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Overview

PConfn(C) = {(z1, z2, . . . , zn) ∈ Cn | zi ̸= zj for i ̸= j}

When viewed as a representation of Sn, there is a notion of “stabilization”

of the limit limn→∞H i (PConfn(C)). We will first understand what is

meant by “stabilization”, and then investigate what structure this

stabilizes to.
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Representation Theory of Finite Groups

A representation of a finite group G on a finite dimensional C vector space

V is a homomorphism ρ : G → GL(V ).

A representation V of a finite group G can always be uniquely decomposed

(up to isomorphism) as a direct sum of irreducible representations of G :

V = W⊕a1
1 ⊕ · · · ⊕W⊕ak

k
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Characters

The character χ of a complex representation V is defined to be

Tr ◦ρ : G → C, where Tr is the trace map.

Two representations V1,V2 are isomorphic if and only if their characters

χ1, χ2 are equal.
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Inner Products of Characters

Let V be a G representation which decompose into irreducibles as

V = W⊕a1
1 ⊕ · · · ⊕W⊕ak

k

Suppose V has character χ, and Wj has character χj . The inner product

⟨⟩G satisfies the following for all j :

⟨χ, χj⟩G = aj
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Young Diagrams

Alfred Young described an explicit correspondence between Young

Diagrams with n boxes and the irreducible representations of Sn:

⇐⇒ W1

⇐⇒ W2

⇐⇒ W3

...
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Configuration Space

Ordered complex configuration space PConfn(C) is defined as:

PConfn(C) = {(z1, z2, . . . , zn) ∈ Cn | zi ̸= zj for i ̸= j}

Sn acts faithfully on PConfn(C) by permuting coordinates.

This induces an action of Sn on H i (PConfn(C);C), which gives

H i (PConfn(C);C) the structure of a complex representation of Sn.
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Finite Case

Thus, for any i , n there is a unique decomposition of H i (PConfn(C);C)
into irreducibles:

H i (PConf3(C)) =
⊕a1

⊕
⊕a2

⊕
⊕a3

In the 1980’s, Lehrer and Solomon described an explicit formula for

H i (PConfn(C)) as an Sn representation. However, this does not easily

yield the decomposition into irreducibles.

H i (PConfn(C)) =
⊕
µ

IndSnZ(cµ)
(ξµ)
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Character Polynomials

Let Vn be the standard representation of Sn. Then, we have:

χVn(σ) = c1(σ)− 1

where c1(σ) is the number of fixed points (1-cycles) of σ. Therefore the

characters of V2,V3, . . . can be simultaneously expressed as the

polynomial i1 − 1,
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Character Polynomials

Furthermore, the standard representations are given by the following

Young Diagrams:

V2 = , V3 = , V4 =
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Character Polynomials

Take any Young Diagram λ = with L boxes. Let Vn,Vn+1, . . . be

the irreducible representations given by adding boxes to the row above λ:

V5 = , V6 = , V7 = , . . .

There is a unique polynomial P ∈ C[i1, i2, . . . ] with degP = L which gives

the characters of each Vk simultaneously, i.e.:

χVk
(σ) = P(c1(σ), c2(σ), . . . ) for all k
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Representation Stability

Theorem (Church, Farb 2013). For all character polynomials

P ∈ C[i1, i2, . . . , ], the limit

⟨P,H i (PConf(C))⟩Sn := lim
n→∞

⟨P,H i (PConfn(C))⟩Sn

exists and furthermore is constant for n ≥ 2i + degP.
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Research Question

Question. For character polynomials P representing families of irreducible

representations, what is the value of the following limit?

lim
n→∞

⟨P,H i (PConfn(C))⟩Sn
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Polynomial Statistics

For F a field, define Confn(F) to be the square free polynomials of degree

n with coefficients in F

Confn(F) := {f ∈ F[x ] | deg(f ) = n, f squarefree}

Given a polynomial f ∈ Confn(Fq) which splits as (x − r1) . . . (x − rn) for

rj ∈ Fq, applying the Frobenius action to its coefficients will fix Fq.

However, the Frobenius action will induce a permutation σ of the roots

r1, . . . , rn. Let σf be this permutation, which is unique up to conjugation.
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Polynomial Statistics and Representation Stability

Theorem (Farb, Church, 2013). For any character polynomial

P ∈ C[i1, i2, . . . ], the following two limits exist and are equal:

lim
n→∞

∞∑
i=0

(−1)i
⟨P,H i (PConfn(C))⟩Sn

qi
= lim

n→∞
q−n

∑
f ∈Confn(Fq)

P(σf )

In particular, both the limit on the left and the series on the right

converge, and they converge to the same series in q−1,
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Example - Standard Representation

Let us consider the standard representations V2,V3, . . . of S2, S3, . . . . In

this case, their characters are given by the polynomial

P(i1, i2, . . . ) = i1 − 1. The sum ∑
f ∈Confn(Fq)

P(σf )

is thus counting the number of linear factors minus 1 of polynomials

f ∈ Confn(Fq) as n → ∞. This average can be computed directly through

a combinatorial argument, yielding:

q−n
∑

f ∈Confn(Fq)

P(σf ) = −q−1 + 2q−2 − 2q−3 + 2q−4 = . . .
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Example - Standard Representation

By the previous theorem, we have

lim
n→∞

∞∑
i=0

(−1)i
⟨P,H i (PConfn(C))⟩Sn

qi
= −q−1+2q−2− 2q−3+2q−4− . . .

Since both sides converge to the same series, we have:

⟨P,H i (PConfn(C))⟩ =


0 i = 0

1 i = 1

2 i ≥ 2
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Previous Results

At the start of this project, the limiting power series for a character

polynomial P representing a family of irreducible representations had only

been explicitly computed for 3 examples:

. . . , . . . , . . .
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Current Results

Emil Geisler (University of Utah) Representations of the Symmetric Group from Geometry April 2023 19 / 23



Some Examples of Results

−3q−3 + 9q−4 − 15q−5 + 23q−6 −
34q−7 + 47q−8 − 62q−9 + 78q−10 −
96q−11 + 118q−12 − 141q−13 + . . .

q−2 − 6q−3 + 19q−4 − 46q−5 + 97q−6 −
178q−7 + 288q−8 − 435q−9 + 634q−10 −
887q−11 + 1190q−12 − 1553q−13 + . . .

−2q−3 + 12q−4 − 34q−5 + 66q−6 −
113q−7 + 190q−8 − 298q−9 + 425q−10 −
581q−11 + 790q−12 − 1047q−13 + . . .
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Method

These results are found by computing the following power series for

arbitrary character polynomials P:

lim
n→∞

q−n
∑

f ∈Confn(Fq)

P(f )

This can be done directly on the following polynomials(
ij
k

)
=

ij(ij − 1) . . . (ij − k + 1)

k!
∈ C[i1, i2, . . . ]

and then extended by linearity to arbitrary polynomials.
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Conjectures

Suppose that λ = is a Young Diagram with k > 0 boxes. Let the

associated power series be of the form

a0 − a1q
−1 + a2q

−2 − . . .

Conjectures:

1 The sequence a0, a1, . . . is non-decreasing.

2 Suppose that aj is the first non-zero coefficient. Then

1.1 j ≤ k , and j = k if and only if λ is a vertical stack of k boxes.

2.2 j ≥ k/2.

Emil Geisler (University of Utah) Representations of the Symmetric Group from Geometry April 2023 22 / 23



Thanks!

Thank you to Dr. Sean Howe for advising me on this project!
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