t) in Ω starting at t = −T2 on ∂Ω and reaching ∂Ω
again at t = T1.
Let ẑ0(t) = (x0(t), z0(t)) be the corresponding time-space null-
geodesic. Construct a “rectangle" Γ(z0)(t) as Γy0 in the proof of
Theorem 1. Denote by z̃0(t) the time-space null-geodesic in q2 met-
ric having the same data at t = −T2, t = T1 as z0(t). Applying the
proof of Theorem 1 we get that q2 = q1 in Γ(z0). Repeating this
proof for any “rectangle" of the form Γ(z0), we get q2 = q1 on a
dense set of Ω. Since q2 and q1 are continuous we have q2 = q1 in
Ω. Thus the following corollary holds:



Corollary
If L(q2,T (y , η), y , η) = L(q1,T (y , η), y , η) for all y ∈ ∂Ω, and if
the norm ‖q2−q1‖ over any q1-null-geodesics on [0,T (y , η)] is small
enough then q2 = q1 in Ω.



THANK YOU VERY MUCH FOR YOUR ATTENTION!


