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Black holes

Lorentzian metric

(1) ds2 =
n

∑

j,k=0

gjk(x)dxjdxk,

where x0 is the time variable, x = (x1, ..., xn) are space

variables.

The quadratic form (1) has the signature (+,−, ...,−).

The inverse metric tensor is
[

gjk(x)
]n

j,k=0
=
([

gjk(x)
])−1

.

Wave equation

(2) �gu =
n

∑

j,k=0

1
√

(−1)ng(x)

∂

∂xj

(

√

(−1)ng gjk(x)
∂u(x0, x)

∂xk

)

= 0,

g(x) = det[gjk]
n
j,k=0.

Example 1. Schwarzschield metric
(in Cartezian coordinates)

ds2 =
(

1− 2m

R

)

dx20−
3

∑

j=1

dx2j −
4m

R
dx0dR− 2m

R
(dR)2

where R =
√

x21 + x22 + x23.
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Black hole is a region B in Rn such that any distur-

bance (signal) in B can not escape B, i.e. if u(x0, x) is a

solution of a wave equation �gu = 0 and suppu(t0, x) ⊂
B for some t0, then suppu(x0, x) ⊂ B for all x0 > t0.

x0

P0

B

KP0

Fig. 1. A black hole B.

B is a characteristic surface of the wave equation

�gu = 0:

n
∑

j,k=0

gjk(x)SxjSxk = 0 when S(x) = 0,

{S(x) = 0} is the boundary of B,
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For any P0 ∈ ∂B ×R, let KP0 be the forward cone of

time-like rays. Thus KP0 is the half-cone of influence of

point P0.

When B is a black hole then KP0 ⊂ B × R for each

P0.

For example, {R < 2m} is the black hole in the case

of Schwarzschield metric.The black hole is determined by

the metric,

There are two main classes of black holes:

1) Black holes of the general relativity when the metric

is a solution of Einstein’s equations. For example, {R <

2m} is the black hole in the case of Schwarzchield metric.

2) An analogue black hole when the metric is not a

solution of the Einstein’s equation.

The physical meaning of the wave equation ∆gu = 0

corresponding to an analogue metric is the wave propa-

gation in a moving medium.
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We will study an example of analogue metric: the ro-

tating acoustic metric.

Let v = (v1, v2) be the velocity of the fluid in a vortex,

(v1, v2) =
A
|x|x̂ + B

|x| θ̂, where x̂ = (x1,x2)
|x| , θ̂ = (−x2,x1)

|x| ,

A is a radial velocity of the flow, B is an angular velocity.

The acoustic metric is

(3) ds2 = (1− v21 − v22)dx
2
0+

2
∑

j=1

vjdx0dxj − dx21− dx22.

The corresponding wave equation

�gu = 0

describes the acoustic waves in the rotating fluid. Symbol

of �g (or Hamiltonian) in the case of acoustic metric has

the following form in the polar coordinates (ρ, ϕ):

(4) H(ρ, ϕ, ξ0, ξρ, ξϕ) =
(

ξ0+
A

ρ
ξρ+

B

ρ2
ξϕ

)2

−ξ2ρ−
1

ρ2
ξ2ϕ

where (ξ0, ξρ, ξϕ) are dual coordinates to (x0, ρ, ϕ).

We assume that A < 0, B 6= 0 are constant. The

curve ρ + |A| = 0 is a characteristic curve.

Thus, the domain {ρ < |A|} is the black hole.

Acoustic black holes (or, in general, analogue black

holes,) are quite common.

Consider, for example, a general acoustic metric when
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the fluid flow has the form

v =
A(ρ, ϕ)

ρ
x̂ +

B(ρ, ϕ)

ρ
θ̂, ρ = |x|,

when radial and angular components of the velocity de-

pend on ρ and ϕ, A(ρ, ϕ) < 0, B(ρ, ϕ) 6= 0 for all ρ, ϕ.

Let A2

ρ2
+ B2

ρ2
= 1 be a smooth curve. This curve is

called the ergosphere. Then there exists a smooth curve

{c(r, ϕ) = 0} inside the ergosphere that is a black hole.

As the recent observations of galaxies have shown, the

gravitational black holes are also not a rare phenomenon.

The astrophysicists detected many black holes that are

moving and quite often merge. The merging of two black

holes leads to the release of a huge amount of energy that

creates gravitational waves. The LIGO (laser interferom-

eter gravitational waves laboratory) detected this grav-

itational waves on the Earth. In 2017 the Nobel prize

in physics was awarded to the people involved in LIGO

project.
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Quantum effects
(Second quantization)

In classical physics the black holes are the regions that

do not emit any signals or particles. Therefore it was a

remarkable discovery of S. Hawking that when quantum

effects are added the black hole emits particles.

We shall describe the second quantization for the acous-

tic wave equation �gu = 0.

First, we will construct a basis of solutions of the initial

value problem for �gu = 0.

Let f+
k (x0, x) be the solution of the wave equation with

the initial data

(5) f+
k (x0, x)

∣

∣

x0=0
= γke

iρηρ+imϕ,
∂f+

k

∂x0

∣

∣

∣

x0=0
= iλ−

0 (k)γke
iρηρ+imϕ,

where

k = (ηρ,m), ηρ ∈ R
1, ηϕ = m ∈ Z, γk =

1
√
ρ
(

η2ρ + a2
)
1
4
√

2(2π)2
,

λ−
0 (k) = −A

ρ
ηρ −

Bηϕ

ρ2
−

√

η2ρ + a2, a is arbitrary.

Denote

(6) f−
−k(x0, x) = f+

k (x0, x).
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Introduce the Klein-Gordon inner product

(7) < f, h >= i

∫

x0=t

|g|12
2

∑

j=0

g0j
(

f
∂h

∂xj
− ∂f

∂xj
h
)

dx1dx2

where g = det[gjk]
2
j,k=0.

Note that if f and h are solutions of �gu = 0 then

< f, h > is independent of t.

Computing the KG inner products we get

< f+
k , f

+
k′ >= δ(ηρ−η′ρ)δm,m′, k = (ηρ,m), k′ = (η′ρ,m

′)

Analogously,

< f−
−k, f

−
−k′ >= −δ(ηρ−η′ρ)δm,m′, < f+

k , f
−
k′ >= 0, ∀k, ∀k′.

Therefore {f+
k , f

−
−k′} form an “orthogonal” basis of solu-

tion of the wave equation.

Any solution C(x0, ρ, ϕ) of �gu = 0 can be expanded

in the basis {f+
k , f

−
−k}:

(8) C =
+∞
∑

m=−∞

∞
∫

−∞

(

C+(k)f+
k (x0, x)+C

−(k)f−
−k(x0, x)

)

dηρ,

k = (ηρ,m), C+(k) = 〈f+
k , C〉, C−(k) = −〈f−

−k, C〉.
We shall call any solution C(x0, ρ, ϕ) of wave equation

�gu = 0 a wave packet.
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Let Φ be the field operator. Expanding Φ in the basis

{f+
k , f

−
−k} we get

(9) Φ =

+∞
∑

m=−∞

∞
∫

−∞

(α+
k f

+
k (x0, x) + α−

−kf
−
−k(x0, x))dηρ.

Operators α+
k , α

−
−k are called annihilation and creation

operators, respectively:

α+
k =< f+

k ,Φ >, α−
−k = − < f−

−k,Φ > .

Operators α+
k , α

−
−k satisfy the following commutation re-

lation:

[α+
k , α

−
−k′] = δ(ηρ − η′ρ)δmm′I,

where I is the identity operator,

[α+
k , α

+
k′] = 0, [α−

−k, α
−
−k′] = 0.
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Number of particles operator

Let C be a wave packet. The number of particles op-

erator, created by the wave packet C, is

(10) N(C) =< C,Φ >∗< C,Φ > .

In-vacuum state

In-vacuum state |0〉 is defined by the conditions

α+
k |0〉 = 0 for all k,

i.e. in-vacuum state annihilates all annihilation opera-

tors.

The average number of particles created by the wave

packet C in in-vacuum state is:

(11) 〈0|N(C)|0〉 = 〈0|(C,Φ)∗ < C,Φ > |0〉.
If C is an arbitrary wave packet with initial data having

compact supports outside the black hole {ρ < |A|}, the
average (11) gives some particles created by C. Such par-

ticles have no relation to the Hawking radiation. To get

particles related to the Hawking radiation one has (follow-

ing S.Hawking and others) take the limit of 〈0|N(C)|0〉
when the time x0 = T tends to −∞. A rigorous work in

this direction for the Schwartzschield metric was done by

Fredenhagen and Haag.
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We use a different approach: First, we construct a

special wave packet C0 of the form that is singular when

ρ = |A|:

(12) θ(ρ− |A|) 1√
ρ
(ρ− |A|)εe−a(ρ−|A|)

· exp (−ix0η0 + iξ0|A| ln |ρ− |A|| +m′ϕ),

where ξ0|A| =
(

η0 − Bm
|A|2

)

|A|.
Note the role of parameter a in (12):

When a → ∞ the support of (12) tends to the bound-

ary of the black hole. The limit of 〈0|N(C0)|0 > when

a → ∞ contains particles related to the Hawking radi-

ation. Thus the limit when a → ∞ replaces the limit

when T → −∞.

Let Cn be the normalized wave packet:

(13) Cn =
C0

< C0, C0 >
1
2

, i.e. < Cn, Cn >= 1.

Note that for (12) < C0, C0 >= 4πξ0|A|Γ(2ε)
(2a)2ε

.
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Theorem 0.1. We have

(14) lim
a→∞

〈0|N(Ĉn)|0〉 =
2ε

4πΓ(2ε)

∞
∫

−∞

1

2ξ0|A|
e−2πξ0|A|

|Γ1(iξ0|A| + ε)|2 |ξ0|A| + iε|2
∣

∣

∣

ηρ

(η2ρ + 1)
1
4

+ (η2ρ + 1)
1
4

∣

∣

∣

2

· e2ξ0|A| arg(ηρ+i)(η2ρ + 1)−εdηρ = I+ + I−.

where I+ is the integral
∞
∫

0

in (14)

and I− is the integral
0
∫

−∞
in (14).

Note that arg(ηρ + i) = sin−1 1√
η2ρ+1

when ηρ > 0 and

arg(ηρ + i) = π − sin−1 1√
η2ρ+1

when ηρ < 0. Thus,

I+ = O(e−πξ0|A|) and I− = O
(

1
(ξ0|A|)ε1

)

.

Therefore I+ is exponentially decaying when ξ0 →
+∞. I+ represents the contribution of particles related

to the Hawking radiation and I− is the contribution of

particles not related to the Hawking radiation.

We see in (14) that not all particles created when one

averages N(Cn) over in-vacuum |0 > are related to the

Hawking radiation.

We shall introduce a new vacuum state |Ψ〉 called the

Unruh type vacuum state such that 〈Ψ|N(C0)|Ψ〉 con-
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sists only of particles related to the Hawking radiation.

Unruh type vacuum state

We shall split f+
k in two parts

f++
k (x0, ρ, ϕ) = f+

k θ(ξρ), f+−
k = f+

k (1− θ(ηρ)),

where θ(ηρ) = 1 for ηρ > 0, θ(ηρ) = 0 for ηρ < 0.

Analogously, f−+
−k = f−

−kθ(ηρ), f−−
−k = f−

−k(1−θ(ηρ)).

We split also operators α+
k , α

−
−k:

α++
k = α+

k θ(ηρ), α+−
k = α+

k (1− θ(ηρ)),

α−+
−k = α−

−kθ(ηρ), α−−
−k = α−

−k(1− θ(ηρ))

The Unruh type vacuum state |Ψ〉 is defined

by the conditions:

α++
k |Ψ〉 = 0, α−−

−k |Ψ〉 = 0 for all k.

The average number of particles created by the wave

packet C is

〈Ψ|N(C)|Ψ〉.
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Theorem 0.2. Consider the Unruh type vacuum |Ψ〉
instead of in-vacuum |0〉.

The limit as a → ∞ of the average number of parti-

cles created by the normalized wave packet Cn(x0, ρ, ϕ)

is given by formula

lim
a→∞

〈Ψ|N(Cn)|Ψ〉 =
22εe−2πξ0|A||Γ1|2

2πΓ(ε)

· (ξ0|A|)
2 + ε2

ξ0|A|

0
∫

−∞

|ηρ|
(η2ρ + 1)ε+1

e
2ξ0|A| sin−1 1√

η2ρ+1dηρ.

Here

Γ1(ξ0|A|) = i

∞
∫

0

e(iξ0|A|+ε−1) ln y+i(ε−1)π
2
−iydy.
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