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Black holes

Lorentzian metric

(1) ds* = Z gjr(z)dz ;dxy,
j k=0

where x is the time variable, x = (x1, ..., x,) are space
variables.
The quadratic form (1) has the signature (+, —, ..., —).
The inverse metric tensor is

e, - ()

Wave equation

n
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J,k=0

9(x) = det[gjk] i k=0-

Example 1. Schwarzschield metric
(in Cartezian coordinates)
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ds? = (1 _ —)dazo Z da’ — ?dafodR ~ f(dR)

where R = \/2? + 23 + 2.



Black hole is a region B in R™ such that any distur-
bance (signal) in B can not escape B, i.e. if u(zg,x) is a
solution of a wave equation Oyu = 0 and supp u(ty, x) C
B for some tg, then suppu(xg, z) C B for all 2 > to.

Fig. 1. A black hole B.
B is a characteristic surface of the wave equation
Lyu = 0:

> ¢ (2)S,, e, =0 when S(z) =0,

J,k=0

{S(z) = 0} is the boundary of B,



For any Py € 0B x R, let Kp, be the forward cone of
time-like rays. Thus Kp, is the half-cone of influence of
point Fp.

When B is a black hole then Kp, C B x R for each
P.

For example, { R < 2m} is the black hole in the case
of Schwarzschield metric. The black hole is determined by
the metric,

There are two main classes of black holes:

1) Black holes of the general relativity when the metric
is a solution of Einstein’s equations. For example, { R <
2m} is the black hole in the case of Schwarzchield metric.

2) An analogue black hole when the metric is not a
solution of the Einstein’s equation.

The physical meaning of the wave equation Aju = 0
corresponding to an analogue metric is the wave propa-
gation in a moving medium.



We will study an example of analogue metric: the ro-
tating acoustic metric.

Let v = (v1, v3) be the velocity of the fluid in a vortex,
(v1,v9) = %i + %é, where & = (:c‘1:;:|62)7 0 = (_“ch"ml),

A is a radial velocity of the flow, B is an angular velocity.

The acoustic metric is

2
(3) ds* = (1 —v]—v3)dwi + Z vidrodz; — dr} — drs.

j=1
The corresponding wave equation
Hyu =0

describes the acoustic waves in the rotating fluid. Symbol
of 1, (or Hamiltonian) in the case of acoustic metric has
the following form in the polar coordinates (p, ¢):

A B \? 1
() Hp, .60, 60 ) = (04 6 3E) —6— 58

where (&, €,, &,) are dual coordinates to (xo, p, ).

We assume that A < 0, B # 0 are constant. The
curve p 4+ |A| = 0 is a characteristic curve.

Thus, the domain {p < |A|} is the black hole.

Acoustic black holes (or, in general, analogue black
holes,) are quite common.

Consider, for example, a general acoustic metric when
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the fluid flow has the form

Aoy Blow)y iz
p p J Y

when radial and angular components of the velocity de-
pend on p and ¢, A(p, ) <0, B(p,p) # 0 for all p, p.
Let % + % = 1 be a smooth curve. This curve is

v =

called the ergosphere. Then there exists a smooth curve
{c(r, ) = 0} inside the ergosphere that is a black hole.

As the recent observations of galaxies have shown, the
gravitational black holes are also not a rare phenomenon.
The astrophysicists detected many black holes that are
moving and quite often merge. The merging of two black
holes leads to the release of a huge amount of energy that
creates gravitational waves. The LIGO (laser interferom-
eter gravitational waves laboratory) detected this grav-
itational waves on the Earth. In 2017 the Nobel prize
in physics was awarded to the people involved in LIGO
project.



Quantum effects

(Second quantization)

In classical physics the black holes are the regions that
do not emit any signals or particles. Therefore it was a
remarkable discovery of 5. Hawking that when quantum
effects are added the black hole emits particles.

We shall describe the second quantization for the acous-
tic wave equation Llyu = 0.

First, we will construct a basis of solutions of the initial
value problem for Lyu = 0.

Let f,7(zo, ) be the solution of the wave equation with
the initial data
of
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Introduce the Klein-Gordon inner product

_oh af
E 07

zo=t

where g = det[g;;]? < b=0-

Note that if f and h are solutions of Uju = 0 then
< f,h > is independent of ¢.

Computing the KG inner products we get

< fil s f >=0=1) 00, k= (1p,m), k' = (1, m)

Analogously,
< [l [ >= =0n,=1)0m s < fil, fr >=0, Vk, VK.

Therefore { f,", f~,,} form an “orthogonal” basis of solu-
tion of the wave equation.

Any solution C'(xg, p, ) of Oyu = 0 can be expanded
in the basis {f,", [~ }:

DS / (CHE) £ (0, )+C (B) (o, 7)) iy,

k= (nﬂ7m>7 C+(k7) — <f]:;L7C>7 C_<k> — _<f—_k;7C>
We shall call any solution C(xg, p, @) of wave equation
Lyu = 0 a wave packet.



Let ® be the field operator. Expanding ® in the basis
{flj—a f:k} we get

o0

Z / of i (zo, ) + o=, f (o, 2))dn).

m=—0o0 —00

Operators a;,a”, are called annihilation and creation
operators, respectively:

af =< i, &> a,=—<[f,,0>.

Operators a; , o, satisfy the following commutation re-
lation:

[O[l:? 04:]{;/} — 5(np - 77;)>5mm'f,

where [ is the identity operator,

o 0] =0,]a”,,a”] =0.



Number of particles operator

Let C' be a wave packet. The number of particles op-
erator, created by the wave packet C, is

(10) NC)=<C,®>*<C, D >.

In-vacuum state

In-vacuum state |0) is defined by the conditions
a; [0) =0 forall k,

i.e. In-vacuum state annihilates all annihilation opera-
tors.

The average number of particles created by the wave
packet C' in in-vacuum state is:

(11) (0[N(C)[0) = (0[(C, ®)* < C,® > |0).

If C' is an arbitrary wave packet with initial data having
compact supports outside the black hole {p < |Al|}, the
average (11) gives some particles created by C'. Such par-
ticles have no relation to the Hawking radiation. To get
particles related to the Hawking radiation one has (follow-
ing S.Hawking and others) take the limit of (0| N(C)|0)
when the time x¢ = T tends to —oo. A rigorous work in
this direction for the Schwartzschield metric was done by
Fredenhagen and Haag.
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We use a different approach: First, we construct a
special wave packet Cj of the form that is singular when

p=|Al

AN () — 1A e—alo-1A)
(12) O(p |A\)\/p(p [A])

- exp (—ixony + &l Al In |p — [A]| + my),
where &|A| = (770 wz)’A‘

Note the role of parameter a in (12):

When a — oo the support of (12) tends to the bound-
ary of the black hole. The limit of (0|/N(Cy)|0 > when
a — oo contains particles related to the Hawking radi-
ation. Thus the limit when a — oo replaces the limit
when 7" — —o0.

Let C), be the normalized wave packet:

Co

(13) C, = -, le. <C,,C,>=1.
< C(),CO >2

Note that for (12) < Cy, Cy >= %.
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Theorem 0.1. We have

a—00

[ 1
(1) Jim (OIN(CI0) = s / e

. . 1

Dy (6ol 4] + ) 6ol 4] + iz | —— + (g2 + 1)}
(n; + 1)1

ol arg("p+i)(?72 +1)dn, =1, +1_.

where 1 is the integral [ in (14)
0
0

and I_ is the integral [ in (14).

Note that arg(n, +1i) = sin~* —~— when 7, > 0 and
N AR p

arg(n, +1i) = 7 — sin”} \/7%

]+ — O<6—W€0|A|> and I_ = O( 5 ‘A|)51)

Therefore I, is exponentially decaying when & —

when 7, < 0. Thus,

+o00. [, represents the contribution of particles related
to the Hawking radiation and 7_ is the contribution of
particles not related to the Hawking radiation.

We see in (14) that not all particles created when one
averages N (C),) over in-vacuum |0 > are related to the
Hawking radiation.

We shall introduce a new vacuum state |U) called the
Unruh type vacuum state such that (U|N(Cp)|¥) con-
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sists only of particles related to the Hawking radiation.

Unruh type vacuum state

We shall split f;" in two parts

v (o, p,0) = [70), S = [ (1= 0(n,)),

where 0(n,) = 1 for n, > 0, 8(n,) = 0 for n, < 0.
Analogously, f7" = f7,0(n,), o = 5. (1=0(n,)).

We split also operators oz;, .

@]_{3|—+ = &;Q(UP), o = @;(1 —0(n,)),

aZy =a ,0(ny), aZy =aZ(1—-0(1))
The Unruh type vacuum state |V) is defined
by the conditions:

a, TU) =0, a_;|¥)=0 forall k.

The average number of particles created by the wave
packet C'is
(VIN(C)|9).
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Theorem 0.2. Consider the Unruh type vacuum |V)
instead of in-vacuum |0).
The limit as a — oo of the average number of parti-

cles created by the normalized wave packet Cy,(xo, p, )
1s given by formula

2256—27r§0|A| ’F1 ’2

Tim (PN ()W) = 27T (E)
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Fl(&)\AD — i/e(ZfOA—i-al)lny—i—i(gl)g@'ydy.
0
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