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Introduction

Let Q be a smooth bounded domain in R". Consider a Lorentzian
metric in the cylinder R x Q

> gir(x)dxdxi, (1)

J,k=0

where xg € R, x € R", x is the time variable, x = (xy, ..., x,) € Q.
We assume that metric tensor [gjk(x)],_, is independent of xg, and
the signature of the matrix [gi]7 ,_g is (4, —, ..., —).

Let [g/(x)]] oo = ([gjk]J’-”kZO)fl be the inverse metric tensor.
Denote by H(x, &p, &) the Hamiltonian, i.e.

H(x, &, &) Z g (x)&iék- (2)

JkO



The Hamiltonian system corresponding to the Hamiltonian H(x, &, £)
) de_0H de__on 5
dt  0¢’ dt  Ox’

do _OH dg__oH
dt 650’ dt 0xo

since H is independent of xp. Here x = (x1,...,x5), £ = (&1, -, &n)
and since d§° =0, & is independent of t,&(t) = no.

=0, (4)



The initial conditions for (3), (4) are

x(0) =y, £(0) =n, &o(t) = &o(0) =m0, x0(0) = 0.

We have
dH(x(t),&(t),&(t))  OHdx OHd{ = OH dé

dt “oxdt "ot dr Tog, dt

Substituting (3), (4) into (6) we get

dH(x(t), &(t),£(t))  OHOH  OHOH

dt © Ox 96 O¢ Ox =0

since %0 = 0. Thus H(x(t), (), &(t)) = H(y,no,n), Vt.




The solution (xo(t), x(t), &o(t),&(t)) of (3), (4) such that
H(y,no,n) = 0, is called null-bicharacteristic.

The restriction of (xo(t), x(t)),&o(t),&(t)) to the x-space is called
null-geodesics.

We also call the restriction of (xo(t), x(t),&o(t),&(t))

to (xo, x) space the time-space null-geodesics.

The null-bicharacteristic or null-geodesic are called forward

if % > 0. It follows from (4) that the null-bicharacteristic is forward
if 91

Noate? that when X = (xo, x) and if s(X) is a diffeomorphism of

R x R" s(X) = X for |X| large, then the inverse metric tensor has

the form Dex T 9s(%)
s L 0s(R
(5:) #9)% Y

in new coordinates.



We can use the change of coordinates to simplify the inverse metric
tensor. In particular, we can make the change of variables such that

g0 =1%=%=0,1<j<n (8)

Then the Hamiltonian system, after simplifying notations, will have
the form J J d 198
X0 X A g
_— = ]_ _— = _— = —_——— .
pm S 8¢, g 28x§ 3 (9)

where g = [g’jk _7,/(:1'



Denote by L(g, T,y,n) the integral over the time-space geodesics
xo = xo(t,y,n),x = x(t,y,n) starting at (0,y,n) at t = 0 and
ending when t = T at the point xo(T),xr = x(T,y,n). We have
that the length of this time-space geodesic is

dx dx,
L(g, T,y,n) = /\/ 0 +|Xt|dt xe|* = Z‘ k‘-

Let yo € 0Q and 7,,(c) be an e-neighborhood of yy in 0. Denote
by 'y, the union of all time-space null-geodesics in R x € starting
on vy, (e). Consider all null-bicharacteristics x = x(t,y,n),{ =
&(t,y,m) where t > 0,y € 7y,(e),n is fixed. Let T = T(y,n)
be such that xr = x(T,y,n) € 0. We shall call such T(y,n)
maximal.

Consider the time-space forward null-geodesic xo = xo(t, y,n),x =
x(t,y,n) that enters the cylinder R x Q at point (0, y) at the time
t =0, staysin R x Q for 0 < t < T and reaches again R x 012 at
point xo( T),x7 = x(T,y,n) at the time t = T.



The main result of the talk is the following theorem:

Theorem

Let > 7 —o Gpjk(x)dxjdxk be two metrics, p = 1,2, and let (xo(qp), x(qp)))
be the time-space null-geodesics with the same initial conditions
xo =0,x =y and { = 1. Suppose 'y, Is a union of all time-space
null-geodesics in R x §Q starting on 7,,(¢). Let T'(y,n) be maxi-
mal in gi-metric for any y € vy, (g). Then if L(q2, T'(y,n),y,n) =
L(q1, T'(y,n),y,n) forally € ~v,,(¢) and if g2 and q; are sufficiently
close in Ty, then g = q1 in T ,.

Note that since q1 and g are independent of xy, q1 = g2 on Ty,
is equivalent to q1 = qo on the projection of 'y, on Q, where the
projection consists of all null-geodesics in Q starting at y € ~y,,(€).



There are many works on the rigidity of the Riemannian metric,
i.e. the rigidity with respect to the distance d(x,y), where x, y are
boundary points and d(x, y) is the length of the geodesics connecting
x and y ( [P.Stefanov, G.UhImann, 1998], [M.Lassas, V.Sharifutdinov,
G.Uhlmann, 2003], [G.Eskin, 1998], [P.Stefanov, G.Uhlmann, A.Vasy,
2016], [P.Stefanov, G.Uhlmann, A.Vasy, H.Zhou, 2019]). In recent
paper [G.Uhlmann, Yang Yang, H.Zhou, 2020] the boundary rigid-
ity problem for some class of Lorentzian metrics is proven. We also
study the case of Lorentzian metric. The main novelty of our talk is
that we consider the null-geodesics. We also use here some ideas of
[G.Eskin, 1998|.



Estimates for the null-geodesics

Let

Z qjk glé-k - 7qp0§0 + Z qugjé-o + = qpé ga

JkO

p = 1,2, be two Hamiltonians. Denote

g=q1+7(q2—q1), 0 <7< 1. (11)
Let x;, &, be solution of the Hamiltonian system
dx,
& e l0)ér 1), (12)

/
& o 200 Oe (1.6 q0),
xT(nym)L:O =y, &(ty, n)’t:O =1,

and let

dxg

n
ar ng(X)§O+Z a¥¢;, x5(0) =o0.

Jj=1



We shall study the behavior of (x-(t,y,n),&(t,y,n) and xJ with
respect to 7. Differentiating (12) in 7 we get

s =4l (0) — i) (0)+ PRGN T
(13)
+q1(XT(t))ﬁ + O(7(gh — q})?)&-(t),
d d 92q (x;) dx, o , de.
EE&T:_§< 21(2 )5T>'5T—6 10 (D)7 5

) e (o 58)e) o



Thus

—|d ) =0q ( :) +F 14
dt (‘iﬁ) dr (14)
where
dq ,
157' q
Q= 9% 1 , 15
[—é(axz &) 6 —‘”a)f] 1
F — ( ql)é‘f' + O( (qé - ql) )57'
S e + (O (% - e &)
Note that J de
il I asr|
drle=0 7 dr le=0 0 (16)

since Xr|,_o =¥, &g =1



We shall write the solution of the Cauchy problem (14), (16) in the
form

[;g] = R(t)F, (17)

dr
where R(t) is the solution operator of the equation (14).
If N is large enough then the following estimate for the solution of
the Cauchy problem (14), (16) holds:

T

) < CN/e_Nt]F(xT(t))\dt.

0

axr

dér
dr +

—Nt(
max e
dr

0<t<T

Since ¢, — g} is bounded, 7(q5 — q})? < Clgs — q}|. Thus |F| <
Clgy — qi] + C}%(qé — q})|. Therefore

\'

max e_Nt(
0<t<T

) < Cy sup/ Nt‘ —g5)( ‘dt
0

.
I

+ Cy sup/e_Nt‘(W(xT(t))‘dt (18)

s)



To prove the estimate (18) we take the inner product of (14) with

dxr
e 2Nt <§’£TT> and integrate it in t from 0 to tp, where |x-(tp)| =

dr

t)]. Note that f
omax, |x(t)|. Note that for any ¢
fod to d
¥ 2Nt 1 —2Nt 2
— dt = - —-dt
/dte ? z/e dat?
0

1
— 5()02( _2NtO+N/e_2Nt(p2dt
0

Also we use in the proof of (18) that N is large such that

((/\// - Q) <j7’}> , C?ZT) ) >0,

dr dr

where | is the identity operator.



In addition to (18) we shall estimate also ‘2/2;{, ‘55{:
Differentiating (14) in 7 we get

dt |25
Therefore as in (13) we get
d?x dx
- dQ [&=] dF
72 T
[{'ff; R (G {H +ar)

dr dr
where R(t) is the same as in (17).
Note that (cf. (15))

dQ [¢=]  dF
_|_Q|:d7':|+

dQ O(’dXT

aoQ x| | d&r
dr dr

dr

)

aF _ { ((QQ—qll)—F o((d _qi)2)>dgT
L

2
dr g, _ Oq; 9q; _ 9q;
Ox Ox + O Ox

and

(22)



Since 9= can be estimated as in (18) we get, again using (18):

-
d?x d?¢ dx; 2 |d&r 2
—2Nt T T\ < —2Nt< axr asr )
Orgntagx_’_e ( dr2 dr2 >_ CN/e dr + dr dt
T T
+CN(/e_Nt|(q2 q1)(x) ]dt +CN / ((g5—q7)(x) ‘dt) .
0 0

(24

T T T
Note that [ e Ntjp(t)|dt > [ e 2Nt|p(t)|dt > e~ NT [ e=Nt|p)|dt.
0 0 0



Now we shall study the behavior in 7 of

.
dxg

G 90 ()6 + Y e ()50 6O =0, (25)
j=1
Note that _ _
¥ =qY +7(qy —q¥), 0<j<n. (26)
Therefore
ii 7' . (( j)f'—i-O(T( 0j § +Z %di
dt dr -~ @7 J 92~ J ox dr Y

n

13 (xT)di. (27)

Jj=1

Note that & = 7.



d . < 0 0 0j dx- |, |d&
4.0 = /((qzj @’ )+0(7(ay —q ) )>5Jdt "‘O(‘ dr + e

./:00

(28)

Denote

||q2—q1uo—§jsup/| @ — ) (O)de. (29)
Then

dxg dx; d&;

< Cllgd - Pl %N,
dr CHq2 q1|’0+021ta<XT (‘ dr + d’]’) (30)

)



Lengths of null-geodesics

The length of time-space null-geodesics xg = xo(t,y,n), x = x(t,y,n),
0<t<T,where x(T,y,n) € 09, is equal to

L(q, T,y,m) /\/ Po)? dt,)>2dt (31)

where x(q')(t) is the solution of Hamiltonian system

PATLL ) _ g ix(epgete), CLTL00) —;(ag§>g<r>).g<r>,

dxk
=Y, =1, 0<t < T7 ‘ =
X‘t:O y €‘tzo " - )

Remind that ¢/(x, t) = [g/*(x, t)]7 k=1 Also

CZO > q%(x(2))&i(t) + g%(x(t))mo, x0(0) = 0.

Jj=1



Let g=qg1+7(gq2 — q1),0 < 7 < 1. We have

-
0/ ) (£ )
T
e s
0
Note that

98 9 ()= ((0h— ab) + O(rls — ) )¢

91 (x(t)) dx d¢

JR— / JR——
+ Ox d7'§+ n(x) dr’

(32)



Therefore

By / ((Z0)+2) 7 (dhixepete). (h-appe+ e

0

67

(a3 i) @

Thus by the Taylor's formula

L(g2, Toysm) = L(qu, T, y,m) = TaL(q’aTT’y’n) _, TG (34)
where

Gy = ;;;L(ch +0(q2—q1), T.y.,n)(q2 — q1)*, 0 <6 < 1. (35)
Note that

PHES T ir(an— o) (36)

is the linear part of L(g2) — L(q1).



Let

]
g2 — qull = sup / 2N (dh — ) (1)) dit
0

.

_ 0

tsup [ (5~ ) (0)]de+ [ — oo, (37)
0

where [|g9 — ¢||o is the same as in (29). Since /(g2 — q1) is nonzero
linear functional bounded in the norm (37) and since the kernel of
I(g2 — g1) has the co-dimension one, we have

(g2 — q1)| > bollg2 — a1 (38)



Now estimate G,. Differentiating L(q1 + 7(g2 — g1)) twice in 7 we
get

.
_1 2
S 1@ (Gams) + (o ara)

0
(39)

G

(dxo d? dx0> (d dxo d dxo)}

dt’dr? dt dr dt’dr dt

T

e [ G0 (G ) (@)

Estimating the right hand sides in (39) as in (18), (24), (30) we get

\G2I<C/ il gl T DG g () )]

(40)



Using (24) and (30) we obtain
|Go| < Cwvllgz — aul®. (41)
Since
L(a2, Toy,m) = Lau, Toy,n) = (g2 = q1) + G2, (42)
we have, using (40) and (41),
bl —aull < |L(g2, T, y,n)—L(q1, T.y,n)|+ Cullgz—aul|*. (43)

. Therefore
Cn
bllaz —aull (1~ a2 — arl}) < [L(az. T.y.m) = Lan, Ty,

(44)
Assuming that ||g2 — g1 < 2’%/\, we obtain

2I0||q2 - qu < |L(q27 Tay777) - L(q17 TaYan)| (45)



Thus L(g2, T,y,n) = L(q1, T,y,n) implies that ||g2 — g1|| = 0 for
y € v(e). It follows from (37) that ||g2 — qi1|| = O is equivalent
to |lgh — gl = 0 and [|g2 — ¢?|| = O for y € yo(e). In particular,
9 (x0(t)) = g5 (x0(t), ¢¥(x0(t)) = q(xo(t)), where xo(t) is the null-
geodesic in g} metric starting at yp when t = 0. Thus gq1(xo(t)) =
q2(xo(t)).

Let x(t) be a null-geodesic in Ty, starting at y' € ~,,(¢) when
t = 0 and reaching R x 9Q at t = T'(y’,n). Let xi(t) be a
null-geodesic in g, metric having the same initial conditions (y’,7)
as xp(t). Then repeating the same proof as above we get that if
L(q2, T'.y",m) = L(q1, T',y',m) then q2(xg(t)) = qu(xg(t)). Since
xp(t) is arbitrary in Ty, we obtain that g2(x) = qi(x) in ['y,.

This completes the proof of Theorem 1.



Now we shall prove a global variant of Theorem 1. Let zy be an
arbitrary point of 2. Consider the metric g; as in Theorem 1. Let
7p(t) be the forward null-geodesic starting at zg for t = 0. It will
reach the boundary 99 at some point z; when t = T; > 0. If we
continue zy(t) backward from zj starting at t = 0 we will reach 9Q
at some point z at the time —T5. Thus we will get forward null-
geodesic zp(t) in Q starting at t = — T, on 9Q and reaching 90
again at t = T3.

Let 2o(t) = (xo(t),z0(t)) be the corresponding time-space null-
geodesic. Construct a “rectangle" I'(z)(t) as Iy, in the proof of
Theorem 1. Denote by Z(t) the time-space null-geodesic in g, met-
ric having the same data at t = — Ty, t = Ty as z(t). Applying the
proof of Theorem 1 we get that g» = g1 in I'(z). Repeating this
proof for any “rectangle" of the form I'(z), we get g» = g1 on a
dense set of Q. Since g» and g; are continuous we have g> = g1 in
Q. Thus the following corollary holds:



Corollary

If L(g2, T(y,n),y,n) = L(a1, T(y.n),y,n) for all y € 69, and if
the norm ||q2— q1|| over any qi1-null-geodesics on [0, T (y,n)] is small
enough then g, = g1 in Q.



THANK YOU VERY MUCH FOR YOUR ATTENTION!



