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Spring 2025

Exercise 1. Let p be an odd prime number and let K be the splitting field of xp − 1 over Q.
Show that K contains a unique subfield F such that [F : Q] = 2 and determine, as property of p,
whether F is a real or a complex quadratic extension of Q.

Proof. The splitting field of xp − 1 is the pth cyclotomic field which has Galois group (Z/pZ)× ∼=
Z/(p − 1)Z. I prove this further below if you haven’t seen it. Therefore since K/Q has a cyclic
Galois group of order p − 1, by the Galois correspondence, there is a unique field extension Lk/Q
for every integer k|(p − 1). In particular since p is odd, 2|(p − 1), so there is a unique subfield F
of K such that [F : Q] = 2. It is the fixed field of the unique subgroup H ⊂ (Z/pZ)× of index
2. This unique subgroup consists of the elements which are squares modulo p. In particular if we
write ζ ∈ K for a non-trivial root of xp − 1, then the element

α =
∑
h∈H

ζh ∈ F

is fixed by H since for g ∈ H,

g(α) =
∑
h∈H

ζgh =
∑
h∈H

ζh = α

Also notice that α is not in Q, since if it were, then it would imply that ζ, ζ2, . . . , ζp−1 satisfy both∑p−1
i=0 ζ

i = 0 and
∑

h∈H ζ
h = 0, which contradicts that [K : Q] = p− 1. Therefore, F = Q(α). Thus

to check whether F is real or not, it suffices to check whether α is preserved by complex conjugation
(after a choice of embedding K ↪→ C, for instance by ζ 7→ e2πi/p). Complex conjugation corresponds
to the element τ ∈ G defined by τ(ζ) = ζ−1. In particular,

τ(α) =
∑
h∈H

ζ−h ∈ F

Thus, τ(α) = α if and only if −1 ∈ H, i.e., −1 is a square modulo p, and otherwise τ(α) ̸= α, thus
F is not real. It is an important fact in elementary number theory that −1 is a square modulo p if
and only if p is congruent to 1 modulo 4. Therefore, F is real if and only if p ≡ 1 mod 4.

Proving that K/Q is Galois with Galois group (Z/pZ)×.

The polynomial xp − 1 factors as (x − 1)(xp−1 + xp−2 + · · · + 1) = (x − 1)Φp(x). The polynomial
Φp(x) is the pth cyclotomic polynomial and is irreducible. One way to see this is using Eisensteins
criterion with a clever choice of change of coordinates x 7→ x+ 1.

Thus, the splitting field of xp − 1 is the splitting field of Φp(x). Let K = Q[x]/Φp(x), which is a
field since Φp is irreducible over Q. Then K has at least one formal root ζ := [x] ∈ K of Φp(x).
Also, notice that all powers of ζ also satisfy (ζk)p − 1. Since Φp is irreducible of degree p − 1,
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ζ, ζ2, . . . , ζp−1 are Q-linearly independent, and in particular are distinct elements of K. Therefore,
1, ζ, ζ2, . . . , ζp−1 are all distinct roots of xp − 1 in K. Therefore by degree considerations,

xp − 1 = (x− 1)(x− ζ) . . . (x− ζp−1)

so xp − 1 splits in K[x]. Thus, K is the splitting field of Q.

In particular, this implies that K/Q is a Galois extension of degree p − 1. Let G = GalQ(K).
Since K is the splitting field of the irreducible polynomial Φp(x), G acts transitively on the roots
of Φp(x) in K, which are ζ, ζ2, . . . , ζp−1. In particular, for each integer k ∈ [1, p − 1], there is an
element σk ∈ G such that σk(ζ) = ζk. Furthermore, this integer k fully determines the element σk,
since K = Q(ζ). Therefore, there is a bijection φ : (Z/pZ)× → G by k 7→ σk. It is also a group
homomorphism since

φ(a · b)
(
ζ
)
= σa·b(ζ) = ζab = ζaζb = σa(ζ)σb(ζ) = φ(a) ◦ φ(b)

(
ζ
)

and elements of G are determined by their action on ζ.

Exercise 2. Let R be a UFD. Show that any non-zero prime ideal of R[x] which contains no
non-zero elements of R is principal.

Proof. Let K = Frac(R) the fraction field of R. Let p ⊂ R[x] be a prime ideal such that p∩R = {0}.
Let f ∈ p of minimal degree, which exists with deg f > 0 since p is non-zero and has no elements
of degree 0. Let c(f) be the content of f : the GCD of its coefficients in R (unique up to a choice
of unit). Then we have that f = c(f) · u · f ′ for f ′ having content c(f ′) = 1, and u a unit in R.
Since p is prime and c(f) is not in p, we must have f ′ ∈ p. Thus, without loss of generality assume
that f has content 1. Also notice that if f factored non-trivially in K[x] as f = g · h, then it would
also factor non-trivially in R[x] by Gauss’ lemma. By primality of p, then one of g, h would be in
p, contradicting the minimality of deg f . Therefore, f has content 1 and is irreducible in K[x], and
is thus irreducible in R[x].

We claim that p = (f). Suppose that there were g ∈ p such that f did not divide g. Then by the
division algorithm, in K[x] there would be p, q ∈ K[x] such that

g(x) = p(x)f(x) + q(x)

for deg q < f and q non-zero. After multiplying by an element α ∈ R such that αp(x), αq(x) ∈ R[x],
we have

αg(x) = αp(x)f(x) + αq(x)

for αp(x), αq(x) ∈ R[x]. Since αg(x), αp(x)f(x) are all in p, so is αq(x). But then p contains a
non-zero element q of degree less than f which is a contradiction.
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Exercise 3. Show that the alternating group A4 has a unique irreducible representation of degree
3 over C and compute the character of this representation.

Proof. Clearly it’s enough to just compute the whole character table of A4. Notice that |A4| =
4!/2 = 12. The fact that they told us there is an irreducible representation of degree 3 is a nice
hint: we know

∑
χirr dimχ2 = 12, so this tells us there are 4 irreducible characters with dimension

1, 1, 1, 3.

First we compute the conjugacy classes of A4. A computation shows that the following sets consist
of elements which are conjugate:

C1 = {1}, C2 = {(12)(34), (13)(24), (14)(23)}
C3 = {(123), (134), (142), (243)}, C4 = {(132), (124), (143), (234)}

To show that these are the conjugacy classes, it suffices to show that (123), (132) are not conjugate
in A4. This is a bit of a pain. In general, a conjugacy class in Sn splits in An if and only if it’s cycle
type consists of distinct odd integers.

Notice that H = C1 ∪ C2 is a normal subgroup of A4. Therefore we have a short exact sequence:

1→ H → A4 → Z/3Z→ 1

And in particular this shows that the abelianization A4/[A4, A4] of A4 is Z/3Z (this shows that
[A4, A4] is contained in H, but [A4, A4] is a non trivial normal subgroup of A4 so they are equal).
The one dimensional representations of any finite group G are given by the group homomorphisms
G→ C× which are given by G/[G,G]. Thus, there are three one dimensional representations of A4,
which are each trivial on H and send C3, C4 to a 3rd root of unity. Let ω = e2πi/3. Then we have
the following character table:

C1 C2 C3 C4

1 1 1 1
1 1 ω ω2

1 1 ω2 ω

Then by dimension considerations, the third row must be a three dimensional representation. By
column orthogonality, this determines the final row.

C1 C2 C3 C4

1 1 1 1
1 1 ω ω2

1 1 ω2 ω
3 −1 0 0

Exercise 4. Let R be an integral domain with quotient field F . Show that if F is finitely generated
as an R-module, then F = R.
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Proof. Of all the commutative algebra theorems to learn for the qual, my favorite for is going up
and going down.

Since F is finitely generated as an R-module, the inclusion R ↪→ F is an integral extension of
commutative rings. Therefore, the Krull dimension of R is equal to the Krull dimension of F .
Therefore, every prime ideal of R is maximal. Since R is a domain, (0) is prime and thus maximal,
so R/(0) is a field, i.e., R is a field.

A more hands on solution: suppose there exists a non-zero α ∈ R such that α−1 ∈ F is not in R.
Since F is a finitely generated R-module, α−1 is integral over R. Therefore, R[α]/R is an integral
extension. Thus, there is some n and elements an−1, . . . , a0 ∈ R such that

α−n + an−1α
−n+1 + · · ·+ a0 = 0

Multiplying by αn−1, we have

α−1 = −an−1 − an−2α− · · · − a0αn−1 ∈ R

so α−1 ∈ R. Thus, R is a field.

Exercise 5. Let G be a p-group for p a prime. Let F be a field of characteristic p. Show
that the only irreducible representation of G in finite dimensional F vector spaces is the trivial
representation.

Proof. We proceed by induction on |G|. For |G| = 1, a subrepresentation of F is just a subspace
of F . The only non-zero vector space without proper subspaces is the trivial one, so the only
irreducible G-representation over F is the trivial representation.

For induction, assume that for all p-groups G′ with |G′| < |G|, the only irreducible representation
of G′ is the trivial one. Let V = F n be a representation of G of dimension greater than 1. Since G
is a p-group, it has non-trivial center, so take 1 ̸= g ∈ Z(G).

V being a G representation is equivalent to there being a group homomorphism ρ : G→ GL(V ). In
particular, notice that ρ(g) has minimal polynomial dividing x|G| − 1 since ρ(g|G|) = ρ(g)|G| = Id.
In particular we see x|G| − 1 = (x− 1)|G| since F is characteristic p. Therefore, the only eigenvalue
of ρ(g) is 1. In particular, the subspace W ⊂ V of 1-eigenvalues of ρ(g) is non-zero. If W = V ,
then ρ(g) acts on V trivially. This would imply that ρ factors as a morphism ρ : G/⟨g⟩ → GL(V )
since g generates a normal subgroup of G. But then V is a G/⟨g⟩-representation and thus has a
non-trivial subrepresentation by induction.

Thus, W ⊂ V is a non-trivial subspace of V . Furthermore for all h ∈ G and w ∈ W , we have

h · w = h · g · w = g · h · w

so g(h ·w) = h ·w, so h ·w ∈ W . Therefore,W is a non-trivial subrepresentation of V as desired.
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Exercise 6. Let R be a ring and let F be the forgetful functor R-Mod → Z-Mod. Determine
with full proofs left and right adjoint functors for F .

Proof. Let us show that as functors R-Mod → Z-Mod, we have an equivalence of functors F ∼=
HomZ(R,−) and an equivalence of functors F ∼= (R⊗−), treating R as a Z-R bimodule. Then by
the tensor-hom adjunction, HomZ(R,−) : R-Mod→ Z-Mod has a left adjoint R⊗− : Z-Mod→
R-Mod, and R⊗− has a right adjoint HomZ(R,−) : Z-Mod→ R-Mod, and so F has these same
left and right adjoints. Showing these equivalences is straightforward. This exercise is a specific
case of the restriction of scalars functor R-Mod→ S-Mod along a ring homomorphism f : S → R
being dully adjoint, with left adjoint extension of scalars: R ⊗S −, and right adjoint coextension
of scalars: HomS(R,−). Here R is an R-S bimodule via the ring homomorphism f : S → R. See
Wikipedia’s change of rings for details.

Exercise 7. Prove that the group S5 × S5 is generated by two elements.

Proof. Recall that S5 is generated by τ = (12), σ = (12345). This isn’t too hard to confirm, since
στσ−1 = (23), σ2τσ−2 = (34), σ3τσ−3 = (45), σ4τσ−4 = (51), and it’s not hard to show that these
transpositions generate all the transpositions of S5 and thus all of S5.

Also notice that σ = γ2 where γ = σ3 = (14253). I claim that (τ, γ), (γ, τ) generate S5 × S5. We
have that

(τ, γ)2 = (1, σ), (γ, τ)5 = (1, τ)

which generate the subgroup {1} × S5 ⊂ S5 × S5. Furthermore,

(τ, γ)5 = (τ, 1), (γ, τ)2 = (σ, 1)

which generates the subgroup S5 × {S5} ⊂ S5 × S5. Thus, (τ, γ), (γ, τ) generate all of S5 × S5.

Exercise 8. Prove that the ring of all algebraic integers is not a UFD.

Proof. I will let Z ⊂ Q ⊂ C denote the ring of algebraic integers. I claim that there are no
irreducible elements of Z - i.e., non-unital elements which cannot be written as a product of non-
units. If α ∈ Z is a non-zero non-unit (and an algebraic integer, i.e., satisfying a monic polynomial
f(x) ∈ Z[x]), then

√
α is also an algebraic integer, satisfying f(x2). But α =

√
α
√
α, and so

√
α

is a unit if and only if α is: so it is not a unit. Therefore any non-zero non-unit α in Z can be
expressed as a product of non-units, so there are no irreducible elements of Z.
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Now notice that Z is not a field. For instance, 2 ∈ Z is not a unit, since its inverse in Q is 1
2
, which

is not an algebraic integer - for instance because 1
2
satisfies the non-monic irreducible polynomial

2x− 1 in Z[x]. Since Z has non-units but has no irreducibles, it is thus not a UFD.

Exercise 9. Let A ∈ Mn×n(F ) such that the characteristic polynomial of A is its minimal
polynomial. Let B ∈Mn×n(F ) such that AB = BA. Show that B = f(A), where f is a polynomial
over F .

Proof. Here is a beautiful solution from stack exchange, using the rational canonical form of A. I
didn’t figure it out, below is a solution using Jordan normal form.

Assume for now that F is algebraically closed. Putting A in Jordan normal form, we can write
F n =

⊕k
i=1 Vi for Vi a generalized λi-eigenspace of A for distinct eigenvalues λi ∈ F . Since

B(A − λ)nv = (A − λ)nBv for all λ ∈ F and m ∈ N, B preserves generalized eigenspaces of A.
Therefore, with respect to the block decomposition F n =

⊕k
i=1 Vi, we have that B =

⊕k
i=1Bλi is

in block form. For λ, λ′ distinct eigenvalues of A, notice that Aλ − λ′ · I is invertible, as it consists
of Jordan blocks with λ − λ′ on the diagonal. Also, its inverse (Aλ − λ′)−1 can be written as a
polynomial gλ,λ′(Aλ) for gλ,λ′ ∈ F [x] since(

(Aλ − λ′) + λ′ − λ
)n

= 0

Therefore, if a polynomial fi can be found for each i such that Bλi = fi(Aλ), then we can write

B = f(A), for f =
n∑
i=1

fi ·
∏
j ̸=i

(x− λj)ngλi,λj(x)n

since the polynomial (x− λj)n is zero on the Jordan block Aλj , but (Aλj − λi)n(gλi,λj)(Aλj)n = In
by definition of gλi,λj .

Thus, it suffices to consider A with only a single generalized eigenspace. Also we may assume A
is a single Jordan block since the minimal and characteristic polynomial of A are equal. After
subtracting its main diagonal which does not change whether B commutes with A or not, we may
assume λ = 0, so

A =


0 1

0 1
. . . . . .

0 1
0


If AB = BA, then for ei the elementary column vector with a 1 in the ith position and 0 elsewhere,
Aiei = 0, so AiBei = BAiei = 0 for all i. In particular since kerAi = ⟨e1, . . . , ei⟩, we have
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Bei ⊂ ⟨e1, . . . , ei⟩, so B is upper triangular. Let B have coefficients bi,j, so bi,j = 0 for i > j. Then
notice that

(AB)i,j =

{
bi+1,j i < n

0 i = n

(BA)i,j =

{
bi,j−1 j > 1

0 j = 1

Since AB = BA, we have bi+1,j = bi,j−1 for i < n and j > 1. Or rewriting for k = j − 1, this says
that bi,k = bi+1,k+1 for i < n and k < n. Thus, B is symmetric along the non-main diagonal and is
upper triangular and is thus a polynomial in A.

The only final detail is to consider when F is not algebraically closed. We can still write B as a
polynomial f(A) in A with coefficients in F . We may assume f is degree at most n− 1 by dividing
by the minimal polynomial of A. But then 1, A,A2, . . . , An−1 are F -linearly independent and thus
F -linearly independent since Mn(F ) is the same F dimension. So if any of the coefficients of f are
not in F , then neither is f(A).

Exercise 10. Let F be a field and let A be a simple F -algebra of dimension n2. Prove that
A

∼−→Mn(F ) if and only if A has a left ideal of dimension n over F .

Proof. First notice that Mn(F ) has a left ideal of dimension n over F , namely the set of matrices
which contain V ⊂ F n for dimV = n − 1 in their kernel, or specifically the matrices with entries
aij = 0 for j > 1. Thus it suffices to prove the if statement.

By Wedderburn’s theorem, A is isomorphic to Mk(D) for D a finite dimensional division algebra
over F . Suppose that D ̸= F . We will show that A has no left ideal of F dimension n. By dimension
considerations, notice that we have k2 dimF D = n2, so dimF D = n2

k2
. Thus, let I ⊂ Mk(D) be a

minimal non trivial left ideal, so I contains B for B ∈Mk(D) non-zero. In particular, I =Mk(D)·B.

Many statements of linear algebra (theory of modules over a field) apply to linear algebra over a
division ring. In particular, we have that Mk(D) is the endomorphism ring of Dk in D-Mod, and
we can write Dk ∼= kerB ⊕W where B acts on kerB as zero, and B : W → Dk is injective. Let
l = dimD kerB. In particular, we can write:

B : kerB ⊕W → Dk =
[
0 B1

]
where B1 is an injective (full rank) k × l matrix. Therefore, B1 has a left inverse C : Dk → W
which is necessarily D-linear. Therefore,

Mk(D) ·B ⊂Mk(D) ·
[
0
C

] [
0 B1

]
=

[
0 0
0 Idl×l

]
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Multiplying on the left, this implies that

Mk(D) ·B ∋
[
0 C ′] [0 0

0 Idl×l

]
=

[
0 C ′]

for any k × l matrix C ′. In particular, I is at least k · l dimension over D. Since B is non-zero,
l > 0, so I is at least k dimension over D. But then

dimF (I) = dimF (D) · dimD(I) =
n2

k2
dimD(I) ≥

n2

k
> n

as desired, since k < n.
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Fall 2024

Exercise 1. Let G be a finite group and k a field of characteristic p dividing the order of G. Is
there any such k,G with an isomorphism of kG-modules kG ∼= M1 ⊕M2 for M1 with dimension 1
over k?

Proof. No. Let M1 be a dimension 1 kG-module, so (up to isomorphism), M1 = (k, φ) for φ : G→
k× a group homomorphism. Suppose for contradiction that kG ∼= M1⊕M2 for some kG-moduleM2,
so there is a surjective kG-module homomorphism π : kG → M1 with a section ι : M1 → kG such
that π ◦ ι = IdM1 . The morphism π is non-zero, so π(1) ̸= 0. Thus after applying an isomorphism
to M1, we may assume that π(1) = 1 ∈ k without loss of generality. Write ι(1) in the usual k
basis of kG, so ι(1) =

∑
g∈G agg for ag ∈ k. Let e be the identity of G. Since ι is a kG-module

homomorphism, for all h ∈ G, we have:∑
g∈G

φ(h)agg = ι(φ(h)) = ι(h · 1) = h · ι(1) =
∑
g∈G

aghg =
∑

h−1g∈G

ah−1gg

Since the set {g}g∈G forms a k-basis for kG, the coefficient of g on each side must then be equal, so
φ(h)ag = ah−1g for all g, h ∈ G. In particular setting g = e, we have a1φ(h) = ah−1 for all h. Thus,
we have that ι(1) =

∑
g∈G φ(g

−1)a1g. Thus,

π(ι(1)) = π
(∑
g∈G

φ(g−1)a1g
)
=

∑
g∈G

φ(g−1)a1π(g) =
∑
g∈G

π(1)a1 = |G|a1 = 0

which contradicts ι being a section of π.

Exercise 2. Let p, q be distinct prime numbers and consider the number field K = Q(
√
p+
√
q).

Describe all subfields of K and inclusions between them.

Proof. Notice that K contains (
√
p +
√
q)2 = p + q + 2

√
pq, and thus contains

√
pq. Therefore,

K contains (
√
p +
√
q)
√
pq = p

√
q + q

√
p. Since p, q are distinct, subtracting p(

√
q +
√
p) yields

(q − p)√p, and thus dividing by q − p, K contains
√
p. Therefore, K contains

√
p,
√
q, and

√
pq.

Notice that K ⊂ Q(
√
p,
√
q) since

√
p +
√
q ∈ Q(

√
p,
√
q). But the above computation shows the

reverse inclusion, so in fact K = Q(
√
p,
√
q). Since [Q[

√
q] : Q] = [Q[

√
p] : Q] = 2 (by Eisenstein

on x2 − q, x2 − p), we thus have [K : Q] ≤ 4 and [K : Q] a multiple of 2, so [K : Q] = 2 or 4.
Notice that since p, q are distinct, the discriminants of Q(

√
p),Q(

√
q) and Q(

√
pq) are all distinct,
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since the discriminant of a quadratic number field Q(
√
m) for m square free (and not 1) is equal

to m if m ≡ 1 mod 4 and 4m otherwise (alternatively, in the field Q(
√
p), can any element square

to be equal to q?). Therefore, K properly contains 3 distinct non-trivial number fields. Therefore,
[K : Q] = 4. Furthermore, notice that K is the splitting field of (x2− p)(x2− q) and is thus Galois.
Since K properly contains 3 distinct non-trivial number fields and K/Q is Galois, G = GalQ(K)
has at least 3 non-trivial subgroups by the Galois correspondence and |G| = 4. There are only two
groups of order 4 and only one of them has at least 3 non-trivial subgroups, so G ∼= Z/2Z× Z/2Z.
In this case, G has exactly 3 non-trivial subgroups, so the following describes all subfields of K.

K

Q(
√
p) Q(

√
q) Q(

√
pq)

Q

Exercise 3. Let R be a commutative ring and S ⊂ R a multiplicatively closed subset. Con-
struct a natural transformation (in either direction) between the functors HomS−1R(S−1M,S−1N)
and S−1HomR(M,N), considered as functors of R-modules M and N . Prove that your natural
transformation is an isomorphism if M is finitely presented.

Proof. See problem 9, Spring 2020.

Exercise 4. Let K be a field and f : Mm(K) → Mn(K) a K-linear ring homomorphism. Prove
that m ≤ n.

Proof. Let m > n, and let f : Mm(K) → Mn(K) be a K-linear rng homomorphism, i.e., it
need not send send Im to In. Let us show that f is the zero morphism so there are no such K-
linear ring homomorphisms. Since f is a K-linear rng homomorphism, f is also a K vector space
homomorphism. Since Mm(K) ∼= Km2

as a K vector space and Mn(K) ∼= Kn2
, f has non-trivial

kernel so there exists A ̸= 0 ∈ Mm(K) such that f(A) = 0. For 1 ≤ i, j ≤ m, define Eij ∈ Mm(K)

to be the matrix with coefficients eab =

{
1 if a = i, b = j

0 else
. Since A is non-zero, it has some entry

aij ̸= 0. Then notice that for k ∈ [1,m], we have EkjAEik = aijEkk. Therefore,

f(Ekk) =
1

aij
f(EkjAEik) =

1

aij
f(Ekj)f(A)f(Eik) = 0

11



Thus, Ekk ∈ ker f for all k, so Im =
∑m

k=1Ekk is in the kernel of f . Thus, f = 0 as desired.

Exercise 5. Let A = R[X, Y ]/(Y 2 −X2(X + 1)).

(a) Prove that A is a domain.

(b) Suppose that A ⊆ B is an integral extension with B ∼= R[Z1, . . . , Zd] a polynomial ring over
R. What is d?

Proof. (a) A is a domain if and only if the ideal (Y 2 − X2(X + 1)) is prime. Since R[X, Y ] is
a UFD by Gauss, it suffices to show that Y 2 − X2(X + 1) is irreducible. Let B = R[X] so
R[X, Y ] = B[Y ]. Notice that B is a UFD (in particular a PID) and X + 1 is prime. Then,
Y 2 − X2(X + 1) satisfies Eisenstein’s criterion with respect to the prime X + 1 and is thus
irreducible. Thus, A is a domain.

(b) Recall that integral extensions preserve Krull dimension. Thus, d must be equal to dimA
since dimR[Z1, . . . , Zd] = d. Thus it suffices to compute dimA. There is an injective R-
algebra homomorphism R[X] → A defined by X 7→ [X] by universal property of R[X] as a
free R-algebra. The kernel of this map is (Y 2 −X2(X + 1)) ∩ R[X] = (0), so it is injective.
Thus we have

R[X] ⊆ A

I claim this is an integral extension. Since A is generated as an R[X]-algebra by Y , it
suffices to show Y is integral over R[X]. But Y satisfies a monic polynomial in (R[X])[T ], so
dimA = dimR[X] = 1.

We can actually explicitly write A ⊆ R[t]. Since A is a domain, let K = Frac(A), so A ⊆ K.
Let t = Y/X ∈ K. Then notice that t2 = Y 2/X2 = X + 1, so R[t] ⊂ K contains X, and thus
also Y = (t2 − 1)t. Therefore, A ⊆ R[t].

Exercise 6. Let G be the group of 3× 3 complex matrices of the forma11 0 0
a21 a22 0
a31 a32 a33


with nonzero entries on the diagonal. Show that G is solvable.

12



Proof. (I like upper triangular more:) First notice that the transpose map GLn(C)
T−→ GLn(C) is an

isomorphism between GLn(C) and GLn(C)op. Since for a group G, both G and Gop are isomorphic
as groups by g 7→ g−1, it suffices to show that the upper triangular matrices are solvable.

To show that G is solvable, it suffices to show that there is a short exact sequence

1→ N ↪→ G→ G/N → 0

for N ⊴ G such that N is solvable and G/N is solvable. Notice that there are group homomorphisms

G
ψk−→ C× for 1 ≤ k ≤ 3 by ψk(A) = akk (such set maps certainly exist, and we verify that

ψk(A)ψk(B) = ψk(AB)). Let

N =

{1 a b
0 1 c
0 0 1

∣∣∣ a, b, c ∈ C
}

Notice thatN is normal since it is the intersection of the normal subgroups kerψ1(A), kerψ2(A), kerψ3(A).
Furthermore, G/N is abelian and thus solvable since it is isomorphic to C× × C× × C×. Thus, it
suffices to show that N is solvable. Consider

H =

{1 0 d
0 1 0
0 0 1

∣∣∣ d ∈ C
}

Let us show that H is normal in N . Notice that we have group homomorphisms φ1, φ2 : N → C
by φ1(A) = a, φ2(A) = c with notation as above. The intersection of their kernels is thus a normal
subgroup of N , which is exactly H. Thus we have

1→ H ↪→ N → N/H → 0

Notice that N/H ∼= C×C (the additive groups) and is thus Abelian. Thus it finally remains to show
that H is solvable. In fact, it is easily seen to be Abelian and isomorphic to C, so G is solvable.

Exercise 7. Let F = Q( 3
√
5). Show that for every field E containing Q, the ring F ⊗Q E is either

a field, a product of two fields, or a product of three fields. Give examples of all three cases.

Proof. Notice that F ∼= Q[x]/(x3 − 5) via the map x 7→ 3
√
5. For E a field containing Q, we thus

have
F ⊗Q E ∼= Q[x]/(x3 − 5)⊗Q E ∼= E[x]/(x3 − 5)

Let is prove this isomorphism. There is a map φ : Q[x]/(x3−5)×E → E[x]/(x3−5) by φ(f, e) = f ·e,
with respect to the inclusions Q[x]/(x3− 5) ↪→ E[x]/(x3− 5), E ↪→ E[x]/(x3− 5), the first of which
exists by the relevant universal properties of Q-algebras. Furthermore, φ is clearly Q-bilinear and
thus factors as a Q-algebra homomorphism ψ : Q[x]/(x3 − 5) ⊗Q E → E[x]/(x3 − 5). ψ is clearly
surjective so it suffices to show that ψ is injective. Since φ is the composition of multiplication in
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E[x]/(x3 − 5) with inclusions, it suffices to consider when f · e ∈ (x3 − 5) ⊂ E[x] is satisfied for
f ∈ Q[x] ⊂ E[x] and e ∈ E ⊂ E[x]. Since e is a unit in E[x], this is equivalent to when f ∈ (x3−5).
Since (x3 − 5)E[x] ∩ Q[x] = (x3 − 5)Q[x], f ∈ (x3 − 5)E[x] if and only if f ∈ (x3 − 5)Q[x]. Thus, the
kernel of ψ is trivial.

Suppose that x3 − 5 factors into irreducibles in E[x] as g1(x) . . . gr(x). Since Q is characteristic 0,
each of the gi are distinct. Furthermore, r ≤ 3. Thus by Chinese remainder theorem (and since
E[x] is a PID):

F ⊗Q E ∼= E[x]/(x3 − 5) ∼= E[x]/g1 × · · · × E[x]/gr
Furthermore, each of the E[x]/gi is a PID. Thus, F ⊗Q E is a product of one, two, or three fields,
and this number is determined by how many primes x3 − 5 factors into in E[x]. Notice that in Q,
x3 − 5 is irreducible, so F ⊗Q Q is a field (for a non-trivial example, Q[

√
2] works also since 5 has

no cube root in Q[
√
2]). In F , x3 − 5 partially splits as (x− 3

√
5)(x2 + x 3

√
5 + 3
√
25), and splits no

further since the roots of x2 + x 3
√
5 + 3
√
25 are strictly complex and F ⊆ R. Therefore, F ⊗Q F is

a product of two fields. Finally, x3 − 5 fully splits in C by FTA, so F ⊗Q C is the product of three
fields, each isomorphic to C.

Exercise 8. Let R be a commutative ring and M an R-module. Suppose that the functor
F : R-Mod → R-Mod defined by F (X) := HomR(M,X) has a right adjoint. Show that M is
finitely generated as an R-module.

For the dual question (with tensor products) which has a nicer general answer, see problem 8, Fall
2021. This solution was helped by this math overflow post and this stack exchange post.

Motivation for the solution: If HomR(M,−) has a right adjoint, then HomR(M,−) is exact,
so M is projective. Clearly this is not enough, since there are projective modules that are not
finitely generated. Another key property of having a right adjoint is preserving colimits, so we
need to find a colimit that HomR(M,−) will not preserve unless M is finitely generated. Since
arbitrary colimits are “generated” by coequalizers (suffices to preserve cokernels in an abelian cat-
egory) and coproducts, we consider each separately. Since HomR(M,−) is exact by assumption,
HomR(M,−) will preserve coequalizers automatically. Thus, we need a coproduct

∐
Ai of R-

modules such that HomR(M,
∐
Ai) ̸=

∐
iHomR(M,Ai). In particular, we have a natural map∐

iHomR(M,Ai) → HomR(M,
∐
Ai) by (φi) 7→ φ, where φ(m) = (φi(m))i. This map is clearly

injective, so we show it is not surjective for some choice of {Ai}i. This amounts to finding a
morphism ψ : M →

∐
iAi such that infinitely many of the compositions M →

∐
iAi → Ai are

non-zero (but since it has image in
∐

iAi, ψ(m)i is non-zero for only finitely many i for anym ∈M)

Proof. We proceed by contradiction, so assume that M is not finitely generated. We show that
HomR(M,−) does not preserve coproducts. First we show that since M is not finitely generated,
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there exists an increasing sequence N1 ⊆ N2 ⊆ . . . of proper submodules ofM whose union is equal
to M .

Let S be the set of submodules N ⊂ M such that M/N is a finitely generated R-module. S is
nonempty since (0) ∈ S. Furthermore, S contains every principal ideal, since ifM/(m) were finitely
generated, M would be. Thus, S has no maximal element, since any maximal element then must
contain every m ∈ M , but M/M is (trivially) finitely generated. Therefore by (the contrapositive
of) Zorn’s lemma, there exists a chain L1 ⊂ L2 ⊂ . . . with Li ∈ S with no upper bound in S. In
particular, L =

⋃
i∈I Li is a submodule of M not contained in S, so M/L is finitely generated, say

by x1, . . . , xn for xi ∈ M . Then letting K = (x1, . . . , xn) be the submodule of M generated by
x1, . . . , xn, the chain L1 + K ⊂ L2 + K ⊂ . . . has union L + K = M , but none of the modules
Li +K are equal to M since M/Li is not finitely generated.

Thus, let N1 ⊂ N2 ⊂ . . . be a chain of proper submodules ofM whose union is equal toM . There is
a morphism ψ′ :M →

∏
iM/Ni induced by the quotient mapsM →M/Ni. Since

⋃∞
i=1Ni =M , for

any m ∈ M , m is contained in infinitely many of the Ni. Therefore, ψ
′(m) ∈

∏
iM/Ni is non-zero

in only finitely many indices i. Thus, treating
∐

iM/Ni ⊂
∏

iM/Ni in the usual way, ψ′ restricts
to a function ψ :M →

∏
iM/Ni.

By the universal property of coproducts, there is a unique R-module homomorphism

∞∐
i=1

HomR(M,M/Ni)
Φ−→ HomR(M,

∞∐
i=1

M/Ni)

defined elementwise by

(φi :M →M/Ni)
∞
i=1 7→

(
m 7→ (φi(m))∞i=1)

)
To show that HomR(M,−) does not preserve coproducts, it suffices to show Φ is not an isomorphism.
The image of Φ in HomR(M,

∐∞
i=1M/Ni) are the mapsM →

∐∞
i=1M/Ni where all but finitely many

of the compositions M → M/Ni are zero. Notice that ψ does not have this property, since all of
the submodules Ni ⊂M are proper. Thus, ψ ̸∈ ImΦ, so Φ is not surjective.

Exercise 9. Let F be a field of characteristic ̸= 2, and let a, b ∈ F×. Let A := F ⟨i, j⟩/(i2−a, j2−
b, ij + ji). Show that A is a simple algebra with center F . You may use the fact that dimF A = 4.

Proof. Solution by Rhea Kommerell.
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Note that 1, i, j, ij generate A as an F -vector space, so the assumption that F is 4-dimensional says
that these elements are linearly independent over F .

To show that A is simple, assume it has a nonzero two-sided ideal I. We will show that I = A. Since
I is nonzero, it has some nonzero element c1+c2i+c3j+c4ij ∈ I. Then a−1i(c1+c2i+c3j+c4ij)i ∈ I
so c1 + c2i − c3j − c4ij ∈ I. Adding this to our original element of I, we find 2c3j + 2c4ij ∈ I.
Multiplying on both sides by j, we find 2c3j−2c4ij ∈ I. Then 2c3j+2c4ij+2c3j−2c4ij = 4c3j ∈ I.
Since k is not characteristic two by assumption, c3j ∈ I. Since j is a unit in A, we are done as long
as c3 ̸= 0. If c3 = 0, then c4ij ∈ I. Since ij is a unit in A, we are done as long as c4 ̸= 0. If c4 = 0,
then note that 2c2i+2c4ij = 2c2i ∈ I by following the same argument as above but multiplying by
j on both sides instead. Then since i is a unit in A, we are done as long as c2 ̸= 0. But if c2 = 0
then our original element of I is just a constant c1 which is a unit. This completes the proof that
I = A.

Now to show that the center is F , suppose an element c1 + c2i + c3j + c4ij is in the center. Then
i(c1 + c2i + c3j + c4ij) = (c1 + c2i + c3j + c4ij)i so, cancelling c1i and c2a on both sides, we get
c3ij + c4aj = −c3ij − c4aj. Since ij and j are linearly independent, it follows that c3 = c4 = 0. A
similar argument with multiplying by j shows that c2ij + c4bi = −c2ij − c4bi, so c2 = 0. It follows
that the central element lies in F , as desired.

It turns out that this central simple algebra A over k is either a division algebra (non-split case)
or isomorphic to GL2(F ) (split case). In particular, A is split if and only if there is a solution
to ax2 + by2 = 1 for x, y ∈ F . Read section 4 of these notes by Keith Conrad for proofs and
discussion.

Exercise 10. Let G be the (dihedral) group presented by

⟨x, y | x5 = y2 = xyxy = 1⟩

You may use the fact that |G| = 10. Compute the character table of G.

Proof. Since G is presented with two generators x, y, every element of G can be written as a word
in x and y. Since G contains a relation of the form xy = yaxb (in particular, xy = yx−1), every
element of G can be written in the form xayb for a, b ∈ Z. Since x has order 5 and y has order 2,
every element of G can be written as xayb for 0 ≤ a < 5 and 0 ≤ b < 2. Since |G| = 10, every
element of G can be written uniquely in this form. Let us compute the conjugacy classes of G.

First we compute the conjugacy classes of the elements {1, x, x2, x3, x4}. Notice x commutes with
each of these elements. Therefore for Cxa the conjugacy class of xa, the transitive group action
ψ : G→ Aut(Cxa) by conjugation has kernel containing x. Since G/⟨x⟩ is generated by y, cokerψ
is generated by y and thus has order 1 or 2. Therefore, |Cxa| = 1 or 2. Clearly the conjugacy class
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of 1 is 1. Since yxy = x4 and yx2y = x3, the conjugacy class of x contains {x, x4} and likewise
{x2, x3}. Since their conjugacy classes are of size at most two, these must be the conjugacy classes
of these elements.

Finally we observe that xayx−a = x2ay. Therefore since we determined the other conjugacy classes,
{y, xy, x2y, x3y, x4y} is the final conjugacy class.

Notice that since {1}, {x, x4}, {x2, x3} are conjugacy classes, Z/5Z ∼= ⟨x⟩ < G is a normal subgroup
of G, and G/⟨x⟩ ∼= Z/2Z. This yields all of the one dimensional representations of G since [G,G] =
⟨x⟩. Thus we have the first two rows of the table. Now consider the following group homomorphism:

φ : ⟨x, y⟩ → GL2(R) x 7→
[
cos(2π/5) − sin(2π/5)
sin(2π/5) cos(2π/5)

]
, y 7→

[
1 0
0 −1

]
Notice that φ(x)5 = Id, φ(y)2 = Id, and φ(x)φ(y)φ(x)φ(y) = 1. Therefore, φ factors as ϕ : G →
GL2(R). We easily compute the character of ϕ as the third row of the following table. We notice
that ⟨ϕ, ⟩ϕG = 1, so ϕ is irreducible. Finally, we deduce the final row of the character table using
column orthogonality.

{1} {x, x4} {x2, x3} {xay}
1 1 1 1
1 1 1 −1
2 2 cos(2π/5) 2 cos(4π/5) 0
2 2 cos(4π/5) 2 cos(2π/5) 0
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Spring 2024

Exercise 1. Let α be a complex root of x6 + 3 and let K = Q(α).

(a) Show that K/Q is normal.

(b) Compute the Galois group Gal(K/Q).

Proof. Let ω = e2πi/12, a primitive 12th root of unity. The roots of x6 + 3 in C are:

ω
6
√
3, ω3 6
√
3, ω5 6
√
3, ω7 6
√
3, ω9 6
√
3, ω11 6

√
3

Let us show that for α any of the above complex roots, that Q(α) contains all of the roots of x6+3,
so Q(α) is the splitting field of x6 + 3. It suffices to show that ω2 ∈ Q(α), since each of the roots
above differ by an integral power of ω2. Also, ω2 = eiπ/3 = 1/2 + i

√
3/2, so it suffices to show

that i
√
3 ∈ Q(α). Notice that since α6 = −3, α3 = ±i

√
3, so i

√
3 ∈ Q(α) as desired. Therefore,

K = Q(α) is the splitting field of x6 + 3 over Q and thus K/Q is normal.

Now let us compute Gal(K/Q). By Eisenstein, x6 + 3 is an irreducible polynomial, so it is the
minimal polynomial of α. Therefore, [Q(α) : Q] = deg(x6 + 3) = 6, so [K : Q] = 6. Therefore,
G = Gal(K/Q) is an order 6 group and thus isomorphic to either S3 or Z/6. Notice that 3

√
3 ∈ K,

for instance by (ω 6
√
3) · (ω11 6

√
3). Therefore, Q( 3

√
3) is a subfield of K and thus corresponds to a

subgroup H of G. Furthermore, Q( 3
√
3)/Q is not normal, since x3 − 3 is irreducible in Q[x] by

Eisenstein, and partially (but not fully) splits in Q( 3
√
3) since the other roots are imaginary and

thus not contained in Q( 3
√
3) ⊆ R. Therefore, by the Galois correspondence H is not a normal

subgroup of G, so G is nonabelian. Therefore, G ∼= S3.

Exercise 2. Prove the following two statements.
Every maximal ideal of C[x, y] is of the form ⟨x− α, y − β⟩ for α, β ∈ C.
Every maximal ideal of R[x, y] is either of the form:

(1) ⟨x− α, y − β⟩ for α, β ∈ R, or

(2) ⟨l, q⟩ where l ∈ R[x, y] is linear and q is an irreducible polynomial of degree 2 on either x or y.

Proof.
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(a) By Hilbert’s Nullstenschatz, maximal ideals of C[x, y] correspond (inclusion reversing) to
minimal (proper) Zariski closed subsets of C2. Since every point of C2 is closed, the only
minimal closed subsets of C2 are points (α, β). The correspondence is by (α, β) 7→ I({(α, β)})
which is the set of polynomials in C[x, y] which vanish on (α, β). Clearly both x − α, y − β
are contained in this ideal, and they generate it by polynomial division first in the variable x
and then y.

(b) Since C[x, y] is an integral extension of R[x, y], the morphism φ : Spec(C[x, y])→ Spec(R[x, y])
defined by p 7→ p ∩ R[x, y] induced by the inclusion R[x, y] ↪→ C[x, y] is surjective. Further-
more, p ∈ Spec(C[x, y]) is maximal if and only if p ∩R[x, y] is maximal in R[x, y]. Therefore,
all of the maximal ideals of R[x, y] are of the form p ∩ R[x, y] for m = ⟨x − α, y − β⟩ with
α, β ∈ C. Consider the sequence

R[x, y] ι−→ C[x, y] π−→ C

Where ι is the usual inclusion and π is defined (by universal property) by x 7→ α, y 7→ β.
Notice that ker ι ◦ π = p ∩ R[x, y]. Thus, p ∩ R[x, y] consists of the polynomials which are
zero when evaluated in C with x = α and y = β. If both α, β ∈ R, it is clear by polynomial
division that ⟨x − α, y − β⟩R[x,y] generates ker ι ◦ π. Thus, without loss of generality assume
that α ∈ C \ R. Since [C : R] = 2, let q be the minimal polynomial of α in R[x]. Clearly
q ∈ ker ι◦π. Since α ∈ C\R, there exists some real numbers r0, r1 ∈ R such that r0α+r1 = β.
In particular, l(x, y) = y − r0x− r1 ∈ ker ι ◦ π. Let us show that l, q generate ker ι ◦ π, which
shows that every maximal ideal of R[x, y] is one of the two described forms. Thus, suppose
p(x, y) ∈ ker ι ◦ π, so p(α, β) = 0 when evaluated in C. Since l is monic of degree one in y,
there exists a real polynomial f ∈ R[x, y] such that p− lf is a polynomial solely in x. Thus,
p− lf ∈ R[x] and (p− lf) evaluated at α is 0. Therefore, since q is the minimal polynomial
of α in R[x], q divides p− lf , so p− lf ∈ ⟨l, q⟩. Therefore, p ∈ ⟨l, q⟩ as desired.

Exercise 3. Find all positive integers n such that cos(2π/n) is a rational number.

Proof. Let n ∈ Z+, and let ζ = e2πi/n = cos(2π/n) + i sin(2π/n). Assume cos(2π/n) is a rational
number. Then Q(ζ) = Q(i sin(2π/n)). Furthermore, ω = i sin(2π/n) is a root of the rational
polynomial x2 − cos(2π/n)2 + 1 = 0. Therefore, [Q(i sin(2π/n)) : Q] ≤ 2, so [Q(ζ) : Q] ≤ 2.
Recall that [Q(ζ) : Q] is equal to the degree of the nth cyclotomic polynomial Φn, which is equal
to φ(n) for φ : Z+ → Z+ the Euler totient function. Suppose n = pr11 . . . p

rk
k for primes p1, . . . , pk.

Recall that φ(n) = φ(pr11 ) . . . φ(prkk ) and φ(pr) > 2 for all p, r except for p ∈ {2, 3} and r ∈ {1, 2}.
Therefore, the only possible values n for which cos(2π/n) is rational are when φ(n) ≤ 2, which is
only satisfied by the previous note for n = 1, 2, 3, 4, 6. We check by hand that each of these has a
rational value for cos(2π/n).
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Exercise 4. Let R be a Noetherian ring. Let I and J be two ideals of R. Show that

TorR1 (R/I,R/J) ≃ (I ∩ J)/IJ.

Proof.

Exercise 5. Prove that a finitely generated projective module M over a local ring (R,m) is free.

Proof. Let P be a finitely generated projective R-module. Let m be the unique maximal ideal of
R, and let k = R/m be the residue division ring. Since P is finitely generated, k ⊗R P ∼= P/mP is
a finitely generated k module and is thus free, so there is an isomorphism for some n:

kn
ψ̂−→ P/mP

defined by ψ̂ =
(
[x1] . . . [xn]

)
for [xi] ∈ P/mP . Let x1, . . . , xn ∈ P be representatives of these

equivalence classes, and define ψ : kn → P by ψ =
(
x1 . . . xn

)
. Let us first show that ψ is

surjective. We have an exact sequence:

Rn P cokerψ 0
ψ

Applying the functor k ⊗R −, which is right exact, we have the following exact sequence:

kn k ⊗R P k ⊗R cokerψ 0
ψ̂

Since ψ̂ is an isomorphism, by exactness k ⊗R cokerψ = cokerψ/m cokerψ = 0. In particular,
m cokerψ = cokerψ, and cokerψ is the quotient of a finitely generated module and is thus finitely
generated. Therefore by non-commutative Nakayama’s lemma, since m = J(R), cokerψ = 0.
Therefore, ψ is surjective. Thus we have an exact sequence:

0 kerψ Rn P 0
ψ

Since P is projective, this sequence splits. Since tensoring is additive, it preserves split exact
sequence, so k⊗R− applied to this split exact sequence is again split exact, and in particular exact:

0 k ⊗R kerψ kn P 0
ψ̂

Since ψ̂ is an isomorphism, k ⊗R kerψ = kerψ/m kerψ = 0. Furthermore since the above sequence
splits, kerψ is a quotient of Rn and is thus finitely generated, so by non-commutative Nakayama’s
lemma again, kerψ = 0.
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Exercise 6. Let G be a finite group of order 300. Show that G is not simple by considering its
action on its Sylow 5-subgroups.

Proof. Let n5 be the number of 5-Sylow subgroups of G, i.e., subgroups of order 25. By the Sylow
theorems, n5|300 and n5

∼= 1 mod 5. Therefore, n5 ∈ {1, 6} by simple casework. If n5 = 1, then the
5-Sylow of G is unique and thus normal, so G contains a non-trivial normal subgroup. Thus, assume
that n5 = 6, and let S be the set of 5-Sylow subgroups. G acts transitively on S by conjugation,
which induces a group homomorphism ψ : G → S6. Since the action is transitive, ψ is non-trivial
so 0 ≤ kerψ ⊴ G is a non-zero normal subgroup. Also, imψ is a subgroup of S6. If ψ were injective
ab absurdo, then | imψ| = 300, which does not divide |S6| = 720 and thus ψ could not have been
injective at all. Therefore, kerψ ⪇ G so kerψ ⊴ G is a proper normal subgroup of G.

Exercise 7. Let G be a group and H a subgroup of G.

(a) If G is nilpotent, is H nilpotent?

(b) If H is normal in G and G is nilpotent, is G/H nilpotent?

(c) If H is normal in G and both H and G/H are nilpotent, is G nilpotent?

Proof. (a) Yes. Recall that G is nilpotent if and only if the descending central series G0 = G,G1 =
[G,G], . . . , Gi = [G,Gi−1], . . . eventually reaches 0. Let us show that Hi ⊆ H ∩ Gi for all
i ∈ N by induction, which will show that H is nilpotent. This clearly holds for i = 0. Then
we have that

Hi+1 = [H,Hi] = {xyx−1y−1 | x ∈ H, y ∈ Hi} ⊆ {xyx−1y−1 | x ∈ G, y ∈ Gi} = [G,Gi] = Gi+1

by induction, as desired.

(b) Yes. Let N0 = G/H,N1 = [G/H,G/H], . . . , Ni = [G/H,Ni−1] be the descending central series
of G/H. Let us show by induction that Ni ⊆ (H · Gi)/H, which clearly holds for i = 0. Let
π : G→ G/H be the canonical projection. Thus, for i ≥ 0,

Ni+1 = [G/H,Ni] = {[x][y][x]−1[y]−1 | [x] ∈ G/H, [y] ∈ Ni}

since Ni ⊆ (H ·Gi)/H, for every [y] ∈ Ni, there is a representative y ∈ Gi such that π(y) = [y].
Therefore,

⊆ {π(xyx−1y−1) | x ∈ G, y ∈ Gi} = π([G,Gi]) = π(Gi+1) = (H ·Gi+1)/H

as desired. Therefore by induction, there is some n such that Nn ⊆ (H · (1))/H = (1), so
G/H is nilpotent.

(c) No. Consider Z/3 ⊴ S3.
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Exercise 8.

(a) Let A be a finite abelian group and χ a complex character of A. Show that∑
a∈A

|χ(a)|2 ≤ |A| · χ(1)

(b) Let G be a finite group and A an abelian subgroup of G of index n. Let ψ be an irreducible
complex character of G. Show that ψ(1) ≤ n (apply part (a) to the restriction of ψ to A).

Proof. (a) Since A is abelian, all of the irreducible characters of A are one dimensional, and are
orthonormal with respect to the inner product on complex class functions of A by

⟨χ1, χ2⟩A =
1

A

∑
a∈A

χ1(a)χ2(a)

χ can be written as a finite sum of irreducible characters, so it is equal to

χ = n1χ1 + · · ·+ nkχk

for χ1, . . . , χk irreducible characters of A and n1, . . . , nk positive integers. Then we have:∑
a∈A

|χ(a)|2 = |A|⟨χ, χ⟩A = |A|
〈 k∑

i=1

niχi,
k∑
j=1

njχj

〉
A

by bilinearity of ⟨ , ⟩A, we have:

= |A|
k∑

i,j=1

ninj⟨χi, χj⟩A

since the χ1, . . . , χk are orthornormal, we have:

= |A|
k∑
i=1

n2
i ⟨χi, χi⟩A = |A|

k∑
i=1

n2
i ≤ |A|

k∑
i=1

ni

The last inequality is clear since the n1, . . . , nk are positive integers. Furthermore, χ(1) =
n1χ(1) + · · ·+ nkχ(k) = n1 + . . . nk since each of the χi are one dimensional, so we have∑

a∈A

|χ(a)|2 ≤ |A|χ(1)

as desired.

(b) Let ψ be a complex irreducible character of G. By part (a), we have:

ψ(1) = ψ|A(1) ≤
1

|A|
∑
a∈A

|χ(a)|2 ≤ 1

|A|
∑
g∈G

|ψ(g)|2

since ψ is irreducible, 1 = ⟨ψ, ψ⟩G = 1
|G|

∑
g∈G |ψ(g)|2, so

=
1

|A|
∑
g∈G

|ψ(g)|2 = |G|
|A|

= [G : A]
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Exercise 9. Let A be a finite-dimensional algebra over an algebraically closed field k. Recall that
the Jacobson radical J(R) of a left Artinian ring R is a nilpotent ideal and R/J(R) is semisimple.
Show that the following are equivalent:

(a) The simple A-modules are 1-dimensional.

(b) J(A) is the set of nilpotent elements of A.

Proof. Since A is a finite dimensional algebra over k, it is a finite dimensional vector space over A
and thus a left Artinian k module. Therefore, A is left Artinian over itself so J(A) is nilpotent.
Thus, J(A) is contained in the set of nilpotent elements of A. Also, A/J(A) is semisimple, and thus
by Artin-Wedderburn is isomorphic to a product ring for positive integers n1, . . . , nr and division
rings D1, . . . , Dr which are finite extensions of k:

A/J(A) ∼= Mn1(D1)× · · · ×Mnr(Dr)

Since k is algebraically closed, the only finite extension division rings of k are k itself, so in fact

A/J(A) ∼= Mn1(k)× · · · ×Mnr(k)

for n1, . . . , nr positive integers. Let us show that both (a) and (b) are equivalent to n1 = · · · = nr =
1.

First notice that any simple module M of A is annihilated by J(A): since J(A) ·M is a proper
submodule of M by Nakayama and is thus 0 since M is simple. Therefore, the simple modules
of A correspond to simple modules of A/J(A). Furthermore, since A/J(A) is semisimple, all of
its simple modules appear as direct summands as a module over itself (since A/J(A) surjects onto
every simple module, and that surjection splits since A/J(A) is semisimple), and specifically the
simple modules are the modules Mn1(k), . . . ,Mnr(k) when written in the form above by the Artin-
Wedderburn theorem. Therefore, the simple A-modules all being 1-dimensional is equivalent to
n1 = · · · = nr = 1.

Let x ∈ A, so x can be written uniquely as (a + (b1, . . . , br)) for a ∈ J(A) and (b1, . . . , br) ∈
Mn1(k) × · · · × Mnr(k). Since J(A) is nilpotent, a is nilpotent, so x is nilpotent if and only if
(b1, . . . , br) is nilpotent. Thus, J(A) containing all the nilpotent elements of A is equivalent to all
of the rings Mn1(k), . . . ,Mnr(k) having no nilpotent elements. This is clearly true if and only if
n1 = · · · = nr = 1, as desired. Thus, (a) ⇔ n1 = · · · = nr = 1 ⇔ (b)

Exercise 10. Let F be a functor from a small category I to the category Ab of abelian groups.
Show that F admits a colimit by constructing it as a quotient of

⊕
i F (i) where i is indexed over

the objects of I.

23



Proof. Let fi : F (i) ↪→
⊕

i F (i) be the canonical inclusions. Let S be the set of morphisms {θijα }α∈J
in F (I), i.e., θijα : F (i) → F (j) is the image of a morphism in I by F . Then, define the abelian
group A by

A =
⊕
i

F (i)/
(
fj(θ

ij
α (x)) = fi(x)

∣∣∣ ∀θijα ∈ S,∀x ∈ F (i))
There are canonical inclusions gi : F (i)→ A by composing fi with π :

⊕
i F (i)→ A the projection

map. Then (A, {gi}) is a cocone of I. It is straightforward (although tedious) to show that it is
initial in the category of I-cocones in Ab using the universal property of

⊕
i F (i) and the first

isomorphism theorem.
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Fall 2023

Exercise 1. Let G be a group, let H ⊂ G be a subgroup of finite index n ≥ 2, and let x ∈ G.
Prove that [H : H ∩ xHx−1] ≤ n− 1.

Proof. Proof 1: inspired by stack exchange. Consider the action of G on the set G/H ×G/xHx−1

of left cosets of H and xHx−1. The stabilizer of (H, xHx−1) is H ∩ xHx−1. Also notice that the
orbit of (H, x−1(xHx−1)) is of size n, corresponding to the left cosets of H. Thus, either the orbit
of (H, xHx−1) is the same (of size n), or is disjoint and thus of size at most n2 − n = n(n − 1).
Either way, [G : H ∩ xHx−1] ≤ n2 − n which implies [H : H ∩ xHx−1] ≤ n− 1 as desired.

Proof 2: Let G act by translation on G/xHx−1 by ψ : G → AutSet(G/xHx
−1). Then ψ restricts

to an action of H on G/xHx−1, which has stabilizer on xHx−1 equal to H ∩ xHx−1. But also, H
fixes the left coset x−1(xHx−1), so the orbit of xHx−1 is either in this orbit and thus size 1 or is
disjoint and thus at most size n− 1. Thus, [H : H ∩ xHx−1] = |OrbitψH

(xHx−1)| ≤ n− 1.

Exercise 2. Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of A
contains a finite product of nonzero prime ideals.

Proof. Let S be the set of nonzero ideals of A which do not contain a finite product of nonzero
prime ideals. Assume for the sake of contradiction that S is nonempty. Since A is Noetherian, S
contains a maximal element (by inclusion) I. Since I does not contain a finite product of nonzero
prime ideals, I is itself not prime, so there exist a, b ∈ A \ I such that a · b ∈ I. By maximality of I,
I+(a) contains a product of nonzero prime ideals p1 . . . pr, and I+(b) contains a product q1 · · · · ·qs.
Notice that (I + (a))(I + (b)) = I2 + (a)I + (b)I + (ab) ⊂ I. Therefore, p1 . . . prq1 . . . qs ⊂ I, a
contradiction. Thus, S is empty as desired.

Exercise 3. Show that there is an isomorphism of Q-algebras Q[t]⊗Q[t2] Q[t] ∼= Q[x, y]/(x2 − y2).

Proof. By universal property of Q[t] being the free Q algebra with one variable, there are Q-algebra
homomorphisms φ1, φ2 : Q[t] → Q[x, y]/(x2 − y2) defined by t 7→ x, t 7→ y. This induces a map
ψ : Q[t] × Q[t] → Q[x, y]/(x2 − y2) defined by ψ(p, q) = φ1(p)φ2(q). Since φ1, φ2 are Q-algebra
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homomorphisms, ψ is Q bilinear. Also, ψ is Q[t2] balanced since φ1(t
2) = x2 ∼ y2 = φ2(t

2). Thus ψ
induces a Q-algebra homomorphism φ : Q[t]⊗Q[t2]Q[t]→ Q[x, y]/(x2−y2) by φ(p⊗q) = φ1(p)φ2(q).

By the universal property of free Q-algebras, there is a unique Q-algebra homomorphism f :
Q[x, y]→ Q[t]⊗Q[t2] Q[t] defined by f(x) = t⊗ 1 and f(y) = 1⊗ t. We have that f(x2) = t2 ⊗ 1 ∼
1⊗ t2 = f(y2), so f factors as a Q-algebra homomorphism ρ : Q[x, y]/(x2 − y2) → Q[t]⊗Q[t2] Q[t].
Since x, y generate Q[x, y]/(x2 − y2) and t ⊗ 1, 1 ⊗ t generate Q[t] ⊗Q[t2] Q[t], it suffices to check
that φ ◦ ρ and ρ ◦φ are the identity on these elements (easy check) to show they are inverses to one
another.

Exercise 4. Let K/F be a (finite) Galois extension of fields, and let αK \F . Let E be a subfield of
K containing F of largest degree over F such that α ̸∈ E. Prove that E(α)/E is a Galois extension
of prime degree.

Proof. Let G = Gal(K/F ) and H = Gal(E/F ) ≤ G. Since E is a maximal subfield of K not
containing α, by the Galois correspondence, every proper subgroup H ′ ≤ H of H fixes α. Let
N = Gal(E(α)/F ) ⪇ H, which consists of all the σ ∈ H which fix α, which forms a (proper)
subgroup of H. Therefore H has the property that the union of every proper subgroup of H is
the proper subgroup N ⪇ H of H. If H were not cyclic, then each h ∈ H would generate proper
subgroup ⟨h⟩ ⪇ H and thus be contained in N , a contradiction. Thus, N is a maximal subgroup of
H for H cyclic so N ⊴ H and [H : N ] is prime, which by the Galois correspondence means E(α)/E
is Galois and [E(α) : E] is prime.

Exercise 5. Let F be a field, and let f(x) =
∑n

i=0 aix
i be a polynomial of degree n ≥ 1

with coefficients ai ∈ F . Show that the splitting field of f(x2) over F contains a square root of
(−1)na0a−1

n .

Proof. Fix an algebraic closure F of F , and let r1, . . . , rn be the roots of f in F so

f(x) = an(x− r1) . . . (x− rn)

Therefore, f(x2) factors as
f(x2) = an(x

2 − r1) . . . (x2 − rn)
Letting si be a root of x2 − ri in the algebraic closure, we then have:

f(x2) = an(x− s1)(x+ s1) . . . (x− sn)(x+ sn)
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In particular, s1, . . . , sn ∈ L the splitting field of f(x2) over F and s2i = ri for 1 ≤ i ≤ n. Therefore,

L ∋ α =
n∏
i=1

si

and

α2 = (
n∏
i=1

si)
2 =

n∏
i=1

ri = (−1)na0a−1
n

Exercise 6. For a positive integer n let Cn be the category with objects [1, n] := {1, 2, . . . , n} and
morphisms Mor(i, j) an empty set if i > j and a singleton otherwise. For positive integers m and
n, a nonstrictly increasing function f : [1,m]→ [1, n] can be viewed as a functor Cn → Cm. Prove
that this functor f has right adjoint if and only if f(1) = 1.

Proof. f having a right adjoint g means there is a natural bijection

γij : MorCm(f(i), j)→ MorCn(i, g(j))

for all i ∈ Cn, j ∈ Cm. Since the morphism sets are singletons or empty, any such γ is natural, and
this statement is equivalent to

f(i) ≤ j if and only if i ≤ g(j)

for all i ∈ Cn, j ∈ Cm. Thus let us show that such a g exists if and only if f(1) = 1. If f(1) ̸= 1,
then f(1) > 1 but 1 ≤ g(1) for any nondecreasing function g : Cm → Cn. Thus f does not have a
right adjoint.
Now assume that f(1) = 1. Define g : Cm → Cn by:

g(j) = max{i ∈ Cn | f(i) ≤ j}

Notice that this exists since f(1) = 1, so there is always at least one element in the set {i ∈
Cn | f(i) ≤ j}. Let us show that f is left adjoint to g by showing that f(i) ≤ j if and only if
i ≤ g(j). If f(i) ≤ j, then g(j) is the value i′ maximal such that f(i′) ≤ j. Thus, f(i) ≤ f(i′),
so i ≤ i′. Therefore, i ≤ g(j). If f(i) > j, then g(j) is a value i′ with f(i′) ≤ j by definition, so
f(i) > f(i′) so i > i′ = g(j) as desired.

Exercise 7. Let R be a PID and n ≥ 1. Let M be a finitely generated Rn -module, where Rn is
the product of n copies of R. Show that there exists an exact sequence

0→ P → Q→M → 0
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with P and Q finitely generated projective Rn -modules.

Proof. Let A = Rn. Since M is finitely generated, there is a surjection (for sum m ∈ N) ψ : Am →
M . Thus we have a short exact sequence

0→ kerψ ↪→ Am →M → 0

Thus let us show that every submodule of Am is finitely generated projective. First notice that since
R is a PID, it is Noetherian, so Rn is Noetherian. Therefore, kerψ ⊂ Am is finitely generated. Recall
that Rn-Mod ∼= R-Mod×R-Mod×· · ·×R-Mod by M 7→ (e1M, e2M, . . . , enM) where e1, . . . , en
are the idempotents (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) ofRn. Therefore, kerψ ∼= (N1, . . . , Nn) ∈ R-Mod×
· · · × R-Mod for N1 ⊂ Rm, N2 ⊂ Rm, . . . , Nn ⊂ Rm ideals. If each of N1, . . . , Nn are projective
in R-Mod, then kerψ is projective in Rn-Mod since projectiveness is a categorical property. Fur-
thermore, (by the classification of FG modules over a PID), each of N1, . . . , Nn are free and thus
projective, so kerψ is projective.

Exercise 8. Let A be a domain that is normal (i.e., integrally closed in its quotient field), and
let p be a prime ideal of A.

(a) Show that the localization Ap is a normal domain.

(b) Suppose that A is Noetherian and that p is a minimal nonzero prime ideal of A. Show that
Ap is a DVR.

Proof. (a) Let k be the fraction field of A, so A ⊂ Ap ⊂ k. Let us show that if m ∈ k satisfies a
monic polynomial in Ap[x], then m ∈ Ap. Thus, suppose that there exists ai, si ∈ (A \ p) such
that

mn +mn−1an−1

sn−1

+ · · ·+ a1
s1

+
a0
s0

= 0

Let α = s0 . . . sn ∈ A \ p. Then we have that

αn(mn +mn−1an−1

sn−1

+ · · ·+ a0
s0
)

(αm)n + (αm)n−1αan−1

sn−1

+ · · ·+ (αm)1
αn−1a1
s1

+
αna0
s0

= 0

Notice that si|α for 0 ≤ i ≤ n − 1, so the coefficients αn−kak
sk

∈ A ⊂ k. Therefore, αm ∈ k
satisfies a monic polynomial in A[x], so since A is normal αm ∈ A. Therefore, since α ∈ A\p,
αm
α
∈ Ap, so Ap is integrally closed.

(b) A DVR is an integrally closed Noetherian domain with Krull dimension 1. Since the prime
ideals of Ap are in bijection with the prime ideals of A contained in p, Ap has a unique prime.
Ap is Noetherian since A is and is integrally closed by part (a).
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Exercise 9. Find the dimensions and characters of all irreducible Q-representations of the cyclic
group of order a prime p.

Proof. Q representations of Z/p are equivalent to QZ/p modules. Furthermore, QZ/p is a semisim-
ple ring by Maschke’s theorem since Q is characteristic zero. Therefore, all of the irreducible Q rep-
resentations of Z/p appear as direct summands of the regular representation QZ/p ∼= Q[x]/(xp−1).
Notice that xp − 1 = (x − 1)(xp−1 + · · · + 1) is the factorization of xp − 1 into irreducibles in Q.
Therefore, as a Q[x]/(xp − 1) module with x acting by multiplication by x,

Q[x]/(xp − 1) ∼= Q[x]/(x− 1)⊕Q[x]/(xp−1 + · · ·+ 1)

Since xp−1+· · ·+1 is irreducible over Q, Q[x]/(xp−1+· · ·+1) is a field, and thus is a minimal non-zero
ideal of Q[x]/(xp − 1). Therefore, Q[x]/(x− 1),Q[x]/(xp−1 + · · ·+ 1) are irreducible Q[x]/(xp − 1)
modules and are clearly distinct. Thus, these are the only two irreducible Q-representations, of
dimension 1 and p−1. Let χ1 be the character of Q[x]/(x−1) and χ2 the character of Q[x]/(xp−1+
· · · + 1). Then χ1 ⊕ χ2 = χreg the character of Q[x]/(xp − 1), which is χ(1) = p and χ(xl) = 0 for
0 < l < p. Also, χ1 is the trivial representation Z/p 7→ Q× by 1 7→ 1, so χ2 = χreg − χ1. Thus,
χ2(1) = p− 1 and χ2(x

l) = −1 for 1 < l < p.

Exercise 10. Let ρ : G → GL(V ) be a finite dimensional irreducible representation of a finite
group G over the field of complex numbers. Prove that for every central element g ∈ G, the operator
ρ(g) is multiplication by a scalar.

Proof. Notice that ρ(g) : V → V is a CG module homomorphism (a homomorphism of G represen-
tations) since ρ(g) ◦ ρ(h) = ρ(g · h) = ρ(h · g) = ρ(h) ◦ ρ(g) for all h ∈ G. Since C is algebraically
closed and V is finite dimensional, there is a non-zero eigenvector v ∈ V with eigenvalue λ ∈ C,
so ρ(g)(v) = λv. Therefore, ρ(g) − λ IdV : V → V is a CG module homomorphism with nonzero
kernel, so ker(ρ− λ IdV ) is a non-trivial CG submodule of V . Since V is a simple CG module, this
forces ker(ρ− λ IdV ) = V , so ρ is multiplication by λ.
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Exercise 1. Let F, F ′ : C → D and G,G′ : D → C be four functors such that F is left adjoint to G
and F ′ is left adjoint to G′. Establish a bijection between the natural transformations α : F ⇒ F ′

and the natural transformations β : G′ ⇒ G. [Hint: Use GαG′ : GFG′ → GF ′G′].

Proof. Let η : 1C ⇒ GF, η′ : 1C ⇒ G′F ′, ϵ : FG⇒ 1D, ϵ
′ : F ′G′ ⇒ 1D be the units and counits of the

adjunctions. Then define a function ψ from the collection of natural transformations α : F ⇒ F ′

to natural transformations G′ ⇒ G by:

ψ(α) = G′ GFG′ GF ′G′ G
ηG′

GαG′ Gϵ′

Similarly, define φ from natural transformations β : G′ ⇒ G to natural transformations F ⇒ F ′

by:

φ(β) = F FG′F ′ FGF ′ F ′Fη′ FβF ′
ϵF ′

Let us show that φ ◦ ψ(α) = α. We have:

φ ◦ ψ(α) = ϵF ′ ◦ FGϵ′F ′ ◦ FGαG′F ′ ◦ FηG′F ′ ◦ Fη′

By naturality of ϵF ′, the following diagram commutes for any object X ∈ C:

FGF ′G′F ′(X) F ′G′F ′(X)

FGF ′(X) F ′(X)

FGϵ′
F ′(X)

ϵF ′G′F ′(X)

ϵ′
F ′(X)

ϵF ′(X)

Therefore, we have:
= ϵ′F ′ ◦ ϵF ′G′F ′ ◦ FGαG′F ′ ◦ FηG′F ′ ◦ Fη′

By naturality of ϵF ′ applied to FGα, we have for any object X in C:

FGF (X) F (X)

FGF ′(X) F ′(X)

FGαX

ϵF (X)

αX

ϵF ′(X)

Therefore, we have

= ϵ′F ′ ◦ (ϵF ′ ◦ FGα ◦ Fη)G′F ′ ◦ Fη′ = ϵ′F ′ ◦ (α ◦ ϵF ◦ Fη)G′F ′ ◦ Fη′
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And by unit-counit relations, we have

= ϵ′F ′ ◦ αG′F ′ ◦ Fη′

Finally by naturality of αG′F ′ , the following diagram commutes for all objects X ∈ C:

FG′F ′(X) F ′G′F ′(X)

F (X) F ′(X)

αG′F ′X

Fη′X

αX

F ′η′X

Therefore, we have:
= ϵ′F ′ ◦ F ′η′ ◦ α = α

By the counit relations. By a symmetric argument, ψ ◦ φ(β) = β for all natural transformations
β : G′ ⇒ G, so ψ, φ are inverses on the level of sets so ψ is a bijection as desired.

Exercise 2. Let p, q be distinct prime numbers and consider the number field K = Q(
√
p+
√
q).

Describe all subfields of K and inclusions between them.

Proof. Notice that K contains
√
pq and thus both

√
p and

√
q, so K = Q(

√
p,
√
q). Now we can

check that p is not a square in Q(
√
q) explicitly. Suppose let x = a+ b

√
q ∈ Q(

√
q) arbitrary. Then

if x2 ∈ Q, either a = 0 or b = 0. There are no solutions to a2 = p or b2 = pq, so p is not a square
in Q(

√
q). Therefore, [K : Q(

√
q)] = 2, so [K : Q] = 4. Also, notice that K is Galois over Q since

it is the splitting field of (x2 − p)(x2 − q). Thus, G = Gal(K/Q) is order 4. Each element σ ∈ G is
determined by its action on

√
p,
√
q, and must map

√
p to ±√p and

√
q → ±√q. Since there are

only 4 possible such automorphisms and |G| = 4, each of these choices yields a Q automorphism
of K. Therefore, G = ⟨σ, τ⟩ with σ(

√
p) = −√p, σ(√q) =

√
q, τ(
√
p) =

√
p, τ(
√
q) = −√q. We

easily see that G ∼= Z/2 × Z/2 which has 5 subgroups, which by the Galois correspondence gives
the following tower of subfields of K (with inclusions shown):

K

Q(
√
p) Q(

√
q) Q(

√
pq)

Q
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Exercise 3. Give an example of an infinite field extension K ⊂ L such that L has only finitely
many field automorphisms fixing K.

Proof. Example 1: Let L = Q(21/3, 21/9, 21/27, . . . ). Then any Q automorphism of L is determined
by its action on 21/3, 21/9, . . . . Furthermore, it must send 21/3

n
to another root of x3

n − 1 in Q. But
since L ⊂ R, there is a unique solution to x3

n − 1, so each of 21/3, 21/9, . . . must be fixed by any Q
automorphism of L. So AutK(L) = {IdL}.

Example 2: Let K = Fp(x0), and let L = K[x1, x2, . . . ]/(x
p
i − xi−1). Equivalently, let K1 =

K[x1]/(x
p
1 − x0), K2 = K1[x2]/(x

p
2 − x1), . . . and let L =

⋃∞
i=1Ki. It is clear that [L : K] =∞. An

element σ ∈ AutK(L) is determined by its action on each xi. By induction, σ(xn) = xn since xn
must be mapped to a pth root of xn−1, and there is only one. Thus, AutK(L) = {IdL}.

Exercise 4. Let Mn(K) be the ring of n × n-matrices with coefficients in a field K, for n ≥ 1.
Describe all possible ring homomorphisms Mn(K)→ K.

Proof. When n = 1, there are many possible K → K homomorphisms (i.e., Galois theory!). Let

us show that for n ≥ 2 that there are no ring homomorphisms Mn(K)
ψ−→ K. Suppose such a ψ

existed. Let eij ∈Mn(K) be the matrix with all zero entries but a 1 in the ijth entry. Notice that
eiieij − eijeii = eij, but since K is commutative,

ψ(eij) = ψ(eii)ψ(eij)− ψ(eij)ψ(eii) = 0

Furthermore, letting j ̸= i, we have that eijeji = eii. Thus, ψ(eii) = ψ(eij)ψ(eji). But notice that
In =

∑n
i=1 eii, so

1K = ψ(In) =
n∑
i=1

ψ(eii) = 0

which is a contradiction. Thus, such a ψ cannot exist.

Exercise 5. Let A be a local commutative noetherian ring and M a finitely generated A-module
such that every exact sequence 0 → M ′′ → M ′ → M → 0 remains exact after tensoring with the
residue field k of A. Show that M is free.

Proof. Let m ⊂ A be the unique maximal ideal of A so A/m = k. Since M is finitely generated,
M/mM is a finitely generated A/m = k module and is thus free. Thus, there is an isomorphism
ψ̃ : kn →M/mM defined by ψ̃(l1, . . . , ln) = [m1]l1+· · ·+[mn]ln, for representativesm1, . . . ,mn ∈M .

32



Then define ψ : An →M by ψ(a1, . . . , an) = a1m1+· · ·+anmn. Let us first show that ψ is surjective.
We have an exact sequence

An M cokerψ 0
ψ

Tensoring with k is right exact, so this yields the exact sequence (using the fact that the functors
⊗Ak and M 7→M/mM are equivalent)

kn M/mM cokerψ/m cokerψ 0
ψ̃

Since ψ̃ is an isomorphism and this sequence is exact, cokerψ = m cokerψ. Since cokerψ is a
quotient of M , it is a finitely generated A module, and thus by Nakayama’s lemma there exists
m ∈ m such that (1−m) cokerψ = 0. But since A is local, (1−m) ∈ A×, so cokerψ = 0. Thus, ψ
is surjective and we have a short exact sequence:

0 kerψ An M 0
ψ

By assumption, exactness is preserved when tensoring with k, so we have an exact sequence of k
modules;

0 kerψ/m kerψ kn M/mM 0
ψ̃

Since ψ̃ is an isomorphism, kerψ = m kerψ. Since A is Noetherian, and kerψ is a submodule of
An, kerψ is a finitely generated A module. Thus by the same application of Nakayama, kerψ = 0
and ψ is an isomorphism.

Exercise 6. Let A be a commutative ring and let s ∈ A. Let S = {1, s, s2, . . . }. Show that the
following assertions are equivalent:

(a) The canonical morphism A
η−→ S−1A is surjective.

(b) There is N > 0 such that snA = sNA for all n ≥ N .

(c) For N large enough, the ideal sNA is generated by an element e with e2 = e.

Proof.

(c) ⇒ (b) Since e ∈ sNA, let k ∈ A such that e = sNk. Let us show that for n ≥ N that snA = sNA.
Clearly snA ⊆ sNA. Thus take some e · a = sNka ∈ sNA an arbitrary element of sNA. Let
m ∈ N such that m ·N > n. Then we have:

e · a = ema = smNkma ∈ snA

as desired.
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(b) ⇒ (a) Take an arbitrary element b
sr
∈ S−1A. By assumption, sN+rA = sNA, so there is a ∈ A such

that sN+ra = sNb. Then we have that b
sr

= a
1
= η(a) since:

sN(b− asr) = sNb− asN+r = 0

Therefore, η is surjective.

(a) ⇒ (c) Since η is surjective, there is some k ∈ A such that η(k) ∼ 1
s
. In particular, this means that

there is some N such that

sN(sk − 1) = 0 sN+1k = sN

Let e = SNkN . Notice that e2 = s2Nk2N = sNkN = e. Also, k generates SNA since for any
sNa ∈ sNA, we have esNa = s2NkNa = sNa.

Exercise 7. Let k be a field and let A = k[X, Y ]/(X2, XY, Y 2).

(a) Determine the invertible elements of A.

(b) Determine the ideals of A.

(c) Determine the principal ideals of A.

Proof. Notice that k[X, Y ] as a k-vector space has basis the polynomials XmY n for m,n ∈ N. The
ideal (X2, XY, Y 2) is a k-vector space of k[X, Y ] with basis all the polynomials XmY n form+n ≥ 2.
Therefore since quotients commute with the forgetful functor Ring→ k-Mod, A is a 3 dimensional
k-vector space with basis X, Y, 1. Thus, any equivalence class in A can be identified uniquely with
an element of the form aX + bY + c for a, b, c ∈ k. The multiplication between such elements is
obvious.

(a) An element aX + bY + c is invertible if c ̸= 0, with inverse c−1(1 − aX/c)(1 − bY/c). An
element aX + bY is not invertible since (aX + bY )(a′X + b′Y + c′) = (c′aX + c′bY ) ̸= 1.

(b) and (c) An ideal of A is also a k subspace of A. Let V = ⟨X, Y ⟩k ⊂ A be the k span of X, Y .
A \ V = A× by part (a), so any non-unital ideal of A us a k-subspace of V . Let us show that
all such subspaces are in fact ideals of A. This is clear for (0). Let W = ⟨aX + bY ⟩k ⊂ V
be a one dimensional k subspace of V . It suffices to show that the generator of W is closed
under left multiplication by A:

(a′X + b′Y + c′)(aX + bY ) = c′aX + c′bY ∈ W

Thus, each of the one dimensional subspaces of V are principal ideals of A. (0) and A are
clearly principal ideals of A. The only remaining possible ideal is V itself, which is clearly
an ideal by the above computation. V is not principal since we showed that for all v ∈ V
non-zero, (v) ⊂ A is a 1 dimensional subspace W of A (and thus not V ).
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Exercise 8. Let G be a finite group and let p be the smallest prime dividing the order of G. Show
that a subgroup H ≤ G of index p must be normal.

Proof. Let G act on left cosets of H. Standard proof.

Exercise 9. Let G be a non-abelian finite group of order pq where p and q are prime numbers
with q > p. Determine the degrees of the irreducible characters of G, and determine the number of
irreducible characters of a given degree.

Proof. Since q > p, there is a unique q-Sylow, and thus G = Z/q ⋊ψ Z/p for ψ a non-trivial
homomorphism Z/p→ Aut(Z/q). Such a homomorphism exists if and only if p|(q−1), so p|(q−1).
The degree of an irreducible character of G divides |G|, and thus the possible degrees of irreducible
characters of G are 1, p, q, and pq. Since the sum of the squares of the degrees of the irreducible
characters of G is equal to |G| and (pq)2 > q2 > pq, the irreducible characters of G are all degree
1 or p. Thus let us count the number of degree 1 irreducible characters of G. Every degree 1
representation of G is automatically irreducible. The degree 1 representations of G are the group
homomorphism G 7→ C×. Since C× is Abelian, each such representation factors through G/[G,G],
so it suffices to find all group homomorphisms G/[G,G]→ C×. Since G is non-abelian, [G,G] is a
non-trivial normal subgroup. Also, [G,G] is contained in the q-Sylow N ∼= Z/q by construction of
the semidirect product, so [G,G] = Z/q since the only non-trivial normal subgroup of G contained
in N is N itself. Therefore, the degree 1 representations of G are given by all group homomorphisms
G/[G,G] ∼= Z/p→ C×. There are p such representations, by 1 7→ e2πik/p for 0 ≤ k < p. Therefore,
there are p degree 1 irreducible characters of G. Suppose there are k degree p irreducible characters
of G. Since the sum of the squares of the degrees of the irreducible characters of G is equal to |G|,

kp2 + p = pq = |G|

⇒ k =
q − 1

p

Therefore, G has p degree 1 irreducible characters and q−1
p

degree p irreducible characters.

Exercise 10. Let A be an artinian ring and let M be an A-module. Let B = EndA(M). Let
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f ∈ B such that f(M) ⊂ Rad(A) ·M , where Rad(A) = J(A) is the Jacobson radical. Show that
f ∈ Rad(B).

Proof. To show that f ∈ Rad(B), it suffices to show that (1 − f ◦ b) ∈ B× for all b ∈ B. Let
g = f ◦ b. Notice that g(M) = f ◦ b(M) ⊂ f(M) ⊂ Rad(A) ·M . If we show that g is nilpotent
(there exists n ∈ N such that gn = 0), then 1− g is invertible with inverse 1+ g+ · · ·+ gn−1. Thus,
let us show that g is nilpotent. Notice that

g2(M) = g ◦ g(M) ⊂ g(Rad(A) ·M) = Rad(A)g(M)

since g is an A module endomorphism. In particular applying the above n times, we have

gn(M) ⊂ (Rad(A))n(M)

Thus, it suffices to show that Rad(A) is nilpotent. This is a standard exercise for artinian rings
which we repeat here. Since A is artinian, the descending sequence Rad(A) ⊇ Rad(A)2 ⊇ . . . is
eventually constant. Thus, there is some n such that Rad(A)n = Rad(A)n+1. Since A is artinian
it is also Noetherian by Akizuki-Hopkins-Levitzki, and thus Rad(A)n ⊆ A is a finitely generated A
module and thus by noncommutative Nakayama Rad(A)n = 0.

Note: usually (or at least in the course this year) we use that J(A) is nilpotent to prove Akizuki-
Hopkins-Levitzki, so this argument would be circular. That being said, on the qual you should
assume major theorems if it makes things easier. But we don’t need Akizuki-Hoplins-Levitzki:

Let I = Rad(A)n so I2 = I. For contradiction assume that I ̸= 0, there is a left ideal K such that
I ·K ̸= 0. Take a minimal such K, so K = (x) for some x ∈ A. Then I2 · (x) = I(I · (x)) = I · (x),
so by minimality I · (x) = (x). By noncommutative Nakayama and I ⊂ Rad(A), (x) = 0.
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Fall 2022

Exercise 1. Find all subfields of the field F = Q(21/3, 31/3).

Proof. First notice that Q( 3
√
2, 3
√
3, ω) is the splitting field of x3 − 2, x3 − 3 for ω = e2πi/3. Let

us show that [Q( 3
√
3, 3
√
2) : Q( 3

√
3)] = 3, which will imply that Gal(Q( 3

√
2, 3
√
3, ω)/Q) is a group of

order 18 since [Q( 3
√
3) : Q] = 3 by Eisenstein and [Q( 3

√
3, 3
√
2, ω) : F ] = 2 since F is purely real and

ω has an imaginary component.

We will explicitly show that x3 − 2 has no roots in x3 − 3. There are better ways to do this
- ramification theory is the best (I don’t know it yet). Let a + b

√
3 + c

√
9 = x ∈ Q( 3

√
3) be an

arbitrary element with x3 = 2. After multiplying by the common denominators of a, b, c and dividing
by any common divisor, assume that a, b, c are coprime integers such that x3 = 2k3 for some k ∈ Z+.
Considering the coefficient of 1 and 3

√
3 in their product, we have a3 + 3b3 + 9c3 + 18abc ≡ 0 mod 2

and a2b+ 3ac2 + 3b2c ≡ 0 mod 2. In particular,

a3 + b3 + c3 ≡ 0 mod 2

a2b+ ac2 + b2c ≡ 0 mod 2

The only solutions to a2b+ac2+ b2c ≡ 0 mod 2 are if all of a, b, c are even or if exactly two are. But
a, b, c are coprime by assumption, so exactly two of them are even. But then a3+ b3+ c3 ≡ 1 mod 2,
a contradiction. So x3 − 2 has no roots in Q( 3

√
3) and is thus irreducible.

Thus, G = Gal(F (ω)/Q) is order 18. Also, every element of G must send 3
√
3 to another root of

x3 − 3 and likewise for ω with x2 + x + 1 and 3
√
2 with x3 − 2. There are thus 18 total choices

for any element of G on these three elements. Furthermore, any element of G is determined by its
action on 3

√
3, 3
√
2, and ω, so every choice of permutation of the roots of these polynomials yields an

element of G. Thus we can explicitly write a generating set of G:

α :
3
√
2 7→ 3

√
2,

3
√
3 7→ ω

3
√
3, ω 7→ ω β :

3
√
2 7→ ω

3
√
2,

3
√
3 7→ 3

√
3, ω 7→ ω

γ :
3
√
2 7→ 3

√
2,

3
√
3 7→ 3

√
3, ω 7→ ω2

It is then easy to compute that α3 = β3 = γ2 = id, αβα−1 = β, γαγ = α−1, γβγ = β−1. By order
considerations, this describes G completely as (Z/3×Z/3)⋊ψ Z/2 with ψ : Z/2→ Aut(Z/3×Z/3)
by ψ(1)(a, b) = (−a,−b). The subfields of F correspond to the subgroups of G containing ω. There
are the subgroups G, ⟨γ⟩, and 4 subgroups of order 6: ⟨α, γ⟩, ⟨β, γ⟩, ⟨αβ, γ⟩, ⟨αβ2, γ⟩. The fixed
fields GH of these groups contain Q( 3

√
2),Q( 3

√
3),Q( 3

√
6),Q( 3

√
12), and since x3− a is irreducible by

Eisenstein for a = 2, 3, 6, 12, these are exactly the fixed fields by degree considerations. Thus, the
subfields of F are these four fields, F itself, and Q.

37



Exercise 2. Let P (x) = x6 + 3.

(a) Find the splitting field of P .

(b) Determine the isomorphism type of the Galois group of P over Q.

Proof. (a) x6 + 3 is irreducible over Q by Eisenstein’s criterion, or since −3 is not a square in Q.
The roots of x6 + 3 (fixing an embedding Q ↪→ C) are:

ω
6
√
3, ω3 6
√
3, ω5 6
√
3, ω7 6
√
3, ω9 6
√
3, ω11 6

√
3

for ω = eπi/6 =
√
3+i
2

a primitive 6th root of unity. Clearly the splitting field P contains

F = Q(ω 6
√
3) ∼= Q(x)/(P (x)). Let us show this is the splitting field of P by showing that

ω2 ∈ F , and thus every root of P . Notice that ω2 = eπi/3 = 1+i
√
3

2
. Also notice that

(ω 6
√
3)3 = ω3

√
3 = i

√
3, and thus F contains ω2 as desired. Thus, F is the splitting field of

P .

(b) Since [F : Q] = 6, the Galois group of P over Q is order 6 and thus is either Z/6Z or S3.
Notice that F ∋ (ω 6

√
3) · (ω11 6

√
3) = 3

√
3. Therefore, F ⊃ Q( 3

√
3). Also notice that Q( 3

√
3) is

not a normal extension of Q since the polynomial x3 − 3 is irreducible over Q but does not
split over Q( 3

√
3) ⊂ R since the other roots of x3 − 3 are imaginary. Therefore, Gal(F/Q) is

not Abelian, so Gal(F/Q) ∼= S3.

Exercise 3. Let G be a finite group, p a prime number and H a subgroup of G with [G : H] = p.
Assume that no prime number smaller than p divides the order of G. Show that H is normal in G.

Proof. Let S be the set (of size p) of left cosets of H, and let G act on S by left translation. This
induces a homomorphism ψ : G → Sp with kerψ ⊂ H. We have that |G| = | kerψ|| imψ|, so
|G|

∣∣∣| kerψ|p!. Since (p − 1)! is relatively prime to G, |G|
∣∣∣| kerψ|p. In particular, |G| ≤ | kerψ|p ≤

|H| · [G : H]. But |G| = |H| · [G : H], so | kerψ| = |H| and kerψ = H, so H is normal in G.

Exercise 4. Let p be a prime number at least 3. Find a set of representatives up to conjugation
for the group GL(2,Z/p) of 2× 2 invertible matrices.
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Proof. By Jordan canonical form, every matrix A ∈ GL(2,Z/p) with characteristic polynomial
(x− λ1)(x− λ2) for λ1, λ2 ∈ Z/p is conjugate to exactly one of the following:{[

λ1 0
0 λ2

] ∣∣∣(λ1, λ2) ∈ (F/p×)2/((λ1, λ2) ∼ (λ2, λ1))

}
{[

λ 1
0 λ

] ∣∣∣λ ∈ F/p×
}

Thus, the remaining matrices have irreducible characteristic polynomial, and are thus conjugate to
exactly one of the following by Rational canonical form:{[

0 −a
1 −b

] ∣∣∣x2 + bx+ a irreducible in Fp[x]
}

Exercise 5. Let G be the group presented by G = ⟨a, b | a4 = 1, b2 = a2, bab−1 = a−1⟩. You may
use that G has order 8. Compute the character table of G.

Proof. There is a surjective group homomorphism G→ H for H the quaternions, and is an isomor-
phism since |G| = |H| = 8. Since H has 5 conjugacy classes, there are 5 irreducible representations
of H (up to isomorphism), and the sum of the squares of their dimensions is 8. Thus, exactly 4 are
one dimensional and one is two dimensional. The one dimensional representations are easy enough
to find. Orthogonality gives the two dimensional representation.

{1} {-1} {i,-i} {j, -j} {k, -k}
1 1 1 1 1
1 1 -1 -1 1
1 1 -1 1 -1
1 1 1 -1 -1
2 -2 0 0 0

Exercise 6. Let G be a finite group, let V be a finite-dimensional complex vector space and let
π : G → GL(V ) an irreducible representation. Let H be an abelian subgroup of G. Show that
dimV ≤ [G : H].
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Proof. Let us show that if dimV > [G : H] is a representation of G it admits a proper subrepresen-
tation. π restricts to H, so V is also an H representation. Since the only irreducible representations
of an abelian group are one dimensional, V ∼= V1⊕· · ·⊕Vr as H-representations, with each Vi a one
dimensional C vector space with an H action. Thus let v ∈ V1 non-zero so hv ∈ ⟨v⟩ for all h ∈ H.
Let g1H, g2H, . . . , gkH be the left cosets of H in G, and define v1 = g1 · v, v2 = g2 · v, . . . , vk = gk · v.
Let W = ⟨v1, . . . , vk⟩ be the C-span of v1, . . . , vk. Notice that W is a proper subspace of V since it
is dimension at most [G : H] < dimV and is non-zero since each vi is non-zero. Thus let us show it
is a subrepresentation of V . It suffices to show that for all g ∈ G and 1 ≤ i ≤ k that gvi ∈ W . We
can write g = gjhg

−1
i for some 1 ≤ j ≤ k and h ∈ H by considering the left H coset of ggi. Then,

we have:
gvi = gjhg

−1
i giv = gjhv = λgjv

where λ ∈ C satisfies hv = λv, which exists since H acts on v by scalars. Thus, W is a proper
subrepresentation of V so V is not irreducible.

Exercise 7. Let S be a multiplicatively closed subset of a commutative ring R. Show that for a
prime ideal p in R disjoint from S, the ideal p · R[S−1] in the localization R[S−1] is prime. Show
that this gives a one-to-one correspondence between prime ideals in R that are disjoint from S and
prime ideals in R[S−1].

Proof. Without loss of generality assume S saturated (in particular, contains 1). Let us define a
map ψ : SpecR→ SpecR[S−1] (where Spec is the prime ideals of the given ring). We will define

ψ(p) := {p/s | p ∈ p, s ∈ S} = p ·R[S−1]

Notice the second equality holds since p is an ideal. In particular, this implies that ψ(p) is an ideal
in R[S−1]. Now we show it is prime. Assume that a/s1 · b/s2 = p/s ∈ p ·R[S−1]. Then by definition
there exists t ∈ S such that t(sab− ps1s2) =R 0, so abst = ps1s2 ∈ p. Since p is prime and s, t are
in S which is disjoint from p, either a, b ∈ p, so either a/s2 or b/s2 are in ψ(p). Thus, ψ(p) is prime.

This shows we have a well defined function ψ from primes in R disjoint from S and primes of
R[S−1]. Now we show it is injective. If p ̸= q so without loss of generality ∃q ∈ q \ p, let us show
that q

1
̸∈ pR[S−1]. For if it were, we would have

q

1
=
p

s
⇒ ∃t ∈ S | t(qs− p) =R 0

tqs ∈ p, a contradiction

Therefore, ψ is injective. Also, ψ is surjective by pulling back any prime ideal p′ of R[S−1] by the
localization map η : R→ R[S−1], which then clearly has image p′ back in R[S−1] by ψ.
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Exercise 8. Let A be a commutative ring. Show that the following two statements are equivalent:

(a) Every prime ideal of A is equal to an intersection of maximal ideals of A.

(b) Given any ideal I of A, the intersection of the prime ideals of A/I is equal to the intersection
of the maximal ideals of A/I.

Proof. (a) ⇒ (b): Since every maximal ideal of A/I is prime, it suffices to show that every
prime ideal p of A/I is the intersection of maximal ideals in A/I. By the correspondence
of prime ideals, there exists p̃ ∈ A a prime ideal in A containing I such that p̃/I = p. By
assumption (a), p̃/I is the intersection of maximal ideals {m̃i}i∈J (for some indexing set J).
Since their intersection is p̃ which contains I, each of the m̃i contain I and thus correspond
to maximal ideals {mi}i∈J of A/I. Furthermore by the correspondence theorem:

p = p̃/I =
(⋂
i∈J

m̃i

)
/I =

⋂
i∈J

mi

(b) ⇒ (a): Take any prime ideal p of A, so A/p is an integral domain and thus (0) is prime.
By assumption, the intersection of the prime ideals of A/p is equal to the intersection of the
maximal ideals, so there is a set {mi}i∈J of maximal ideals of A/p such that

⋂
i∈J mi = (0).

By the correspondence of ideals, each mi corresponds to a maximal ideal m̃i containing p, and
furthermore (0) ⊇

⋂
m̃i implies p ⊇

⋂
mi. Since each mi contains p, we thus have p =

⋂
i∈J mi,

so p is the intersection of maximal ideals of A as desired.

Exercise 9. Let ϕ : Ab→ Gp be the functor that takes an abelian group A to A in the category
of groups. Show that ϕ has a left adjoint α. Does ϕ has a right adjoint? Does α have a left adjoint?
Justify your answers.

Proof. The left adjoint α is the abelianization functor. First isomorphism theorem gives a natural
bijection α between their hom-sets, and there are many checks to show it is natural.

ϕ does not have a right adjoint because it does not preserve coproducts: ϕ(Z/2) ⊔Gp ϕ(Z/2) =
Z/2 ∗ Z/2 is an infinite group, while ϕ(Z/2× Z/2) is finite.

α does not have a left adjoint because it does not preserve kernels. Consider C5 ↪→ψ A5 by 1 7→
(12345). Then α applied to this diagram yields C5 ↪→ 1, which has kernel C5. Thus kerα(ψ) = 1.
But α(kerψ) = α(C5) = C5.
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Exercise 10. Compute the Jacobson radical J(R) for the following rings R. Justify your answers.

(a) Let R = EndR(V ), for a real vector space V of countably infinite dimension. Compute J(R).

(b) For any finite extension field F of Q, let R be the integral closure of Z in F . Compute J(R).

Proof. (a) For U a one dimensional subspace of R, the set mU of matrices A ∈ R vanishing on
U is a left ideal of R (easy exercise). Let us show mU is maximal. Let U = ⟨v⟩ and Av ̸= 0.
Let us show that the left ideal generated by mU + A is R. Let B be a linear transformation
such that B(Av) = v. Then idV −BA ∈ mU , so idV ∈ ⟨mU +A⟩, so ⟨mU = A⟩ = R as desired.
We have that J(R) is the intersection of all of the left maximal ideals. Thus any A ∈ J(R)
vanishes on every one dimensional subspace of V , and thus is zero, so J(R) = {0}.

(b) Since R is the ring of integers of a finite field extension of Q, it is a Dedekind domain. Let
us show that J(R) = 0. Let a ∈ R \ {0} and let I = ⟨a⟩. I uniquely factorizes into a product
of prime ideals, I =

∏n
i=1 p

mi
i . By going up, R has infinitely many primes, so there is some q

prime in R not contained in the set {pi}. Also, R is Krull dimension 1, so q is maximal in I.
We have a ̸∈ q, since otherwise the prime ideal q would contain I and thus be a part of its
factorization into prime ideals. Therefore, a ̸∈ q ⊂

⋂
m maximal m = J(R), so J(R) = {0}.

Spring 2022

Exercise 1. Let F be a field of characteristic not 2 and let the symmetric group Sn act on the
polynomial ring F [X1, . . . , Xn] by permuting the variables, for n ≥ 2. Let A = (F [X1, . . . , Xn])

An

and B = (F [X1, . . . , Xn])
Sn be the fixed subrings, where An ⊴ Sn is the alternating group.

(a) Show that A is an integral extension of B.

(b) Show that A = B[δ] for some δ ∈ A such that ∆ := δ2 belongs to B.

(c) For n = 2, describe ∆ as a polynomial in e1 = X1 +X2 and e2 = X1X2.

Proof. Define δ =
∏

i<j(xi − xj) ∈ F [x1, . . . , xn]. Notice that δ ∈ A, since any transposition (ab)
results in an odd number of sign changes of δ, so (ab)(δ) = −δ. Thus for all σ ∈ An, σ(δ) = δ.
Lemma: For all P ∈ A, there exists Q1, Q2 ∈ B such that

P = Q1 + δQ2

Proof. Define Q1 =
P+(12)P

2
, R = P−(12)P

2
so P = Q1 + R. Notice that Q1 ∈ B since for all σ ∈ Sn,

either 1) σ ∈ An and τ = (12)σ(12) is in An:

σQ1 =
σP + (12)τ(12)(12)P

2
=
P + (12)τP

2
=
P + (12)P

2
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or 2) σ = τ(12) = (12)τ ′ for some τ, τ ′ ∈ An:

σQ1 =
(12)τ ′P + τ(12)(12)P

2
=
P + (12)P

2

Now let us show that for all transpositions (ab), (ab)R = −R. Since (ab) is a transposition,
(ab) = (12)τ for τ ∈ An and (ab) = τ ′(12) for τ ′ ∈ An. Then we have:

(ab)R =
(12)τP − τ ′(12)(12)P

2
=

(12)P − P
2

= −R

Now let us show that for each 1 ≤ i ̸= j ≤ n, the polynomial (xi−xj) divides R. It suffices to show

that for the evaluation map π : F [X1, . . . , Xn]→ F [X1, . . . , X̂i, . . . , Xn] = R defined by π(Xi) = Xj

and π(Xk) = Xk for k ̸= i, we have π(R) = 0. Notice that π is unique and exists by the universal
property of free commutative F -algebras. Let us show that π = π ◦ (ij) : F [X1, . . . , Xn] → R. By
the universal property of free algebras, it suffices to show that the maps agree on each Xk. For
k ̸∈ {i, j} this is obvious since (ij)Xk = Xk. We have (ij)Xi = Xj and (ij)Xj = Xi, but since
π(Xi) = π(Xj) = Xj, π = π ◦ (ij). Therefore,

π(R) = π((ij)R) = π(−R) = −π(R)

Therefore, π(R) = 0, so (Xi−Xj) divides R. Therefore since each of the polynomials Xi−Xj divide
R and each are relatively prime in F [X1, . . . , Xn], their product δ divides R. Therefore, R = δQ2

for some Q2 ∈ F [X1, . . . , Xn]. Furthermore, for all transpositions (ij), we have (ij)R = −R and
(ij)δ = −δ, so (ij)Q2 = Q2. Thus, Q2 ∈ B as desired.

(a) and (b) A = B[δ] by the above lemma and δ is integral over B since ∆ := δ2 is in B. Therefore, A is
integral over B.

(a) ∆2 = (X1 −X2)
2 = X2

1 +X2
2 − 2X1X2 = e22 − 4e2

Exercise 2. Let R be a ring, S1 = (0 → X
f−→ Y

g−→ Z → 0) a short exact sequence of right

R-modules and S2 = (0 → L
h−→ M

k−→ N → 0) a short exact sequence of left R-modules in which
M is free. Show that if Z ⊗R S2 = (0 → Z ⊗R L → Z ⊗R M → Z ⊗R N → 0) is exact then the
sequence S1 ⊗R N is exact as well.

Proof. By right exactness of the tensor product, the fact that M is free (and thus ⊗M is exact),
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and the assumption that Z ⊗ S2 is exact, the following diagram is exact:

0 0 0

X ⊗N Y ⊗N Z ⊗N 0

0 X ⊗M Y ⊗M Z ⊗M 0

X ⊗ L Y ⊗ L Z ⊗ L 0

0

f⊗N g⊗N

X⊗k
f⊗M

Y⊗k
g⊗M

Z⊗k

X⊗h
f⊗L

Y⊗h
g⊗L

Z⊗h

Now we perform a diagram chase to show that the top row is exact. It suffices to show that f ⊗N
is injective. Let σ ∈ X ⊗N such that f ⊗N(σ) = 0. The following picture is a better proof than
whatever I could write:

σ 0

∃x • 0

∃α ∃y •

f⊗N

f⊗M

g⊗L

Exercise 3. Let G be a finite p-group and let H < G be a proper subgroup. We write as usual
Hg = gHg−1 for every g ∈ G.

(a) Show that the normalizer NG(H) of H in G is strictly larger than H.

(b) Show that if H is not normal in G then there exists another proper subgroup H < K < G
and g ∈ G such that Kg = K but Hg ̸= H.

Proof. (a) Let us proceed by induction on |G|. The claim is trivial for |G| = p. Recall that the
center Z(G) of a p-group G is always non-trivial. Let |G| = pn, and let H < G be a proper
subgroup. If H does not contain Z(G), then H ⊊ Z(G) · H normalizes H. Thus, assume
Z(G) ⊆ H < G. By induction, the normalizer N = NG/Z(G)(H/Z(G)) strictly contains
H/Z(G). Let N = Z(G)N be the corresponding subgroup of G containing N , i.e., π−1(N)
for π : G→ G/Z(G) the quotient map. Let us show that N normalizes G. Then N properly
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contains H since the correspondence between subgroups of G containing Z(G) and subgroups
of G/Z(G) preserves inclusions and proper inclusions.

Let n ∈ N and h ∈ H. Since N/Z(G) normalizes N/(Z(H), there exists a, b, c ∈ Z(G) such
that (an)(bh)(an)−1 = ch. Since Z(G) is the center, we thus have

(an)(bh)(an)−1 = ch

nhn−1 = (b−1c)h ∈ H

Thus, N normalizes H, as desired.

(b) Since H is not normal in G, then K = NG(H) is not all of G. Therefore, K ′ = NG(K) =
NG(NG(H)) properly contains K. Thus, there exists g ∈ K ′ \K. We have that Kg = K since
g ∈ NG(K), but Hg ̸= H since g ̸∈ K, and K is the normalizer of H.

Exercise 4. Let R be a commutative ring and M be an R-module.

(a) Show that HomR(−,M) : R-Modop → R-Mod admits a left adjoint.

(b) Show that for every R-module X, the module HomR(X,M) is a direct summand of
S := HomR(HomR(HomR(X,M),M),M).

Proof. (a) By the tensor-hom adjunction, there exists a bijection γMNL natural in M,N,L:

γMNL : HomR(N ⊗ L,M) ∼= HomR(L,HomR(N,M))

Since R is commutative, N ⊗ L ∼= L ⊗ N , so there is also a bijection (natural in all three
variables) γ′:

γ′MNL : HomR(N ⊗ L,M) ∼= HomR(N,HomR(L,M))

Composing γ′−1 and γ we have a natural (in all three variables!) bijection:

HomR-Mod(N,HomR(L,M)) ∼= HomR-Mod(L,HomR(N,M))

Identifying HomR-Mod(N,HomR(L,M)) with HomR-Modop(HomR(L,M), N), we have a natu-
ral bijection:

HomR-Modop(HomR(L,M), N) ∼= HomR-Mod(L,HomR(N,M))

Thus, HomR(−,M) : R-Modop → R-Mod admits the left adjoint HomR(−,M) : R-Mod→
R-Modop.
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(b) Define ι : HomR(X,M) → S by f 7→ (φ 7→ φ(f)), so ι sends f to the evaluation map ef
at f . We have ι(f + ag) = ι(f) + aι(g) for all a ∈ R, f, g ∈ HomR(X,M), so ι is an R-
module homomorphism. Then define r : S → HomR(X,M) by ψ 7→ (x 7→ ψ(ex)), where
ex ∈ HomR(HomR(X,M),M) is the evaluation map at x. We have r(ψ+ aϕ) = r(ψ)+ ar(ϕ),
so r is also an R-module homomorphism. Let us show that r ◦ ι = IdHomR(X,M), which implies
that ι is injective and r is a retraction of ι, so HomR(X,M) is a direct summand of S with
respect to the inclusion ι. Thus, let f ∈ HomR(X,M) and let x ∈ X.

r ◦ ι(f)(x) = r
(
φ 7→ φ(f)

)
(x)

Let ψ ∈ S be ι(f) defined on elements by φ 7→ φ(f). Then,

= r(ψ)(x) = ψ(ex) = ex(f) = f(x)

as desired.

Exercise 5. Let k be a commutative ring and let G be a finite group. Prove that k with trivial
G action is a projective kG-module if and only if the order of G is invertible in k.

Proof. If |G| is invertible in k, then kG is a semisimple ring and thus every short exact sequence
in kG splits. Thus, k is a projective kG-module. I’m not sure if the qual committee would’ve liked
this short of a proof, so consider a short exact sequence

0→M → N → k → 0

for M,N kG-modules and k with trivial G-action. There is a “forgetful” functor U : kG-Mod →
k-Mod which is restriction of scalars by the ring homomorphism k → kG by a 7→ a1G. Since k is
a field, M,N, k are all free as k-modules, so the sequence M → N → k splits in k-Mod. Pick a
section ψ : k → N . Then define φ : k → N on the level of sets by

φ(r) =
1

|G|
∑
g∈G

gψ(k)

Clearly φ is a k-vector space homomorphism as it is the sum of k-Mod homomorphisms. Further-
more for all g ∈ G and r ∈ k,

φ(gr) = φ(r) =
1

|G|
∑
g′∈G

g′ψ(k) =
g

|G|
∑
g′∈G

g′ψ(k) = gφ(r)

Thus, φ is a kG-module homomorphism, and is a section of the map N → k since ψ is.

Now suppose char(k)
∣∣∣|G| so |G| is not invertible in k. Define ψ : kG → k by ψ

(∑
g∈G agg

)
=∑

g∈G ag. This is clearly a surjective kG homomorphism, so it suffices to show that ψ has no
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section. Since k has trivial action of G, for any φ : k → kG a kG-linear homomorphism, we
must have gφ(1) = φ(1) for all g ∈ G. In particular, φ(1) must be stable under multiplication
by all elements of G. Thus, φ(1) =

∑
g∈G ag for some a ∈ k. But then we have that ψ(φ(1)) =

ψ
(∑

g∈G ag
)
= k · a = 0. Thus for all kG homomorphisms φ : k → kG, the composition ψ ◦ φ is

zero, and thus there are no sections k → kG. Thus, k is not projective as a kG module.

Exercise 6. Let G be a group of order 30.

(a) Prove that G contains an element of order 15.

(b) Prove that G is the semidirect product of cyclic subgroups of order 15 and 2.

Proof. Let n2, n3, n5 be the number of 2, 3, 5 Sylows in G. We have that n3 ∈ {1, 10} by the Sylow
theorems since n3|G and n3 ≡ 1 mod 3, and similarly n5 ∈ {1, 6}. Notice that if n5 = 6, then there
are 24 elements of order 5 in G. If n3 = 10, there are 20 elements of order 2 in G. These cannot
simultaneously be true, so either n3 = 1 or n5 = 1. Let H1, H2 thus be a 3-Sylow and 5-Sylow of G
respectively, so at least one of them is normal in G. Therefore, N = H1H2 is a subgroup of G since
one of H1, H2 is normal in G and the other is a subgroup. Furthermore, 15 divides |N | since 3, 5
divide N , and |N | ≤ |H1||H2| = 15 so |N | = 15. A group of order 15 must have both the number
of 3 and 5 Sylows equal to 1 by the Sylow theorems, so N ∼= Z/5 × Z/3, and G thus contains an
element of order 15. Furthermore, [G : N ] = 2 so N ⊴ G. Let H be any Sylow 2-subgroup of G, so
N ∩H = 1, N ·H = G. Then G ∼= N ⊴ψ H for some ψ : H → AutGrp(N) by the characterization
of semidirect products in Grp.

Exercise 7. Let K/F be a finite separable field extension, and let L/F be any field extension.
Show that K ⊗F L is a product of fields.

Proof. Since K/F is a finite separable field extension, it is simple: i.e., generated by a single element
α. Thus, the L-linear map F [x] → K defined by x 7→ α is surjective, so K ∼= F [x]/p(x) for an
irreducible polynomial p(x) ∈ F [x]. Thus, we have:

K ⊗F L ∼=
(
F [x]/p(x)

)
⊗F L ∼= L[x]/p(x)

Let us explicitly show that the second congruence holds. First define ψ̃ : L[x] →
(
F [x]/p(x)

)
⊗F

L by the universal property by x 7→ (x ⊗F 1) since
(
F [x]/p(x)

)
⊗F L has a natural L-algebra
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structure. Notice that ψ̃(p(x)) = p(x)⊗ 1 = 0 by F -linearity of ψ̃. Thus, ψ̃ factors as an L-algebra

homomorphism ψ : L[x]/p(x)→
(
F [x]/p(x)

)
⊗F L defined on monomials by lxn 7→ (xn ⊗ l).

Now define a set function φ̃ : F [x]/p(x) × L → L[x]/p(x) by φ([f ], l) = [f · l]. This map is
well defined (and is F -linear in the first coordinate) since if g = f + rp for f, r ∈ F [x], then
[g · l] = [lf + rpl] = [lf ] + [rpl] = [f · l]. CLearly φ is F -balanced and F -linear in the second
coordinate, so φ̃ factors as an F -module homomorphism φ : F [x]/p(x)⊗F L→ L[x]/p(x). On the
level of elements, we clearly have that φ, ψ are two sided inverses to one another. Therefore, φ is
actually a F -algebra homomorphism and is the inverse to ψ.

Let p(x) = q1(x) · · · · · qn(x) be the prime factorization with q1, . . . , qn ∈ L[x] irreducible. Since p
is separable, each of the q1, . . . , qn are distinct and thus relatively prime. By Chinese remainder
theorem, we have:

L[x]/p(x) ∼= L[x]/q1(x)× · · · × L[x]/qn(x)
and each L[x]/qi(x) is a field since the ideals (qi) ∈ L[x] are maximal.

Exercise 8. A nonzero idempotent e = e2 in a commutative ring R is called primitive if it cannot
be written as the sum of two nonzero idempotents x and y such that xy = 0. Prove that every
nonzero Noetherian commutative ring admits a primitive idempotent.

Proof. Let F =

{
(1−e) | e ∈ R\{0}, e2 = e

}
be a collection of ideals in R. Since R is Noetherian,

F contains a maximal element I = (1 − e) for some idempotent e2 = e in R. Let us show that e
is primitive. Suppose ab absurdo that e = x + y for non-zero idempotents x, y such that xy = 0.
Let us show that (1 − x) ⊋ (1 − e), which contradicts the maximality of (1 − e). Notice that
(1− e) = (1− x)(1− y), so (1− x) ⊇ (1− e). Since e is an idempotent and R is commutative, R is
naturally isomorphic to the product of rings eR× (1− e)R with eR having ring structure inherited
from R with identity element e, and (1 − e)R having identity element (1 − e). In particular, this
isomorphism is defined by ψ : R→ eR×(1−e)R by ψ(a) = (ea, (1−e)a), with inverse φ(a, b) = a+b.
Therefore, (1− e)x = (1− y)(1− x)x = (1− y)(x− x2) = 0, and similarly (1− e)y = 0. Therefore,
ex = x ∈ eR and ey = y ∈ eR. In particular, y ̸∈ (1− e)R since eR, (1− e)R are disjoint ideals of
R. However, y ∈ (1− x)R since y = y(1− x). Therefore, (1− x) ̸= (1− e), so (1− x) ⊋ (1− e) as
desired.

Exercise 9. Let A be a (unital) algebra of dimension n over a field F . Prove that there is a
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(unital) F -algebra homomorphism from A⊗F Aop to the F -algebra of n× n matrices, where Aop is
the opposite algebra.

Exercise 10. Let F be a field of characteristic not 2 and let K = F (
√
a,
√
b) be a biquadratic field

extension of degree 4 of F , for a, b ∈ F× not squares. Suppose that b = x2 − ay2 for some x, y ∈ F
(i.e., b is a norm for the quadratic extension F (

√
a)/F ). Prove that there is a field extension L of

K that is Galois over F with Galois group the dihedral group of order 8.

Proof. Motivation for the choice of P : suppose that L is a field extension of K with the desired
properties. Then by the Galois correspondence, there exist field extensions F ⊊ F (

√
a) ⊊ K1 ⊊ L

and F ⊊ F (
√
b) ⊊ K2 ⊊ L of degree 4 over F such that K1, K2 are not Galois over F . Since we

are given information about the norm of F (
√
a), let us consider K1. Since [K1 : F (

√
a)] = 2 (and

F is not characteristic 2), K1 =
√
δ for some α = m+n

√
a ∈ F (

√
a). By an educated guess, we let

α = x + y
√
a where x, y ∈ F satisfy b = x2 − ay2. We claim that L = F (α, β) satisfies the desired

conditions.

Define:
P (T ) = (T 2 − x)2 − y2a

Let us show that P ∈ F [T ] is irreducible. After choosing specific roots α of (T 2 − x) − y
√
a

and β of (T 2 − x) + y
√
a in F (

√
a) in an algebraic closure of F , the roots of P are of the form

α :=
√
x+ y

√
a,−α, β :=

√
x− y

√
a,−β. Notice that P (T ) does not have any roots in K since

if it did have such a root γ, then (γ2 − x)/y would be a root of a in K. Furthermore if P were to
factor into quadratics, there are three possible such factorizations, noticing that αβ =

√
b:

(x− α)(x+ α) = x2 − (x+ y
√
a) (x− β)(x+ β) = x2 − (x− y

√
a) (1)

(x− α)(x− β) = x2 − (α + β)x+
√
b (x+ α)(x+ β) = x2 + (α + β)x+

√
b (2)

(x− α)(x+ β) = x2 − (α− β)x−
√
b (x+ α)(x− β) = x2 + (α− β)x−

√
b (3)

Each of these possible factorizations contains a
√
a or

√
b term in one of the coefficients, and thus

cannot have coefficients in K since a, b are not squares by assumption. Therefore, P is irreducible
over F , so K1 = F (α) is degree 4 over F . Furthermore, F (

√
a) ⊂ F (α) since (α2− x)/y is a square

root of a. Now let us show that K1 ̸= K. If K1 = K, then it would follow that [K1 : F (
√
b)] = 2.

Thus, the polynomial P (T ) would factor in F (
√
b). By similar logic as before if there were a

root γ ∈ F (
√
b) to P , then (γ2 + x)/y would be a root of a in F (

√
b), which is impossible since

[F (
√
a,
√
b) : F (

√
b)] = 2 by assumption. Thus, P would factor into quadratics in F (

√
b). Once

again considering the factorizations above, it is clear that the first doesn’t work so we must have

α + β ∈ F (
√
b) or α − β ∈ F (

√
b). Notice that β =

√
b
α
, so this is equivalent to saying that

α(1 ± 1√
b
) ∈ F (

√
b). But of course this implies that α ∈ F (

√
b), which is a contradiction since

F (
√
b) has no roots of P . Thus, K1 ̸= K.
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The roots of P are exactly α,−α,
√
b
α
,−

√
b
α
. Since K1 ̸= K by the above argument,

√
b ̸∈ K1.

Therefore, [K1(
√
b) : K1] = 2, and thus the splitting field L = F (α,

√
b) of P satisfies [L : F ] = 8.

Since L is a splitting field over F , L/F is Galois. Every F automorphism of L is determined by its
action on α,

√
b, of which there are 8 possibilities combined since any such automorphism must send

α to another root of P and
√
b 7→ ±

√
b. Thus, every such permutation yields an F automorphism

of L since |Gal(L/F )| = [L : F ] = 8. In particular, Gal(L/F ) contains the following two elements:

r(α) =

√
b

α
r(
√
b) = −

√
b

s(α) = α s(
√
b) = −

√
b

It is not hard to see that s2 = Id and r2(α) = −α. Thus, r must be order 4 and r2 ̸= s. The group
Gal(L/F ) is non abelian (since the subfield K1 is not Galois over F ) and of order 8 and thus is
isomorphic to the quaternions or D4. The quaternions have a unique element of order 2, but since
s, r2 are distinct elements of order 2, Gal(L/F ) ∼= D4 as desired.
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Fall 2021

Exercise 1. Let a ∈ Q and b, d ∈ Q× and suppose that d is not a cube in Q×. Find the minimal
polynomial of a+ b 3

√
d over Q.

Proof. Since d is not a cube in Q, x3 − d is irreducible in Q and thus [Q( 3
√
d) : Q] = [Q(a+ b 3

√
d) :

Q] = 3. Thus any monic degree 3 polynomial in Q[x] with α = a + b 3
√
d as a root is the minimal

polynomial of α. Thus the following is the minimal polynomial of α:

f(x) =
(x− a

b

)3

− d

Exercise 2. Let K be a field, and consider the ring R = K[x]/(x2). Show that every free
submodule N of an R-module M is a direct summand of M .

Proof. We aim to show that for all free modules N and injections ι : N → M that the short exact
sequence 0→ N ↪→ M → M/N → 0 splits. This is equivalent to showing that N is injective, so it
suffices to show that N satisfies the following lifting property:

X Y

N
∃

In fact, by an application of Zorn’s lemma, it suffices to show that N satisfies the following lifting
for any ideal I of R:

I R

N
∃

Notice that the ideals of R are in correspondence with the ideals of K[x] containing (x2), which are
only the three ideals (x2), (x), (1). If I = (1) = R or I = (0) a lift trivially exists, so it suffices to
show that the following lifting is satisfied:

(x) R

N

ψ

ι

∃
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Since N is free let N =
∐

α∈J Rα for some indexing set J . Recall that elements of a coproduct can
be written as finite formal sums of the. Thus let I ⊂ J be a finite subset such that ψ(x) =

∑
α∈I fα

for fα ∈ Rα. Notice that ψ(0) = xψ(x) =
∑

α∈I xfα so xfα = 0 for each α ∈ I. Since R ∼= K ⊕ xK
as a K-vector space, xfα = 0 implies that fα = ax for some a ∈ K. Thus, let gα ∈ Rα for each
α ∈ I satisfy xgα = fα. Then there exists a unique R-module homomorphism φ : R → N defined
by φ(1) =

∑
α∈I gα, and clearly φ(x) = ψ(x) so φ extends ψ. Thus, N is injective as desired.

Exercise 3. Show that there are no simple groups of order 24p, where p is a prime number greater
than 11.

Proof. Let G be a group of order 24p for p a prime greater than 11, and assume ab absurdo that G
is simple. Let np be the number of p-Sylows in G. By the Sylow theorems, np|G and np ∼= 1 mod p.
Since np|G, we have np ∈ {1, 2, 3, 4, 6, 8, 12, 24}. Since p is a prime greater than 11, none of
{2, 3, 4, 6, 8, 12} are congruent to 1 mod p. Thus, np = 1 or np = 24. If np = 1, then the unique
p-Sylow of G is a proper normal subgroup, a contradiction. Thus, np = 24. Thus 24 ∼= 1 mod p, so
p|23 so p = 23. Since there are 24 p-Sylows, each congruent to Z/23Z and with trivial intersection,
there are 24 · 22 elements of order 23 in G. Thus, there are exactly 24 elements of order not equal
to 23 in G.

Let n3 be the number of 3-Sylows in G, which are each isomorphic to Z/3Z. Since there are exactly
24 elements of order not equal to 23 in G, there are at most 24 elements of order 3 in G, and thus
n3 ≤ 12. By the Sylow theorems, n3|G and n3

∼= 1 mod 3, so along with the fact that n3 ≤ 12,
either n3 = 1 or n3 = 4. If n3 = 1, then the unique 3-Sylow is a proper normal subgroup of G.
Thus, n3 = 4. Let S be the set of 3-Sylows in G. G acts transitively (and thus non-trivially) on S
by conjugation, which induces a non-trivial group homomorphism ψ : G→ S4. Since |G| = 24 · 23
does not divide |S4| = 24, ψ is not injective, and since ψ is non-trivial, kerψ is a proper normal
subgroup of G. Thus, G is not simple.

Exercise 4. Let G be a cyclic group of order 12. For each of the fields F = Q,R, and C, write
the regular representation F [G] as a direct sum of simple (i.e., irreducible) modules.

Proof. Recall that F representations of G are equivalent (or defined to be) R = FG modules.
With this identification, the regular representation is FG as a module over itself. By the universal
property of free F -algebras, there is an F -algebra homomorphism ψ : F [x]→ FG defined by x 7→ g
where g is a generator of G. Furthermore ψ is surjective since FG is generated as an F -algebra
by g, and the kernel of ψ is generated by x12 − 1. Therefore, R = FG ∼= F [x]/(x12 − 1). Let
p1, . . . , pr ∈ F [x] be irreducible so x12− 1 =

∏r
i=1 pi(x) is the prime factorization of x12− 1. Notice
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that x12−1 is square free in C[x],R[x], and Q[x], so each of the pi are distinct. Then by the Chinese
remainder theorem (and since F [x] is a PID),

R ∼= F [x]/(p1)× F [x]/(p2)× · · · × F [x]/(pr)

Since F [x] is a PID and thus has Krull dimension 1, each of F [x]/(pi) are simple modules over
themselves. In particular as a module over itself,

R ∼= F [x]/(p1)⊕ · · · ⊕ F [x]/(pr)

and each of F [x]/(pi) are simple R-modules. Thus, to describe F [G] as a direct sum of simple
modules, it suffices to factor x12−1 in Q,R, and C. Let ζ = e2πi/12 ∈ C. Then as CG modules,there
is an isomorphism

CG ∼= C[x]/(x− 1)⊕ C[x]/(x− ζ)⊕ · · · ⊕ C[x]/(x− ζ11)

In R[x], x12−1 factors completely as x12−1 = (x−1)(x+1)(x2−(ζ+ζ)x−1) . . . (x2−(ζ5+ζ5)x−1).
Thus,

RG ∼= R[x]/(x− 1)⊕ R[x]/(x+ 1)⊕ R[x]/(x2 − (ζ + ζ)x+ 1)⊕ · · · ⊕ R[x]/(x2 − (ζ5 + ζ5)x− 1)

Finally in Q[x], the cyclotomic polynomials are irreducible, so we have as QG modules:

QG ∼=
⊕
d|n

Q[x]/(ϕd(x))

=
Q[x]

(x− 1)
⊕ Q[x]

(x+ 1)
⊕ Q[x]

(x2 + x+ 1)
⊕ Q[x]

(x2 + 1)
⊕ Q[x]

(x2 − x+ 1)
⊕ Q[x]

(x4 + x2 + 1)

Exercise 5. Consider a sequence of sets S1 for i ≥ 0 and maps ψi : Si → Si−1 for i ≥ 1. Suppose
that there exists a positive integer N such that the orders of the images of the maps ψi are bounded
above by N . Show that lim←−Si is finite.

Proof. Recall that lim←−Si can be explicitly represented (as a set) as sequences

S := lim←−Si =
{
(s1, s2, . . . ) | si = ψi+1(si+1) ∀i ∈ Z+

}
⊂

∏
i

Si

Let us show that |S| ≤ N . It suffices to show that if T = {(sj1, s
j
2, . . . )}N+1

j=1 } is a collection of N +1
elements of S that some pair of them must be equal. Notice that for each index i ∈ Z+ and each
j ∈ [1, N +1] we have sji = ψi+1(s

j
i+1), so s

j
i ∈ Imψi. Since |Imψi| ≤ N , for each i there is some pair

(ai, bi) ∈ [1, N +1]2 such that saij = sbij . By pigeonhole principle, there is thus some j, k ∈ [1, N +1]

such that (sj1, s
j
2, . . . ) and (sk1, s

k
2, . . . ) agree at infinitely many indices. In particular for all i ∈ Z+,

there is some M > i such that sjM = skM . But then we have

sji = ψi+1 ◦ · · · ◦ ψM(sjM) = ψi+1 ◦ · · · ◦ ψM(skM) = ski

Thus, (sj1, s
j
2, . . . ) and (sk1, s

k
2, . . . ) agree at every index and are thus equal. Thus, |S| ≤ N .
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Exercise 6. Consider the elements g = (12) and h = (23) in the symmetric group S3. Consider
the action of S3 on the polynomial ring C[x, y] determined by g(x) = y, g(y) = x, h(x) = x − y,
and h(y) = −y. (Here S3 is acting on C[x, y] as a C-algebra. You need not check that this action
is well-defined). Let V be the complex vector space of homogeneous polynomials of degree 3 in x
and y; this is mapped into itself by S3. Compute the character of V . When V is written as a direct
sum of irreducible representations of S3, find the number of times each irreducible representation
of S3 occurs.

Proof. V has a basis of x3, x2y, xy2, y3 as a C-vector space. Let ρ : S3 → GL(V ) be the represen-
tation of V induced from the described action of S3 on C[x, y]. Let us write the matrices for ρ(g)
and ρ(gh) = ρ((123)) in terms of the basis x3, x2y, xy2, y3. We have:

ρ(g)(x3) = y3 ρ(g)(x2y) = xy2 ρ(g)(xy2) = x2y ρ(g)(y3) = x3

Thus with respect to the ordered basis x3, x2y, xy2, y3, we have

ρ(g) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ∈ GL(V )

Similarly,

ρ(gh)(x3) = (y − x)3 = y3 − 3x2y + 3xy2 − x3 ρ(g)(x2y) = −x(y − x)2 = −x3 + 2x2y − xy2

ρ(g)(xy2) = x2(y − x) = −x3 + x2y ρ(g)(y3) = −x3

Thus,

ρ(gh) =


−1 −1 −1 −1
3 2 1 0
−3 −1 0 0
1 0 0 0


Therefore with χ = Tr ◦ρ the character of V , χ(id) = dimV = 4, χ(g) = 0 and χ(gh) = −1+2 = 1.
Recall that the character table of S3 is given by the following:

{id} {(12), (13), (23)} {(123), (132)}
Triv 1 1 1
sgn 1 -1 1
W 2 0 -1

Thus, χ = aTriv + b sgn+cW for some a, b, c ∈ N. Since χ(g) = 0, a = −b, and since χ(id) = 4,
a+ b+2c = 4. This is a (very small) finite arithmetic problem and we find that the only possibility
is χ = Triv + sgn+W .

Exercise 7. Define commutative Q-algebras A = Q, B = Q[x], and C = Q[x]/(x(x − 1)). Let
A → C and B → C be the unique Q-algebra homomorphisms such that x in B maps to x in C.
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Describe the pullback (also called “fiber product”) R = A×C B in the category of commutative Q-
algebras as the quotient by an explicit ideal of the polynomial ring over Q on some set of generators.
Is R noetherian?

Proof. Solution by Rhea Kommerell.

Let π : B → C be the map described. As a set, R = {(c, p(x)) ∈ A×B : π(p) = c}. Since the map
A → C is injective, R is isomorphic to the set of polynomials p(x) which equal a constant after
modding out by x2 − x. Then p must have the form q(x)(x2 − x) + c for q(x) ∈ Q[x] and c ∈ Q.

As a Q-algebra, R is generated by the set {xi(x2− x) : i ≥ 0}. In other words, there is a surjection
f : Q[x0, x1, . . .] → R given by xi 7→ xi(x2 − x). It remains to describe the relations on these
generators. Certainly there are relations f(xixj) = f(xi+j+2) − f(xi+j+1) for every i, j because
xixj(x2 − x)2 = (xi+j+2 − xi+j+1)(x2 − x).
We claim that these are the only relations. Consider the algebra R′ = Q[x0, x1, . . .]/(xixj−xi+j+2−
xi+j+1). The relations makes it possible to write any element of R′ uniquely as a linear polynomial
in the xis. (Uniquely because the relation is associative, that is, xixjxk = xi+j+k+4 + 2xi+j+k+3 +
xi+j+k+2 no matter whether we expand xixj or xjxk first.) Similarly, in R, we can write any element
uniquely in the form q(x)(x2 − x) + c. Since a linear term in R′ corresponds to a term cix

i(x2 − x)
in R, this gives a bijection between R′ and R. So we have written R as a quotient of a polynomial
ring over Q.

The following argument was inspired by Stacks 15.5.1.

We argue that R is actually finite type over Q, hence Noetherian. We will apply the Artin-Tate
Lemma to R ⊂ A×B, which will immediately say that R is finite type as long as we can check the
conditions of the lemma - 1. that A×B is finite over R, and 2. that A×B is finite type over Q.

1. A×B is finitely generated as an R-module by the generators {(1, 0), (0, 1), (0, x)}. For exam-
ple, we can write (0, xk) = (0, x)+

∑k
i=2(x

i−xi−1)(0, 1) = (0, xk−xk−1+xk−1−· · ·+x2−x+x).

2. A×B is finite type over Q because it is generated by {(1, 0), (0, 1), (0, x)}. In particular, both
A,B are finite type over Q.

Exercise 8. Let A be a commutative ring and T an A-module. Define a functor from A-modules
to A-modules by F (M) = M ⊗A T . What is the right adjoint functor of F? Show that if F has a
left adjoint, then T must be a flat A-module, and also a finitely generated A-module.
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Proof. By the tensor-hom adjunction, the right adjoint functor of F is HomA(T,−). If F has a left
adjoint, then F is left exact, so T is flat by definition. Thus let us show that if F has a left adjoint
then T is finitely generated. A much more general statement holds: F has a left adjoint if and only
if T is finitely presented and projective. We are interested in the only if part of the statement,
which we will prove here as a slight extension of the problem.

Lemma: Let M be an A-module. If M ⊗A
∏
A ∼=

∏
(M ⊗A A) (with respect to the natural map

M ⊗A
∏
A→

∏
M ⊗A A) for all products of A, then M is finitely generated as an A-module.

Consider φ : M ⊗ AM → MM the natural map defined by (m ⊗ (as)s∈M) 7→ (asm)s∈M which
is an isomorphism by assumption. In particular, the element ι = (s)s∈M (which represents the
identity function M →M in the product) is in the image of φ, so there exists m1, . . . ,mn ∈M and
a1, . . . , an ∈ AM such that

φ(
n∑
i=1

mi ⊗ ai) =
( n∑
i=1

mia
i
s

)
s∈M

= ι

In particular, this states that for all s ∈ S, there exists a1s, . . . , a
n
s ∈ A such that

∑n
i=1mia

i
s = s.

Therefore, m1, . . . ,mn generate M as an A-module so M is finitely generated.

Since T has a left adjoint T preserves limits and thus by the Lemma is finitely generated. Thus,
we have a short exact sequence

0→ N → F → T → 0

with F a finitely generated free module. Thus, let us show that N is a finitely generated module
so T is finitely presented. By the Lemma, it suffices to show that ⊗AN preserves products of A.
Consider the following commutative diagram from applying the functor ⊗A

∏
A and the naturality

of the map L⊗A
∏
A→

∏
L⊗A A for all A-modules L:

0 N ⊗A
∏
A F ⊗A

∏
A T ⊗A

∏
A

0
∏
N ⊗A A

∏
F ⊗A A

∏
T ⊗A A

Since F is finite free, every vertical map except possibly N⊗A
∏
A→

∏
N⊗AA is an isomorphism.

Thus by the 5-lemma (after extending the diagram with zeroes to the left), N⊗A
∏
A→

∏
N⊗AA

is an isomorphism as desired. Thus, N is finitely generated so T is finitely presented.

Courtesy of this stack exchange post for a much needed hint.

Exercise 9. The outer automorphism group of a group H is the quotient of the group of automor-
phisms of H by the subgroup of inner automorphisms. It is known that the outer automorphism
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group of every finite simple group is solvable. Using that, show that if G is a finite group with a
normal subgroup N such that both N and G/N are nonabelian simple groups, then G is isomorphic
to the product group N × (G/N).

Proof. Note that N,G/N are non-trivial. Let ψ : G → Aut(N) be the action of G on N by
conjugation. Composing with the quotient map, we have ψ̃ : G→ Aut(N)/ Inn(N). By definition,
Inn(N) = ψ(N). Therefore, ψ̃ factors through the quotient G/N as φ : G/N → Aut(N)/ Inn(N).
It is known (as stated in the problem) that since N is simple, Aut(N)/ Inn(N) is solvable. Since
G/N is simple, either φ is the trivial map or it is injective. But since G/N is nonabelian and simple,
G/N is not solvable, and thus cannot be embedded as a subgroup of a solvable group. Therefore,
φ is the trivial map.

Therefore kerφ ∼= G/N is non-trivial.
Let us show that kerψ ↪→ G↠ G/N yields an isomorphism kerφ ∼= G/N .

kerψ 0

G Aut(N)

G/N Aut(N)
Inn(N)

ψ

0

First take any [g] ∈ G/N . Since φ([g]) = 1, we have ψ(g) ∈ Inn(N), so g = nh for n ∈ N
and h ∈ kerψ. In particular, [g] = [h], so kerψ → G/N is surjective. Now take any h ∈ kerψ
which is mapped to [1], so h ∈ N . Since N is non-abelian and simple, N has trivial center so
kerψ ∩ N = Z(N) = 1. Thus, h = 1, so kerψ → G/N is injective. Thus, kerψ → G/N is an
isomorphism.

Therefore we have nonabelian simple normal subgroups N ⊴ G and H ⊴ G, and since H = kerψ,
H commutes with N . Let us show NH = G. Take any g ∈ G. Notice that by the commutivity
of the above diagram, Imψ = Inn(N). Therefore, ψ(g) = ψ(n) for some n ∈ N , so g = nh for
h ∈ kerψ. Thus, NH = G, so G ∼= N ×H ∼= N ×G/N .

Exercise 10. Let R1 and R2 be rings (not necessarily commutative), and let M be an (R1, R2)-
bimodule. Then the matrices [

R1 M
0 R2

]
form a ring R, by the usual formulas for matrix addition and multiplication. Compute the Jacobson
radical of R in terms of M and the Jacobson radicals of R1 and R2.

57



Proof. The Jacobson radical J(R) of R is the intersection of all maximal left ideals of R. For any
left ideal I of R1, the following set is a left ideal of R:

SI :=

[
I M
0 R2

]
Furthermore, SI is maximal if and only if I is maximal, since there is a ring homomorphism R→ R1

by taking the upper left coordinate which gives an order preserving bijection between left ideals of
R1 and left ideals of R of the form SI . Similarly, for any left ideal J of R2, the following is a left
ideal of R, and similarly is maximal if and only if J is maximal:

TJ :=

[
R1 M
0 J

]
Therefore,

J(R) =
⋂

I⊂R maximal

I ⊃
⋂

I⊂R1 maximal

SI ∩
⋂

J⊂R2 maximal

TJ =

[
J(R1) M

0 J(R2)

]
=: K

Now let us show that for any maximal left ideal I of R that I ⊂ K. This will imply that J(R) ⊂ K,
so J(R) = K. If I is of the form SJ or TJ as above, clearly I ⊂ K. Otherwise by maximality, I is
not contained in any of the SJ or TJ . Let I1 ⊂ R1 be the left ideal of elements in the upper left
entry of elements in I and I2 ⊂ R2 the left ideal of elements in the lower right entry of elements
in I. If I1 or I2 are proper than they are contained in some maximal ideal and thus I would be
contained in some SJ or TJ . Thus,

I ⊃
[
R1 0
0 R2

]
But this means that I contains [

1 0
0 1

]
and thus is the unital ideal R. Therefore, K ⊂ I for all maximal ideals I so K ⊂ J(R). Therefore,

J(R) =

[
J(R1) M

0 J(R2)

]
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Spring 2021

Exercise 1. Prove that the direct sum
⊔
Z/pZ over all prime integers p is not a direct summand

of the product
∏

Z/pZ.

Proof. Let us first characterize all injective homomorphisms ι :
⊔

Z/pZ →
∏

Z/pZ. First notice
that the elements of

⊔
Z/p,

∏
Z/p may be written as sequences of elements a ∈ Z/p:⊔

Z/pZ =

{
(a2, a3, . . . ) | ap ∈ Z/p, ai = 0 for all but finitely many i

}
∏

Z/pZ =

{
(a2, a3, . . . ) | ap ∈ Z/p

}
Let ι :

⊔
Z/pZ →

∏
Z/pZ be injective, and let e2 = (1, 0, . . . ), e3 = (0, 1, 0, . . . ), . . . be a natural

Z generating set of
⊔

Z/p. For ι to be injective, it must send ep to an element of order p for each
prime p. But the only elements of order p in

∏
Z/pZ are those of the form (0, . . . , 0, a, 0, . . . ) for

a ̸= 0 ∈ Z/p. Furthermore, ι is determined by its action on e2, e3, . . . since they generate
⊔

Z/p.
Thus after composing with an isomorphism of

∏
Z/p, the only inclusion ι is the obvious inclusion

ι :
⊔

Z/p→
∏

Z/p sending ep to ep.

Since the only inclusions up to isomorphism are the obvious one by the above work, our notation
will assume

⊔
Z/p ⊂

∏
Z/p in the obvious way. Suppose ab absurdo that

⊔
Z/p were a direct

summand of
∏

Z/p, so
∏

Z/p ∼=
⊔

Z/p ⊕ Q for an abelian group Q. This would imply that∏
Z/p/

⊔
Z/p ∼= Q ⊂

∏
Z/p. Let us show that Q is divisible, but no nontrivial submodule of∏

Z/p is divisible, a contradiction. Take an equivalence class [(a2, a3, . . . )] ∈ Q and take n ∈ N.
Without loss of generality, assume that ap = 0 for all p|n, since two elements of

∏
Z/p are equivalent

in Q if they agree in all but finitely many indices. Then, let b = [(a2/n), (a3/n), . . . ] which is well
defined since n ∈ Z/p× for all p ∤ n. Then clearly nb = a, soQ is divisible. To show that no nontrivial
submodule of

∏
Z/p is divisible, it suffices to show that for all 0 ̸= a = (a2, a3, . . . ) ∈

∏
Z/p, there

exists n ∈ N such a ̸∈ n
∏

Z/p. For any such non-zero a, there is an index aq ̸= 0. Then, notice
that a ̸∈ q

∏
Z/p, as desired.

Exercise 2. Let P ⊂ Z[x] be a prime ideal such that Z∩P = 0. Prove that P is a principal ideal.
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Proof. Suppose P ̸= 0 without loss of generality. Let g ∈ P be a non-zero element of minimal
degree in P , and let c ̸= 0 be the GCD of its coefficients, so g/c = f ∈ Z[x]. Then f · c ∈ P , and
since P is prime but c ̸∈ P since Z∩ P = 0, we must have f ∈ P . Let us show P = ⟨f⟩. Let h ∈ P
a non-zero element. In Q[x], by polynomial division, there exist elements p ∈ Q[x], q ∈ Q[x] with
deg q < f such that h = pf + q. Multiplying both sides of the equation by D, where D ∈ Z is the
GCD of the coefficients of p and q,

Dh = (Dp)f +Dq ∈ Z[x]

Therefore, Dq = Dh− (Dp)f ∈ P , but q is of degree less than f , and thus q = 0 since Z ∩ P = 0.
Thus, h = pf . By Gauss’ Lemma, since f divides h in Q[x], f divides h in Z[x] (since the GCD of
the coefficients of f is 1), so P = ⟨f⟩ as desired.

Exercise 3. Prove that every group generated by two involutions (elements of order 2) is solvable.

Proof. Let H be a group generated by two involutions h1, h2. Then there is a surjective group

homomorphism (by universal property of free group and first isomorphism theorem) G
ψ−→ H by

a 7→ h1, b 7→ h2 where G = ⟨a, b | a2 = b2 = 1⟩, and so H ∼= G/ kerψ by first isomorphism theorem.
Therefore, since the quotient of a solvable group is solvable, it suffices to show that G is solvable.

Consider the subgroup N = ⟨ab⟩ ≤ G. Notice that

b(ab)b−1 = ba = (ab)−1 = a(ab)a−1

Therefore, N is a normal subgroup of G since a, b generate G, ab generates N , and aNa−1 =
N, bNb−1 = N . Notice that

G/N = ⟨a, b | a2 = b2 = ab = 1⟩ ∼= Z/2

Furthermore, N is cyclic since it is generated by a single element and thus Abelian. Therefore,
1 ⊴ N ⊴ G is a subnormal tower of G such that G/N,N/1 are abelian, so G is solvable.

Exercise 4. Prove that the field extension Q(
√
−3 + 6

√
2) over Q is Galois and determine its

Galois group.
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Proof. Let L = Q(
√
−3, 6
√
2). First notice that [Q( 6

√
2) : Q] = 6 since x6 − 2 is irreducible over Q

by Eisenstein. Also, the remaining roots of x6 − 2 are ωj 6
√
2 for 0 < j < 6 and ω = eπi/3 = 1+

√
−3

2
.

Therefore, x6 − 2 splits in L. Also, x6 − 2 does not split in Q( 6
√
2) since Q( 6

√
2) ⊂ R and x6 − 2

does not split in R. Therefore, the splitting field of x6 − 2 is at least degree 12 over Q and is
contained in L, and thus is equal to L. Furthermore, Gal(L/Q) = G is of order 12, and each
g : Gal(L/Q) is determined by its action on 6

√
2,
√
−3. Furthermore, g( 6

√
2) must be a root of x6−2

and similarly for g(
√
−3) and x2+3. Thus, there are only 12 possibilities for elements of Gal(L/Q),

and since |G| = 12, all such possibilities yield a Q automorphism of L. In particular, we have Q
automorphisms of L σ and τ which are of order 6 and 2 respectively:

σ(
6
√
2) = ω

6
√
2 σ(

√
−3) =

√
−3

τ(
6
√
2) =

6
√
2 τ(

√
−3) = −

√
−3

Furthermore, we check that στστ = idL:

στστ(
6
√
2) = στσ(

6
√
2) = στ(ω

6
√
2) = σ(−ω 6

√
2) =

6
√
2

στστ(
√
−3) = στ(−

√
−3) =

√
−3

Therefore, G has relations σ6 = τ 2 = στστ = 1, so D6 ↠ G. By order considerations, D6
∼= G.

Now let us show that Q(
√
−3 + 6

√
2) = L. It is clear that Q(

√
−3 + 6

√
2) ⊂ L, so by the Galois

correspondence there is a subgroup H ⊂ G such that Q(
√
−3+ 6

√
2) = LH . Thus it suffices to show

that Q(
√
−3+ 6

√
2) is not fixed by any non identity element of G so H = 1. For 0 < j < 6, we have

σj(
√
−3+ 6

√
2) =

√
−3+ωj 6

√
2. And for 0 ≤ j < 6, we have σjτ(

√
−3+ 6

√
2) = −

√
−3+ωj 6

√
2. Thus

σj and σjτ do not fix Q(
√
−3 + 6

√
2) for any 0 ≤ j < 6 (except the identity), so Q(

√
−3 + 6

√
2) =

Q(
√
−3, 6
√
2) as desired.

Exercise 5. Let G be a finite group and let g ∈ G. Suppose for every irreducible complex
character χ of G we have |χ(g)| = |χ(1)|. Prove that g is in the center of G.

Proof. Let C be the conjugacy class of g. By column orthogonality,

r∑
i=1

|χi(g)|2 =
|G|
|C|

Where χ1, . . . , χr are the irreducible characters of G. Using column orthogonality with the identity
(or because it’s a well known identity on its own),

r∑
i=1

|χi(1)|2 = |G|

Therefore, |C| = 1, so g is in the center of G.
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Exercise 6. Let A be a commutative ring, let P be a flat A-module and let I be an injective
A-module. Show that HomA(P, I) is an injective A-module.

Proof. To show HomA(P, I) is injective, we must show that HomA(−,HomA(P, I)) is exact. Hom(−,M)

is always left exact, so it suffices to show that for an injection M
f−→ N that the induced morphism

f∗ is surjective:

HomA(N,HomA(P, I))
f∗−→ HomA(M,HomA(P, I))

By naturality of the tensor-hom adjunction γ, the following diagram commutes:

HomA(P ⊗N, I) HomA(N,HomA(P, I))

HomA(P ⊗M, I) HomA(M,HomA(P, I))

∼
γ

(P⊗f)∗ f∗

∼
γ

Since P is flat, P ⊗M P⊗f−−→ P ⊗N is injective since P ⊗− preserves injections. Therefore, (P ⊗f)∗
is surjective in the above diagram since I is injective. In more detail, applying Hom(−, I) to the
short exact sequence

0→ P ⊗N P⊗f−−→ P ⊗N → kerP ⊗ f → 0

yields a short exact sequence

0→ Hom(kerP ⊗ f, I)→ Hom(P ⊗N, I) P⊗f−−→ Hom(P ⊗M, I)→ 0

Therefore since the diagram commutes and γ is a bijection, f∗ is surjective.

Exercise 7. Let p be a prime number, k a field of characteristic p and G be a (finite) p-group.
Let M be a finitely generated kG-module that admits a k-basis B such that G ·B ⊆ B ⊂ −B (i.e.
∀g ∈ G,∀b ∈ B, g · b = ±b′ for b′ ∈ B). Show that M admits a k-basis B0 invariant under G (i.e.
G ·B0 ⊆ B0 without sign).

Proof.

Exercise 8. Let A be a (non-zero) ring in which the only right ideals are (0) and A. Show that
A is a division ring.
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Proof. Notice the assumption implies that A is not the zero ring, i.e., 1 ̸= 0. For all non-zero a ∈ A,
a · A is a non-zero right ideal of A, and thus equal to A since (0), A are the only right ideals of A
by assumption. Thus, there exists c ∈ A such that ac = 1. c is also non-zero, so there exists b ∈ A
such that cb = 1. Furthermore, we have

a = a(cb) = (ac)b = b

Therefore, ac = ca = 1, so A is a division ring.

Exercise 9. Let R be a commutative ring and A,B be two (not necessarily commutative) R-
algebras. Consider the functor HomR-Alg(A ⊗R B,−) : R-Alg → Set, from R-algebras to sets.
Construct two homomorphisms f : A → A⊗R B and g : B → A⊗R B and show that they induce
an injection

ηC : HomR-Alg(A⊗R B,C)→ HomR-Alg(A,C)× HomR-Alg(B,C)

natural in C ∈ R-Alg. Identify the image of ηC explicitly.

Exercise 10. Let A be a ring. Let m,n ≥ 1 and P be a right A-module such that P n ∼= Am. Show
that S 7→ P ⊗A S defines a bijection between the set of isomorphism classes of simple A-modules
and that of simple EndA(P )-modules.

Proof. Let us first show that P⊗A− : A-Mod→ EndA(P )-Mod is an equivalence of categories. By
Morita equivalence, it suffices to show that P is a finitely generated projective generator of A-Mod.
It is clear that P is finitely generated since P n is. Since P is a direct summand of Am which is
free, P is projective. Furthermore, it is a projective generator since every A-module is surjected
onto by a coproduct of Am, and thus by a coproduct of P n. Thus let us show that being simple is
a categorical property, so P ⊗ − induces a bijection on isomorphism classes of simple A-modules
and simple EndA(P )-modules.

A simple A-module M is one which has no proper sub A-modules. In particular, HomA(N,M)
consists of endomorphisms and the zero morphism for all N ∈ A-Mod. This is a purely cate-
gorical statement, so in particular if M is simple, then P ⊗M is simple in EndA(P )-Mod since
HomEndA(P )(N,P ⊗ M) ∼= HomA(N

′,M) for N ′ the image of N under the inverse equivalence
EndA(P )-Mod→ A-Mod.
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Exercise 1. Let p < q < r be primes and G a group of order pqr. Prove that G is not simple
and, in fact, has a normal Sylow r-group.

Proof. Let nr be the number of r-Sylows, and similarly for np, nq. Suppose for the sake of con-
tradiction that nr ̸= 1. Since nr|pqr and nr is relatively prime to r, then nr ∈ {p, q, pq}. Since
nr ≡ 1 mod r and p < q < r, we must have nr = pq. Therefore, there are (r − 1)pq elements of
order r in G, since every r-Sylow is congruent to Z/rZ. Thus, there are pq other elements in G.
Since nq|pr, nq ∈ {1, p, r, pr}. Since q > p and nq ≡ 1 mod q, nq ∈ {1, r, pr}. Thus if nq ̸= 1, then
nq ≥ r. But this would imply that there are nq(q − 1) ≥ r(q − 1) ≥ qp elements of order q in G,
which is impossible given there are (r − 1)pq elements of order r. Therefore, nq = 1, so there is a
unique q-Sylow N ⊴ G. Let H be any of the nr r-Sylows. Then N ·H is a subgroup of G of order
|N · H| = rq. Therefore, [G : N · H] = p, the smallest prime dividing |G|, so N · H is normal in
G. But since conjugation of G acts on the r-Sylows transitively, this implies that every r Sylow is
contained in N ·H, which is impossible since |N ·H| < (r − 1)pq. Therefore, r = 1.

Exercise 2. Show that groups of order 231 = (3)(7)(11) are semi-direct products and show that
there are exactly two such groups up to isomorphism.

Proof. Let G be a group of order 231. Let H3, H7, H11 be 3, 7, and 11 Sylows of G respectively, so
Hn
∼= Z/nZ. Let n11 be the number of 11 Sylows in G. Since n11 ∈ {1, 3, 7, 21} and n11 ≡ 1 mod 11,

we must have n11 = 1. Therefore, H11 is normal, so N = H7 · H11 is a subgroup of G, of order a
multiple of both 7 and 11. Thus, |N | = 77 and [G : N ] = 3, so N ⊴ 3. Furthermore, we have:

H3 ∩N = e

H3 ·N = G

N ⊴ G

So G ∼= N ⋊αH3 for some α : H3 → Aut(N). Therefore, G is a semi direct product as desired. Let
us show that there are exactly two homomorphisms α : H3 → Aut(N) up to isomorphism of the
semidirect product. Notice that the only group of order 77 is Z/11Z×Z/7Z, so N ∼= Z/11Z×Z/7Z.
Therefore,

Aut(N) ∼= (Z/11Z)× × (Z/7Z)× ∼= Z/10Z× Z/6Z ∼= (Z/2)2 × (Z/3)× (Z/5)

Thus, we aim to characterize homomorphisms α : H3 → (Z/2)2× (Z/3)× (Z/5) up to isomorphism
of the domain or codomain. By the universal property of the direct product, this amounts to
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finding homomorphisms from Z/3 into Z/2,Z/5 and Z/3. There are no non-trivial homomorphisms
Z/3 → Z/2,Z/5. Therefore, we only need to consider homomorphisms Z/3 → Z/3. There are
three such homomorphisms (given by multiplication), but 1 7→ 1 and 1 7→ 2 are identical after
composing with an isomorphism of Z/3, and thus yield the same semidirect product. Thus, letting
α : H3 → Aut(N) be the homomorphism defined by 1 7→ 1 on the Z/3 component of Aut(N), the
only groups of order 231 (up to isomorphism) are:

H3 ×N H3 ⊴α N

Exercise 3. A ring R (commutative or non-commutative) is called a domain if ab = 0 in R implies
a = 0 or b = 0. Suppose that R is a domain such that Mn(R), the ring of n× n matrices over R, is
a semisimple ring. Prove that R is a division ring.

Proof. There is an equivalence R-Mod→Mn(R)-Mod by Rn⊗−, with Rn an R-Mn(R) bimodule.
SinceMn(R) is semisimple, every short exact sequence inMn(R)-Mod splits. Therefore, every short
exact sequence in R-Mod splits, so R is semisimple (we’ve argued that a ring A being semisimple
is a categorical property of A-Mod). By Wedderburn, R ∼= Mn1(D1)×· · ·×Mnr(Dr) for (non-zero)
division rings D1, . . . , Dr and n1, . . . , nr ∈ Z+. Notice that Mm(D) is not a domain for m > 1, for

instance by

1 0 . . .
0 0
...


0 0 . . .
0 1
...

 = 0. Furthermore, the product of two non-zero rings A,B is

not an integral domain, by (idA, 0) · (0, idB) = (0, 0), so r = 1. Therefore, R ∼= M1(D) for a division
ring D, so R ∼= D and R is a division ring.

Exercise 4. Let M be a left R-module. Show that M is a projective R-module if and only if
there exist mi ∈ M and R-module homomorphisms fi : M → R for each i ∈ I such that the sets
{mi}i∈I , {fi}i∈I satisfy:

(a) If m ∈M , then fi(m) = 0 for all but finitely many i ∈ I.

(b) If m ∈M , then m =
∑

i∈I fi(m)mi.

Proof. First suppose that such {mi}i∈I , {fi}i∈I exist. Then consider the R-module homomorphism

RI g−→M by g(ei) = mi where ei is the usual basis vector for the ith coordinate of RI . Notice that
this map is well defined and unique by the universal property RI . Then define h :M → RI by

h(m) =
∑
i∈I

fi(m)ei
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h is an R-module homomorphism since for each i ∈ I the function m 7→ fi(m)ei is an R-module
homomorphism, and is well defined since fi(m) = 0 for all but finitely many i ∈ I. Now notice that

g ◦ h(m) = g

(∑
i∈I

fi(m)ei

)
=

∑
i∈I

fi(m)mi = m

Therefore, g surjects from RI onto M and h is a section, so M is a direct summand of RI and thus
free.

Now suppose that M is projective. There exists a free module with a surjection g by RI g−→ M
(for instance, by letting I be indexed by M and mapping em 7→ M). Since M is projective, the
following short exact sequence splits:

0→ ker g → RI g−→M → 0

In particular, there is a section h : M → RI . Define fi : M → R by h composed with the ith
projection RI → R. Notice that for all m ∈ M , h(m) ∈ RI and thus all but finitely many of the
coordinates of h(m) (as an I tuple of R) are non-zero. Therefore, all but finitely many of fi(m) are
non-zero. Furthermore, letting mi = g(ei) for the usual basis vectors ei of R

I , we have:∑
i∈I

fi(m)mi =
∑
i∈I

fi(m)g(ei) = g

(∑
i∈I

fi(m)

)
= g ◦ h(m) = m

Exercise 5. Let F be a field and f(x) = x6+3 ∈ F [x]. Determine a splitting fieldK of f(x) over F
and determine [K : F ] and Gal(K/F ) for each of the following three fields: F = Q, F = F5, F = F7.

Proof. Case 1: F = Q
Let ω = e2πi/12. Then the roots of f are

ω
6
√
3, ω3 6
√
3, ω5 6
√
3, ω7 6
√
3, ω9 6
√
3, ω11 6

√
3

Therefore, the splitting field K/Q is generated by these 6 elements. Also, notice that [Q(ω 6
√
3) : Q]

since x6 + 3 is irreducible by Eisenstein. Let us show that K = Q(ω 6
√
3). It suffices to show that

ω2 = 1+i
√
3

2
∈ Q(ω 6

√
3), and in particular that i

√
3 ∈ Q(ω 6

√
3). Notice that (ω 6

√
3)3 = ω3

√
3 = i

√
3,

so [K : Q] = 6 as desired. Therefore, |Gal(K/Q)| = 6. Notice that L := Q(ω2 3
√
3) ⊆ K, and ω2 3

√
3

is a root of x3 + 3. However, the splitting field of x3 + 3 (irreducible by Eisenstein) is not degree
3 over Q, since L ∼= L′ := Q( 3

√
3) is a purely real extension of Q and thus not a splitting field of

x3 + 3. Therefore, K contains a subfield which is not Galois over Q, and thus Gal(K/Q) is not
abelian. Therefore since |Gal(K/Q)| = 6, Gal(K/Q) ∼= S3.
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Case 2: F = F5

Notice that if α ∈ F satisfies α2 = 3, then α6 + 3 = 33 + 3 = 0 mod 5. Thus, (x2 + 3) divides
x6 + 3 in F . Let K = F (α) be the splitting field of x2 + 3, so [K : F ] = 2 (x2 + 3 is irreducible by
casework). Also, Gal(K/F ) ∼= Z/2 and is generated by the Frobenius automorphism ϕ5 defined by
x 7→ x5. Let us show that x6 + 3 splits in K. It suffices to show that there are 6 distinct roots of
x6 + 3 in K. Suppose (a+ bα) were a root of x6 + 3 for a, b ∈ Z/5. We have

(a+ bα)6 = ϕ(a+ bα)(a+ bα) = (a− bα)(a+ bα) = a2 − b2α2 = a2 + 2b2 = 2

By casework, we find that ±(α),±(2 + 2α),±(2 + 3α) are roots of x6 + 3. Therefore, x6 + 3 splits
over K.

Case 3: F = F7

In this case, we have
x6 + 3 = (x3 − 2)(x3 + 2)

and since x6+3 has no roots in F7 by Fermat’s little theorem, both x3−2 and x3+2 are irreducible.
Furthermore, recall that the product of all irreducible degree 3 and degree 1 polynomials in F7 is
equal to x7

3 − x which splits over K = F73 . Therefore, if L is the field F [α] for any root α of x3− 2
in F7, then L is the unique extension of F7 of degree 3 and both x3− 2, x3+2 split in L. Therefore,
letting K = L be the splitting field of x6 + 3, [K : F7] = 3 and Gal(K/F7) ∼= Z/3.

Exercise 6. Let K1 ⊂ K2 ⊂ K3 be fields with K3/K2 and K2/K1 both Galois. Let L be a minimal
Galois extension of K1 containing K3. Show if the Galois groups Gal(K3/K2) and Gal(K2/K1) are
both p-groups so is the Galois group Gal(L/K1).

Proof. By the Galois Correspondence, we have the following, forG = Gal(L/K1), H2 = Gal(L/K2), H3 =
Gal(L/K3):

1 ≤ H3 ⊴ H2 ⊴ G

(But in particular, H3 may not be normal in G - this would be the statement that K3/K1 is
Galois). Furthermore, G/H2

∼= Gal(K2/K1) is a p-group and H2/H3
∼= Gal(K3/K2) is a p-group.

Also, since L is a minimal Galois extension of K1 containing K3, H3 contains no (non-trivial)
normal subgroups of G - otherwise, such a normal subgroup would correspond to a subfield of
L which contains K3 and is Galois over K1. We exclude the case of H3 = 1, since in this case the
claim is trivial, so in particular we may assume that H3 is not normal in G. Consider the derived
series G1 = [G,G], G2 = [G2, G2], . . . of characteristic subgroups of G. First notice that since G/H2

is a p-group, it is solvable, so the derived series

G1 = [G/H2, G/H2], G2 = [G1, G1], . . .

is eventually zero. Also, letting π : G→ G/H2 be the quotient map, we have

π(G1) = π([G,G]) = [π(G), π(G)] = [G/H,G/H] = G1
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Therefore, π(G1) = G1. Similarly, π(G2) = G2, and by finite induction there is some n such that
π(Gn) = Gn = 0 and thus Gn ⊂ H2. By the same argument (since H2/H3 is also a p-group and
thus solvable), there is some m such that Gm ≤ H3. But since H3 contains no non-trivial normal
subgroups, Gm = 0, so G is solvable.

Let N be a normal subgroup of G containing H3 of minimal order, so N is a minimal (non-trivial)

normal subgroup of G containing H3. By S2019#1, N ∼=
r︷ ︸︸ ︷

Cq × · · · × Cq for a prime q ∈ Z and
r > 0. We also have that |N | = [N : H3] · |H3|, [N : H3] > 1, and [N : H3] divides [G : H3] = pk.
Therefore, p divides [N : H3] and thus the order of N , so q = p. Therefore, H3 is order a power of
p, so

|Gal(L/K1)| = |G| = [G : H2][H2 : H3] · |H3|
is a power of p.

Exercise 7. Let R be a Dedekind domain with quotient field K and I a nonzero ideal in R. Show
both of the following:

(a) Every ideal in R/I is a principal ideal.

(b) If J is a fractional ideal of R, i.e., 0 ̸= J ⊂ K is an R-module such that there exists a d ∈ R
with dJ ⊂ R, then there exists a 0 ̸= x in K such that I + xJ = R.

Proof.

Exercise 8. Consider R = C[X, Y ]/(X2, XY ). Determine the prime ideals p of R. Which of the
localizations Rp are integral domains?

Proof. The prime ideals of R are in (bijective, inclusion preserving, quotient preserving) correspon-
dence with the prime ideals of C[X, Y ] containing X2 and XY . Let p be a prime ideal of C[X, Y ]
containing X2, XY . Since p contains X2, it contains X by primality. Since the prime ideals of
C[X, Y ] containing X are in correspondence with the prime ideals of C[X, Y ]/(X) ∼= C[Y ], we
restrict our search to the prime ideals of C[Y ]. The prime ideals of C[Y ] are the prinicipal ideals
generated by prime elements (and the (0) ideal) since C[Y ] is a PID. Furthermore since C is alge-
braically closed, the only prime ideals of C[Y ] are those of the form (Y −α) for α ∈ C. Tracing back
through the correspondence, the prime ideals of R are thus the following, where x = [X], y = [Y ]
are the equivalence classes of X, Y in R:

(x)
{
(x, y − α) | α ∈ C

}
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Now let us consider the localizations Rp for p in the previous list. Recall that localization commutes
with quotients in the following way. let q be the corresponding prime ideal in R = C[X, Y ], and let
I = (X2, XY ). Then we have:

Rp
∼= (C[X, Y ]q)/Ĩ

where Ĩ is the image of I in C[X, Y ]q. First consider p = (x, y−α) for α ∈ C\{0} or p = (x). Then,

q = (x, y − α) or p = (x), and thus C[X, Y ]q is the subring of C(X, Y ) of the form p(X,Y )
q(X,Y )

for q ̸∈ q,

since C[X, Y ] is a domain. The image Ĩ of I in C[X, Y ]q is thus the set of elements of the form
X2p(X,Y )
q(X,Y )

+ XY p′(X,Y )
q′(X,Y )

for q, q′ ̸∈ q. In particular, notice that since Y ̸∈ q, XY
Y

= X ∈ Ĩ = C[X, Y ]qI.

Therefore, Ĩ. Therefore, Ĩ is a prime ideal of C[X, Y ]q since it corresponds to the prime ideal (X) of
C[X, Y ] by the prime ideal correspondence of localization. Therefore, C[X, Y ]q/Ĩ ∼= Rp is a domain.
Now consider the case of p = (x, y), so q = (X, Y ). Then we have that C[X, Y ]q is the subring of

C(X, Y ) of elements of the form p(X,Y )
q(X,Y )

for q ̸∈ q. q ̸∈ q is equivalent to q having a non-zero constant

term. Let us show that X
1
̸∈ Ĩ. It suffices to show that X

1
cannot be written as X2p

q
+ XY p′

q′
for q, q′

with having non-constant terms. Assume it could: then we would have

X

1
=
X2p

q
+
XY p′

q′

Xqq′ = X2pq′ +XY p′q

qq′ = Xpq′ + Y p′q

However, Xpq′+Y p′q has a zero constant term in C[X, Y ], but qq′ does not. This is a contradiction,
so X

1
̸∈ Ĩ (notice that cancellation was possible since C(X, Y ) is a domain). Therefore, X

1
̸∈ Ĩ.

However, X
2

1
∈ Ĩ, so Ĩ is not prime in C[X, Y ]/q. Therefore,

C[X, Y ]q/Ĩ ∼= Rp

is not a domain.

Exercise 9. Let G be a finite group, F a field, and V a finite dimensional F−vector space with
G

ρ−→ GL(V ) a faithful irreducible representation. Show that the center Z(G) of G is cyclic.

Proof. Notice that the center Z(G) of G is a finite abelian group, and thus of the following form
for positive integers nr| . . . |n2|n1:

Z(G) ∼= Cn1 × Cn2 × · · · × Cnr

for Cn = Z/nZ the cyclic group with n elements. We ignore the case when Z(G) is trivial, so
we may assume that each ni is greater than 1. Thus, assume r ≥ 2. Let g = (1, 0, . . . , 0) and
h = (0, 1, . . . , 0) be generators for Cn1 , Cn2 respectively. Since g, h are in the center of Z(G),
ρ(g) : V → V, ρ(h) : V → V are FG-module homomorphisms, since for any g′ ∈ G, ρ(g′) ◦ ρ(g) =
ρ(g) ◦ ρ(g′) and likewise for h. Let F be an algebraic closure of F . Fix an F -linear basis of V so
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V ∼= F n for some n, so ρ(g), ρ(h) are represented by matrices Ag, Ah : F
n → F n. We may naturally

treat Ag, Ah as F -linear transformations F
n → F

n
since they are explicit matrices F n → F n. Also

since ρ(g), ρ(h) commute, Ag, Ah commute.

Since F is algebraically closed, there exists an eigenvalue λ ∈ F of Ag. Since Ah commutes with
Ag, Ah restricts to a linear transformation on ker(Ag − λIn), and thus has a non-zero eigenvector
v in ker(Ag − λ). In particular, there is a non-zero v ∈ F n

which is simultaneously an eigenvector
of Ag with eigenvalue λ and an eigenvector of Ah with eigenvalue λ′. Also notice that since An1

g =
In = An2

h , λ is an n1th root of unity and λ′ is an n2th root of unity. We aim to show that there is
some a ∈ Z/n1Z, b ∈ Z/n2Z not both equal to 0 such that λaλ′b = 1. If λ is not a primitive n1th
root of unity, this is clearly satisfied for a equal to n1 divided by the order of n1. Thus, assume λ
is a primitive n1th root of unity. Then it follows that either λ′ = 1 and we can take a = 0, b = 1,
or λ′ is a non-trivial power of λ. In any of these cases, there exists some (a, b) ̸= (0, 0) such that
λaλ′b = 1 as desired.

Therefore, AagA
b
hv = λaλ′bv = v, so AagA

b
h has an eigenvalue of 1. Therefore, ρ(ga) ◦ ρ(hb) − IdV :

V → V is an FG-module homomorphism with non-trivial kernel. Therefore since V is irreducible,
ρ(ga)◦ρ(bh)− IdV is the zero map, so ρ(ga)◦ρ(hb) = IdV . However, g

ahb is not the identity in G, so
ρ is not faithful. Thus if G has non cyclic center, every irreducible representation is not faithful.

Exercise 10. Let C and D be categories, and suppose that every pair of morphisms in C admits
a coequalizer. Let F : C → D be a functor that preserves coequalizers: i.e., if f, g : A → B are
morphisms in C and π : B → coeq(f, g) is the coequalizer morphism, then F (π) is a coequalizer
morphism for F (f) and F (g). Suppose also that if h is a morphism in C such that F (h) is an
isomorphism, then h is an isomorphism. Show that F is faithful.

Proof. Let X, Y ∈ Obj(C) and suppose f, g ∈ MorC(X, Y ) such that F (f) = F (g). Let us show that
f = g. Let (Z, π) = coeq(f, g) for π : Y → Z and Z the coequalizer object. Then by assumption,
the pair (F (Z), F (π)) is the coequalizer of F (f), F (g). Since F (f) = F (g) by assumption, let us

show that F (Y ) (with the identity map F (Y )
id−→ F (Y )) is the coequalizer of F (f), F (g). Since

F (f) = F (g), for any objectM ∈ Obj(D) and morphism h : F (Y )→M , the pair (M, y) is a cocone
of the diagram formed by F (X), F (f), F (g), F (Y ). Thus, we aim to show that for all (M, y), there
exists a unique morphism Y →M making the following diagram commute:

F (X) F (Y ) M

F (Y )

F (f)

F (g)

h

id ∃!

Of course, h makes the diagram commute and is unique since id is an isomorphism. Thus, (F (Y ), id)
is the coequalizer of F (X), F (Y ). Therefore, F (Y ) and F (Z) are (uniquelly with respect to the
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diagram) isomorphic by the uniqueness of colimits. In fact we can reprove this by hand, see that
the following diagram commutes and by uniqueness we must have F (π) ◦ g = idZ :

F (Z)

F (X) F (Y ) F (Y )

F (Z)

F (f)

F (g)

F (π)

id

F (π)

F (π)

∃!g

id

Therefore, F (π) is an isomorphism, so by assumption π : Y → Z is an isomorphism in C. Therefore
since π ◦ f = π ◦ g, π−1 ◦ π ◦ f = π−1 ◦ π ◦ g so f = g as desired.
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Exercise 1. Let G be a group defined by G = ⟨a, b|a2 = b2 = 1⟩. Determine the order of all
non-trivial finite quotient groups.

Proof. First let us show that the order of any non-trivial finite quotient group of G is even. Let
G

π−→ G/N for N ̸= G. Since G is generated by a, b, G/N is generated by a, b. Therefore, either
π(a) or π(b) is non-zero. Since a, b have order 2, one of π(a), π(b) has order 2, so 2 divides the order
of G/N .

Now let us show that for all even numbers 2n, there is a quotient G/N of order 2n. Let Dn be the
dihedral group with 2n elements, given by Dn = ⟨x, y | xn = 1 = y2, xyxy = 1⟩. Since y2 = (xy)2 =
1, by the universal property of free groups and quotient groups there is a homomorphism ρ : G→ Dn

with ρ(a) = y, ρ(b) = xy. Since y, xy generate Dn, ρ is surjective. Therefore, Dn
∼= G/ ker ρ, so

|G/ ker ρ| = 2n as desired.

Exercise 2. Let G be a finite group of order n > 1 and consider its group algebra Z[G] embedded
in Q[G]. Let A = Z[G]/a for the ideal a generated by g − 1 for all g ∈ G.

(a) Prove that the algebra Q[G] is the product of Q and Q · a, where Q · a is the Q-span of a in
Q[G]. [Hint: first identify the unit 1Q·a.]

(b) Let B be the projected image of Z[G] in Q · a. Prove that A ⊗Z[G] B ∼= G as groups if and
only if G is a cyclic group.

Proof. (a) Define e = 1
|G|

∑
g∈G g. Notice that e is an idempotent because

e · e = 1

|G|2
∑
g∈G

g
∑
h∈G

h =
1

|G|2
∑
g∈G

g
∑

g−1h∈G

g−1h =
1

|G|
∑
g∈G

g

Therefore, as Q-algebras (i.e., as rings), we have

Q[G] ∼= eQ[G]× (1− e)Q[G]

With eQ[G] ↪→ Q[G], (1 − e)Q[G] ↪→ Q[G] the inclusions and Q[G] → eQ[G],Q[G] → (1 −
e)Q[G] multiplication by e and (1−e) respectively (this isomorphism holds for any idempotent
e of a ring R).
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First, let us show that eQ[G] is canonically isomorphic to Q. Notice that for an arbitrary
α =

∑
g agg ∈ Q[G], we have

e · α =
1

|G|
∑
g∈G

g
∑

g−1h∈G

ag−1hg
−1h =

1

|G|
∑
h∈H

h
∑
g∈G

ag−1h = e ·
∑

g∈G ag

|G|
= α · e

Therefore, Q[G] = e · Q, so Q ∼= eQ[G] is an isomorphism by a 7→ a · e. This implies that
(1− e)Q[G] is a dimension |G| − 1 vector space over Q.

In particular, this also means that 1− g ∈ (1− e)Q[G] for g ∈ G, since 1− g is annihilated by

e. Also,
{
1− g | g ∈ G \ {1G}

}
is a Q-linearly independent set of |G| − 1 elements contained

in (1 − e)Q[G]. Thus since dimQQ[G] = |G| − 1, we have that (1 − e)Q[G] is exactly the
Q-span of g − 1, which is exactly aQ[G]. Therefore

Q[G] ∼= Q× a ·Q[G]

as desired.

(b) There is an isomorphism of Z-modules

Z[G]/a⊗Z[G] B ∼= B/aB

by sending [a] ⊗ b → [ab]. Let us prove that B/aB ∼= Z/|G|Z as an abelian group. Then,
A⊗Z[G] B ∼= G if and only if G ∼= Z/|G|Z, i.e., G is cyclic.

Since Z[G] is generated as an abelian group by {g}g∈G, B is generated as an abelian group by
{g(1− e)}g∈G = {g − e}g∈G. Therefore, a ·B is generated as an abelian group by{(

g − e
)
·
(
1− h

)}
g,h∈G

=

{
g − gh

}
g,h∈G

using the fact that g · e = e for g ∈ G. Therefore, a ·B has a Z generating set

T := {1− g}g∈G\{1}

Also, these elements are Q-linearly independent in Q[G], so a · B ∼= Z|G|−1 with a Z-basis
{1− g}g∈G\{1}.

Pick g0 ∈ G not equal to the identity. Since B is generated as an abelian group by {g −
e}g∈G\{g0}, B has a Z-basis {g − e}g∈G\{g0} since this set is linearly independent over Q in
Q[G]. Then applying a change of basis, we find that B has a Z-basis

S := {1− e} ∪ {1− g}g∈G\{g0,1}

by subtracting g− e from 1− e. Then the inclusion a ·B ↪→ B with respect to the bases T, S
is a matrix φ : Zn−1 → Zn−1.

a ·B B

Zn−1 Zn−1

∼ ∼

φ
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We explicitly compute that

φ =


−|G| 0 0 . . . 0

−1 1 0
...

−1 0 1
...

. . .

−1 . . . 1


since

1− g0 = |G|(e− 1) +
∑

g∈G\{g0,1}

1− g

In particular, B/a ·B ∼= cokerφ = Z/|G|Z as desired.

Exercise 3. Prove that a noetherian commutative ring A is a finite ring if the following two
conditions are satisfied:

(a) the nilradical of A vanishes

(b) localization at every maximal ideal is a finite ring

Proof. Note: there are much easier ways to do this problem if you have more technology.
First we show that A has Krull dimension 0, so every prime ideal is maximal. Let p be a prime
ideal of A, and let m be a maximal ideal containing p. The ring Am is finite by assumption (b).
There is a correspondence between prime ideals contained in m and prime ideals of Am, so the ideal
p̃ generated by ηm(p) in Am is prime. Furthermore, A/p ∼= Am/p̃ as rings. Since p̃ is a prime ideal
of Am, Am/p̃ is a domain and thus a field since it is finite. Therefore, A/p is field, so p is maximal
by definition.

Now let m be a maximal ideal of A. Let S be the set of ideals defined by:

Sm := {Ann(m) | m ∈ A \m}

where
Ann(x) := {a ∈ A | ax = 0}

Since A is Noetherian, there exists an x ∈ A \ m such that Ann(x) is maximal in S. Now let us
show that Ann(x) contains every other Ann(y) for y ∈ A \ m. Let y ∈ A \ m. Then notice that
Ann(xy) ⊇ Ann(x) ∪ Ann(y), since if ax = ay = 0, then axy = 0. Furthermore by maximality
of Ann(x) and because A \ m is closed under multiplication, Ann(xy) ⊇ Ann(x) implies that
Ann(xy) = Ann(x), so Ann(y) ⊆ Ann(x). Thus, Ann(x) contains every Ann(y) for y ∈ A \m.
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For each maximal ideal m of A, let xm be chosen as discussed above so Ann(xm) is maximal in Sm.
let I = (xm)m be the ideal generated by xm for each maximal ideal m of A. Since A is Noetherian,
I is finitely generated by some xm1 , . . . , xmk

. Let us show that

η : A→
n∏
i=1

Ami

is an injection (induced by the localization maps ηmi
: A → Ami

and the universal property of the
product). Let m be any maximal ideal. The kernel of ηm is all of the elements x ∈ A such that
there exists a ∈ A \m such that xa = 0. In particular, x ∈ I for some I ∈ Sm, i.e., x · am = 0. Now
take any x ∈ A not equal to 0. Since x ̸= 0, Ann(x) ̸= A and is thus contained in some maximal
ideal m. Then x ̸∈ ker ηm, so amx ̸= 0. Since (xm1 , . . . , xmk

) generate I, there exists a1, . . . , ak ∈ A
such that am = xm1a1 + · · ·+ xmk

ak. Thus,

(xm1a1 + · · ·+ xmk
ak)x ̸= 0

Therefore, there is some 1 ≤ i ≤ n such that xmi
aix ̸= 0, and thus x ̸∈ ker ηmi

. Thus, η is an
injection. First we show that A has Krull dimension 0, so every prime ideal is maximal. Let p be a
prime ideal of A, and let m be a maximal ideal containing p. The ring Am is finite by assumption
(b). There is a correspondence between prime ideals contained in m and prime ideals of Am, so the
ideal p̃ generated by ηm(p) in Am is prime. Furthermore, A/p ∼= Am/p̃ as rings. Since p̃ is a prime
ideal of Am, Am/p̃ is a domain and thus a field since it is finite. Therefore, A/p is field, so p is
maximal by definition.

Now let m be a maximal ideal of A. Let S be the set of ideals defined by:

Sm := {Ann(m) | m ∈ A \m}

where
Ann(x) := {a ∈ A | ax = 0}

Since A is Noetherian, there exists an x ∈ A \ m such that Ann(x) is maximal in S. Now let us
show that Ann(x) contains every other Ann(y) for y ∈ A \ m. Let y ∈ A \ m. Then notice that
Ann(xy) ⊇ Ann(x) ∪ Ann(y), since if ax = ay = 0, then axy = 0. Furthermore by maximality
of Ann(x) and because A \ m is closed under multiplication, Ann(xy) ⊇ Ann(x) implies that
Ann(xy) = Ann(x), so Ann(y) ⊆ Ann(x). Thus, Ann(x) contains every Ann(y) for y ∈ A \m.

For each maximal ideal m of A, let xm be chosen as discussed above so Ann(xm) is maximal in Sm.
let I = (xm)m be the ideal generated by xm for each maximal ideal m of A. Since A is Noetherian,
I is finitely generated by some xm1 , . . . , xmk

. Let us show that

η : A→
n∏
i=1

Ami

is an injection (induced by the localization maps ηmi
: A → Ami

and the universal property of the
product). Let m be any maximal ideal. The kernel of ηm is all of the elements x ∈ A such that
there exists a ∈ A \m such that xa = 0. In particular, x ∈ I for some I ∈ Sm, i.e., x · am = 0. Now
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take any x ∈ A not equal to 0. Since x ̸= 0, Ann(x) ̸= A and is thus contained in some maximal
ideal m. Then x ̸∈ ker ηm, so amx ̸= 0. Since (xm1 , . . . , xmk

) generate I, there exists a1, . . . , ak ∈ A
such that am = xm1a1 + · · ·+ xmk

ak. Thus,

(xm1a1 + · · ·+ xmk
ak)x ̸= 0

Therefore, there is some 1 ≤ i ≤ n such that xmi
aix ̸= 0, and thus x ̸∈ ker ηmi

. Thus, η is an
injection.

Exercise 4. Compute the dimension of the tensor products of two algebras Q[
√
2]⊗Z Q[

√
2] over

Q and Q[
√
2]⊗Z R over R. Is R⊗Z R finite dimensional over R?

Proof. Let us show that for Q-algebras A,B, that A ⊗Z B is naturally isomorphic to A ⊗Q B. It
suffices to show that for every Q-bilinear function ψ : A × B → M for M a Q-algebra that ψ is
Q-balanced if and only if it is Z-balanced. In this case, both Q-algebras satisfy the same universal
property and are thus (uniquely) isomorphic. It is clear that any such Q-balanced ψ is also Z
balanced. Thus assume ψ : A×B →M is Z balanced, so ψ(ma, b) = ψ(a,mb) for all m ∈ Z. Then,
let m/n ∈ Q be any non-zero rational number. Then we have that:

ψ(ma/n, b) = ψ(ma/n, (bn/n)) = ψ(ma, b/n) = ψ(a,mb/n)

by Z-balance, so ψ is Q-balanced. Thus, we have

Q[
√
2]⊗Z Q[

√
2] ∼= Q[

√
2]⊗Q Q[

√
2] ∼= (Q⊕2 ⊗Q⊕2) ∼= Q⊕4

So Q[
√
2]⊗Z Q[

√
2] is dimension 4 over Q. Furthermore, we have:

Q[
√
2]⊗Q R ∼= Q⊕2 ⊗Q R ∼= R⊕2

as an R module, so Q[
√
2]⊗Q R is dimension 2 over R. Finally, we have:

R⊗Z R ∼= (Qℵ1 ⊗Q R) ∼= R⊕ℵ1

so R⊗Q R is not finite dimensional over R.

Exercise 5. If K ̸= Q appears as a subfield (sharing the identity) of some central simple algebra
over Q of Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois
group of the Galois closure of K over Q.

Proof.
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Exercise 6. Let F be a finite field with at least 3 elements. Show that SL2(F) has order divisible
by 12.

Proof. Let |F| = q a prime power greater than 2. Let us explicitly compute | SL2(F)|. Consider an
arbitrary element of M2(F)

A =

[
a11 a12
a21 a22

]
There are q2 − 1 ways to choose v1 =

[
a11
a21

]
to be a non-zero vector. For any such choice, there are

q2− q ways to choose the column v2

[
a12
a21

]
to be non-colinear to the first column, so A has non-zero

determinant. Fix any such v1, v2. Notice that since det is bilinear,

{det
[
v1 av2

]
| a ∈ F×} = F×

Therefore, among the q2 − q ways to choose the column v2 so A has non-zero determinant, exactly
(q2 − q)/|F×| = (q2 − q)/(q − 1) = q of those choices yield a matrix with determinant 1. Since all
elements of SL2(F) can be constructed uniquely in this way (picking v1 ̸= 0 and then picking v2 to
not be colinear),

| SL2(F)| = (q2 − 1)q = q(q − 1)(q + 1)

Now let us show that 12|(q(q − 1)(q + 1)). Since (q − 1), q, (q + 1) are three colinear positive
integers, exactly one of them is divisible by 3. If q is odd, then both q − 1, q + 1 are even and
thus 12|(q − 1)q(q + 1). If q is even, then q is a power of 2 greater than or equal to 4 so 4|q, so
12|(q − 1)q(q + 1).

Exercise 7. Let G be a p-group and 1 ̸= N ⊴ G be a non-trivial normal subgroup.

(a) Show that N contains a non-trivial element of the center Z(G) of G.

(b) Give an example where Z(N) ̸⊆ Z(G)

Proof. (a) Since N ⊴ G, G acts on N by conjugation, say by ψ : G → AutSet(N) by ψ(g)(n) =
gng−1. By the orbit stabilizer theorem,

|N | =
∑

n∈Orbit(ψ)

[G : stabψ(n)]

Since G is a p-group, [G : stabψ(n)] is either 1 or a power of p. And since N is a non-trivial
subgroup of G, p divides the order of N . Thus taking modp of both sides, we have:

0 ≡
∑

n∈ψ-stable

1 mod p

Thus, the number of ψ-stable elements in N is divisible by p. There is at least one ψ-stable
element, the identity e ∈ N , so there is another non-identity n ∈ N which is ψ stable. This
means that ψ(g)(n) = gng−1 = n for all g ∈ G, so n ∈ Z(G) as desired.
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(b) Let G be the quaternion group with 8 elements. Then ⟨i⟩ ∼= Z/4Z is a normal subgroup of G,
but Z(N) = N ̸⊆ Z(G) = {±1}.

Exercise 8. Let R be a ring.

(a) Show that an R-module X is indecomposable if EndR(X) is local.

(b) Suppose that every finitely generated R-module M is isomorphic to X1 ⊕ · · · ⊕ Xm with all
EndR(Xi) local. Show that such a decomposition is unique up to isomorphism and permuta-
tion of terms.

(c) Given an example of an isomorphism X1⊕X2
∼= Y1⊕Y2 with End(Xi) and End(Yi) local that

is not the direct sum of any isomorphisms Xi
∼= Yi, even up to renumbering the Yi.

Proof. (a) Suppose that EndR(X) is local and X ∼= M ⊕ N . Then, we have endomorphisms
π1, π2 ∈ EndR(M ⊕N) by π1(m,n) = (m, 0) and π2(m,n) = (0, n). Their sum π1 + π2 is the
identity on EndR(M ⊕N). Since EndR(M ⊕N) ∼= EndR(X) is local, this implies that either
π1 or π2 is invertible, since the sum of non-invertible elements in a local ring is non-invertible.
Therefore, either M = 0 or N = 0.

(b) Suppose that
X1 ⊕X2 ⊕ · · · ⊕Xm

∼= Y1 ⊕ Y2 ⊕ · · · ⊕ Yn
for R-modules Xi, Yj each with EndR(Xi), EndR(Yi) local (and each Xi, Yj non-zero). Let
ψ :

⊕n
i=1Xi →

⊕m
j=1 Yj be an R-module isomorphism with two sided inverse φ. Since finite co-

products coincide with finite products inR-Mod, HomR(
⊕m

i=1Xi,
⊕n

j=1Xj) ∼=
⊕m,n

i=1,j=1 HomR(Xi, Yj).
Let ψab : Xa → Yb and φba : Yb → Xa be the corresponding maps under this identification

(which can be concretely defined as Xa ↪→
⊕m

i=1Xi
ψ−→

⊕n
j=1 Yj ↠ Yb). Thus, ψ is of the formψ11 . . . ψ1m

...
...

ψn1 . . . ψnm


and similarly for φ. Therefore, since φ ◦ ψ = id⊕

Xi
, for all 1 ≤ a ≤ m, we have

φa1ψ1a + φa2ψ2a + · · ·+ φanψna = idXa

Similarly, for all 1 ≤ b ≤ n,

ψb1φ1b + ψb2φ2b + · · ·+ ψbmφmb = idYb

Since EndXa is local, at least one of the φajψja is invertible since their sum is. After relabelling,
we can assume without loss of generality that ψ11 ◦ φ11 = idX1 . Therefore, this implies that
the there is a retraction of the following short exact sequence and therefore it splits:

0 X1 Y1 cokerψ11 0
ψ11

φ11
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Thus, X1 is a direct summand of Y1 so by part (a) we have that ψ11 is an isomorphism.
Since ψ11 is invertible, after performing row and column reductions (i.e., composing with
automorphisms of X1 ⊕ · · · ⊕ Xn, Y1 ⊕ · · · ⊕ Yn), we have that there are isomorphisms ρ1 :
X1 ⊕ · · · ⊕Xn → X1 ⊕ · · · ⊕Xn, ρ2 : Y1 ⊕ · · · ⊕ Yn → Y1 ⊕ · · · ⊕ Yn such that:

ρ2 ◦ ψ ◦ ρ1 =


ψ11

[
0 . . . 0

]0...
0

 A


for an isomorphism A : X2 ⊕ · · · ⊕Xn → Y1 ⊕ · · · ⊕ Yn. Therefore by induction, we have that
the set of Xi are isomorphic pairwise with the set of Yj.

(c) Let R = Q and X1 = X2 = Y1 = Y2 = Q as left Q-modules in the natural way. Then, define
ψ : X1 ⊕X2 → Y1 ⊕ Y2 by ψ(a, b) = (a, a + b). Also notice that EndR(Xi) = EndR(Yj) = Q
which is a field and thus local. Furthermore, for any ρ1 : X1 → Y1, ρ2 : X2 → Y2 Q-module
isomorphisms (i.e., multiplication by an element of Q), it is clear that ψ ̸= ρ1 ⊕ ρ2. By
symmetry, this will not change if we permute Y1, Y2.

Exercise 9. Let R be a commutative ring and S ⊂ R a multiplicative subset. Construct
a natural transformation (in either direction) between the functors HomS−1R(S

−1M,S−1N) and
S−1HomR(M,N), considered as functors of R-modules M and N , and prove it is an isomorphism
if M is finitely presented.

Proof. Let us define a natural transformation α : S−1HomR(−,−)→ HomS−1R(S
−1−, S−1−). The

data of such a natural transformation is for every R-module pair M,N , an R-module homomor-
phism αMN : S−1HomR(M,N)→ HomS−1R(S

−1M,S−1N). Notice that there is a natural R-module
homomorphism HomR(M,N) → HomS−1R(S

−1M,S−1N) by the functoriality of the tensor prod-
uct (and recalling that S−1M ∼= S−1R ⊗R M). Furthermore, S acts invertibly on the R-module
HomS−1R(S

−1M,S−1N) since this is naturally an S−1R module, so by the universal property of
localization there is an induced homomorphism from S−1HomR(M,N).

S−1HomR(M,N)

HomR(M,N) HomS−1R(S
−1M,S−1N)

αMN
η

S−1R⊗R

Thus, as the diagram suggests, define αMN to be this induced R-module homomorphism. Now let
us argue that α is natural inM,N . First notice that the natural transformation β : HomR(−,−)→
HomS−1R(S

−1−, S−1−) is natural by the functoriality of the tensor product. But since η : R-Mod→
S−1R-Mod byM → S−1M is essentially surjective and full, and αη = β by definition, the naturality
of α is induced from the naturality of β.
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Now let us show that if M is finitely presented, αMN is an isomorphism (for all N). Since M is
finitely presented, there is a short exact sequence:

0→ Rk → Rm →M → 0 (4)

Tensoring with S−1R is exact, so we have an exact sequence:

0→ S−1Rk → S−1Rm → S−1M → 0

and taking HomS−1R(−, S−1N) we have an exact sequence of S−1R-modules, which can be treated
as an exact sequence of R modules by restriction of scalars:

0→ 0→ HomS−1R(S
−1M,S−1N)→ (S−1N)n → (S−1N)k

If we apply the left exact functor S−1HomR(−, N) to equation 4, we instead have:

0→ 0→ S−1HomR(M,N)→ (S−1N)n → (S−1N)k

Thus, let us show the following diagram is commutative and then by the 5 lemma we are done:

0 0 S−1HomR(M,N) (S−1N)n (S−1N)k

0 0 HomS−1R(S
−1M,S−1N) (S−1N)n (S−1N)k

αMN id id

This is a routine check.

Exercise 10. Let R be a commutative ring and M a left R-module. Let f : M → M be a
surjective R-linear endomorphism. [Hint: let R[x] act on M via f ]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f−1 can be
described as a polynomial in f .

(b) Show that this fails if M is not finitely generated.

Proof. (a) M is naturally an R[x] module by letting x act by f . Furthermore, since M is finitely
generated over R, it is finitely generated over R[x]. Let I = (x) be the principal ideal generated
by x. Since f ·M =M , I ·M =M . Therefore by Nakayama’s lemma, there exists p ∈ I such
that p ·m = m for all m ∈M . Since p ∈ I, p is of the form p(x) = xq(x) for some q. Then it
follows that f−1 = q(f), since for all m ∈M ,

q(f)f(m) = p(x) ·m = m

and q(f) ◦ f = f ◦ q(f).

(b) Let R = Z and let M =
⊔

Z+ Z. Then let f : M → M by f(ei) = f(ei−1) for i ≥ 2 and
f(e1) = 0. Notice that this definition induces a unique Z-linear endomorphism M → M
by the universal property of the coproduct, so f uniquely exists as defined. Furthermore,
e1, e2, . . . , are in the image of f , so f is surjective since e1, e2, . . . , form a Z generating set for
M . However, f is not an isomorphism since f has non-zero kernel.
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Fall 2019

Exercise 1. Show that every group of order 315 is the direct product of a group of order 5 with
a semidirect product of a normal subgroup of order 7 and a subgroup of order 9. How many such
isomorphism classes are there?

Proof. LetG be a group of order 315 and let n3, n5, n7 be the number of 3-Sylows, 5-Sylows, 7-Sylows
respectively. By the Sylow theorems and some basic arithmetic, n3 ∈ {1, 7}, n5 ∈ {1, 21}, n7 ∈
{1, 15}. Let H3 be a 3-Sylow of G. Since the number of 3-Sylows is either 1 or 7 and G acts
transitively on the 3-Sylows by conjugation, K = NG(H3) is either order 315 or 315/7 = 45 by the
orbit stabilizer theorem. In either case, K contains a 5-Sylow H5 which is also a 5-Sylow of G.
Since H5 normalizes H3, H5H3 < G is a subgroup of G of order 45. Let us show as a lemma that
every group of order 45 is Abelian so H5, H3 commute.

Lemma: Let H be a group of order 45. Then H is Abelian.
The number of 5-Sylows in H is equal to 1 by the Sylow theorems, since both 3, 9 are not congruent
to 1 mod 5. Therefore, H ∼= Z/5 ⋊ L for L a group of order 9. Since Aut(Z/5) ∼= Z/4, there are
no non-trivial group homomorphisms L → Z/4 since there are no subgroups of L of even order.
Therefore, H ∼= Z/5 × L. Furthermore, any group L of order 9 is Abelian since L has non-trivial
center, so H = Z/5× L is Abelian.

Therefore, H5, H3 commute, so H3 < NG(H5). If n5 = 21, then by the orbit stabilizer theorem with
respect to the action of G on the set of 5-Sylows we must have |NG(H5)| = 315/21 = 15. However
since H3 < NG(H5), we must have 9 = |H3| dividing |NG(H5)|. Therefore, n5 = 1. Let H7 be a
7-Sylow of G. Since n5 = 1, H7 normalizes H5, so H5H7 < G is a subgroup of order 35. Every
group of order 35 is Abelian so H5 normalizes H7. If n7 = 15, then we have NG(H7) = 315/15 = 21
which 5 does not divide, which is impossible. Thus, n7 = 1.

Since n7 = 1, H7 ⊴ G, so N = H7H3 is a subgroup of G. Also since H5 commutes with H7 and
H3, H5 commutes with N . Therefore NH5 is a subgroup of G of order 315 and is thus equal to G.
Furthermore, N ∩H5 = {e} by order considerations. Therefore, G ∼= N ×H5. Furthermore since
H7 ⊴ G, H7 ⊴ N , so N ∼= H7 ⋊ H3 for a 3-Sylow H3. The only groups of order 9 are Z/9 and
Z/3× Z/3, and Aut(Z/7) ∼= Z/6. Thus, there are 4 groups of order 63 up to isomorphism:

Z/7× Z/9 Z/7⋊ Z/9 Z/7× Z/3× Z/3 Z/7⋊ Z/3× Z/3

Where the above semidirect products are with respect to the non-trivial automorphism - i.e., defined
by Z/9 → Z/6 by 1 7→ 2 and Z/3 × Z/3 → Z/6 by (1, 0) 7→ 2. Any other choice of group
homomorphism yields an isomorphic semidirect product.
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Exercise 2. Let L be a finite Galois extension of a field K inside an algebraic closure K of K.
Let M be a finite extension of K. Show that the following are equivalent:

(a) L ∩M = K.

(b) [LM : K] = [L : K][M : K]

(c) every K-linearly independent subset of L is M linearly independent.

Proof. Since L is a finite Galois extension of K, L is a finite simple extension, so L = K(x) for some
x with minimal polynomial p(T ) = T n + an−1T

n−1 + · · ·+ a0 which splits in L, and ML =M(x).

(a) ⇒ (b) We have:
[M(x) : K] = [M(x) :M ][M : K]

Thus it suffices to show that the minimal polynomial of x over M is still p. Let q ∈ M [T ]
be the (monic) minimal polynomial for x, so q(T ) = Tm + bn−1T

m−1 + · · · + b0 for some
bn−1, . . . , b0 ∈ M . Since p splits in L, all of the coefficients bn−1, . . . , b0 are in L. Since
L∩M = K, we thus must have bn−1, . . . , b0 ∈ K. Thus, q ∈ K[T ], so q = p by the uniqueness
of minimal polynomials. Thus, [M(x) :M ] = [L : K].

(b) ⇒ (c) Let S = {r1, . . . , rk} be a K-linearly independent subset of L so k ≤ n. Notice that
{1, . . . , xn−1} forms a K basis for L = K(x) and {1, . . . , xn−1} forms an M basis for M(x)
since [M(x) :M ] = [K(x) : K] which follows from

[M(x) :M ][M : K] = [M(x) : K] = [K(x) : K][M : K]

and the fact that [M : K] is finite. S can be extended to a K basis r1, . . . , rk, rk+1, . . . , rn
of L. Then, {1, x, . . . , xn−1} ⊂ ⟨r1, . . . , rn⟩K ⊂ ⟨r1, . . . , rn⟩M . Thus, {r1, . . . , rn−1} spans
M(x) = ML as an M -vector space, and since dimM M(x) = n, r1, . . . , rn is an M basis of
M(x). Therefore, r1, . . . , rk are M -linearly independent.

(c) ⇒ (a) Let a ∈ L \K. Then {1, a} is linearly independent over K since a ̸∈ K. Thus by assumption
{1, a} is M linearly independent over M so a ̸∈M . Thus (L \K) ∩M = ∅.

Exercise 3. Let I be the ideal (x2− y2+ z2, (xy+1)2− z, z3) of R = C[x, y, z]. Find the maximal
ideals of R/I, as well as all of the points on the variety

V (I) = {(a, b, c) ∈ C3 | f(a, b, c) = 0 for all f ∈ I}
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Proof. The maximal ideals of R/I are in correspondence with the maximal ideals of R containing I.
Furthermore by the Nullstellensatz, the maximal ideals of R are in correspondence with the points
of the variety V (I). Thus, let us compute V (I). Let a, b, c ∈ C. Then (a, b, c) ∈ I if and only if
f(a, b, c) = 0 for all f ∈ I. Thus, (a, b, c) ∈ I if and only if c3 = 0, a2−b2+c2 = 0, (ab+1)2−c2 = 0.
Since c3 = 0 implies c = 0, this simplifies to the equations c = 0, a2 − b2 = 0, ab = −1. Since
a2 − b2 = 0, either a = −b or a = b. Thus, the equations split into two possibilities:

c = 0, a = b, a2 = −1 c = 0, b = −a, a2 = 1

In the first case, the only solutions in C3 are (0, i, i) and (0,−i,−i), and in the second case the only
solutions are (0, 1,−1) and (0,−1, 1). Thus, V (I) is the set of these 4 points, and the maximal
ideals of R/I are in correspondence by (a, b, c) 7→ (x− a, y − b, z − c).

Exercise 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring
Mn(Z) of n-by-n matrices with Z-entries with n ≥ 1.

Proof. Notice that a module being simple is an additive categorical property, in the sense that a
module M ∈ R-Mod is simple if and only if every every homomorphism N → M is either an
epimorphism or the zero map. By Morita equivalence, Mn(Z)-Mod ∼= Z-Mod. In particular, there

is an equivalence of categories Z-Mod
F−→Mn(Z)-Mod by F (−) = Zn⊗Z− where Zn has a natural

Mn(Z) left module structure. The simple modules of Z are all of the form Z/m for m a maximal
left module of Z and thus of the form Z/pZ for p a prime. Therefore since F is an equivalence of
additive categories, F (Z/pZ) is simple in Mn(Z)-Mod for all primes p and since F is essentially
surjective every simpleMn(Z)-module is isomorphic to F (Z/pZ) = Zn⊗ZZ/pZ = (Z/pZ)n for some
prime p.

Exercise 5. Let R be a nonzero commutative ring. Consider the functor tB from the category of
R-modules to itself given by taking the (right) tensor product with an R-module B.

(a) Prove that tB commutes with colimits.

(b) Construct an R-module B (for each R) such that tB does not commute with limits in the
category of R-modules.

Proof. By the tensor-hom adjunction, tB has a right adjoint by HomR(B,−). Since left adoints
preserve colimits, tB thus preserves colimits. For any R-module B, let B be an R-module which
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is not finitely generated - i.e., B = RN. If ⊗RB preserved limits, then the following natural map
would be an isomorphism:

B ⊗
∏
b∈B

R
φ−−→

∏
b∈B

B b⊗ (rc)c∈B 7→
(
brc

)
c∈B

Let ι ∈
∏

b∈B B = BB be the element (b)b∈B which represents the identity element of BB. If φ
were an isomorphism, then it would be surjective so there would exist some b1, . . . , bn ∈ B and
(r1c )c∈B, . . . , (r

n
c )c∈B such that φ(b1 ⊗ r1 + · · · + bn ⊗ rn) = ι. If this equality were true, we would

have

φ(b1 ⊗ r1 + · · ·+ bn ⊗ rn) =
n∑
i=1

φ(bi ⊗ ri) =
( n∑
i=1

bir
i
c

)
c∈B

=
(
c
)
c∈B

In particular, B would be finitely generated as an R module by b1, . . . , bn, which is a contradiction.

Exercise 6. Classify all finite subgroups of GL(2,R) up to conjugacy.

Proof. Let ⟨ , ⟩ : (R2×R2)→ R be the usual inner product by dot products and let H < GL(2,R)
be a finite group. Define a new inner product ⟨ , ⟩H : (R2 × R2)→ R by

⟨u, v⟩H =
1

|H|
∑
A∈H

⟨Au,Av⟩

Since ⟨u, v⟩H is (a non-zero) R-linear combination of R-inner products on R (and since each A is
R-linear), ⟨ , ⟩H is in fact an inner product on R2. With respect to this inner product, every element
of H is orthogonal since for all B ∈ H,

⟨Bu,Bv⟩H =
1

|H|
∑
A∈H

⟨ABu,ABv⟩ = 1

|H|
∑
A∈H

⟨Au,Av⟩ = ⟨u, v⟩H

Since every inner product on R2 is isomorphic by a change of basis so up to conjugacy we may assume
that H < O(2,R). Since every element of H is finite order, each element of H has determinant
±1. Let N = det−1(1) ∩H, which is a normal subgroup of H since det |H : H → {±1} is a group
homomorphism. Therefore, N is a finite subgroup of SO2(R) ∼= S1 with the usual multiplicative
structure on S1 as a subset of C×. In particular, it is clear that any finite subgroup of S1 is cyclic
since it is generated by e2πi/n for n minimal. Thus, N ∼= Z/nZ for some n. Thus, either H ∼= Z/nZ,
or H contains N = Z/nZ as an index 2 subgroup. In the latter case since every element in O2(R)
with determinant−1 is a reflection, H ∼= Z/nZ⋊Z/2Z = Dn. Thus, the finite subgroups of GL(2,R)
are Z/nZ (as a subgroup of SO2(R) ∼= S1) or Dn (as a subgroup O2(R)) up to conjugacy.
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Exercise 7. Let G be the group of order 12 with presentation

G = ⟨g, h | g4 = 1, h3 = 1, ghg−1 = h2⟩

Find the conjugacy classes of G and the values of the characters of the irreducible complex repre-
sentations of G of dimension greater than 1 on representatives of these classes.

Proof. Notice that G ∼= Z/3Z ⋊ψ Z/4Z with ψ(1) = (a 7→ 2a). Thus,
G = {1, h, h2, g, hg, h2g, g2, hg2, h2g2, g3, hg3, h2g3}. Notice that {h, h2} is a conjugacy class of G
since ghg−1 = h2 and xhx−1 ∈ {h, h2} for all x ∈ G by casework. Similarly, we compute the other
conjugacy classes of G, so the following is the character table of G:

{1} {h, h2} {g, hg, h2g} {g2} {hg2, h2g2} {g3, hg3, h2g3}

First let us find the one dimensional representations of G. Thus, let us compute [G,G]. Notice
that h = ghg−1h−1 ∈ [G,G], so [G,G] ⊃ ⟨h⟩. Furthermore, there is a group homomorphism

Z/3Z ⋊ψ Z/4Z φ−→ Z/4Z by projection onto the second coordinate, and since Z/4Z is abelian, φ
factors through [G,G]. Since kerφ = Z/3Z, [G,G] ⊂ ⟨h⟩. Thus, [G,G] = ⟨h⟩, so G/[G,G] = Z/4Z.
Thus, the one dimensional representations are given by the group homomorphisms Z/4Z→ C×:

{1} {h, h2} {g, hg, h2g} {g2} {hg2, h2g2} {g3, hg3, h2g3}
1 1 1 1 1 1
1 1 i −1 −1 −i
1 1 −1 1 1 −1
1 1 −i −1 −1 i

Let a, b be the dimensions of the last two representations. We must have a2 + b2 + 4 = 12 and a, b
positive integers, so a = b = 2. Also by column orthogonality, in each conjugacy class C with 3
elements and x ∈ C, we must have

6∑
i=1

χi(x) =
|G|
|C|

= 4

for χ1, . . . , χ6 the irreducible representations of G. Therefore, the remaining two rows must have
0 in these columns. Notice that tensoring an irreducible representation with a one dimensional
representation preserves irreducibility. Let χ5, χ6 be the two dimensional irreducible representations.
By column orthogonality, at least one of χ5(g

2), χ6(g
2) is non-zero. Without loss of generality,

assume χ5(g
2) = a ̸= 0. Thus, χ3 ⊗ χ5(g

2) = χ3(g
2) · χ5(g

2) = −a is a differerent two dimensional
irreducible representation of G, and is thus equal to χ6. Thus, χ5⊗χ3 = χ6, so the last two rows of
the character table are of the form 2|a|0|b|c|0 and 2|a|0| − b| − c|0. Finally by column orthogonality

85



between columns 1 and 2 we must have a = −1, and by similar logic we find that b = ±2 and
c = ±1, so the character table is:

{1} {h, h2} {g, hg, h2g} {g2} {hg2, h2g2} {g3, hg3, h2g3}
1 1 1 1 1 1
1 1 i −1 −1 −i
1 1 −1 1 1 −1
1 1 −i −1 −1 i
2 −1 0 2 −1 0
2 −1 0 −2 1 0

Exercise 8. Let M be a finitely generated module over an integral domain R. Show that there
is a nonzero element u ∈ R such that the localization M [1/u] is a free module over R[1/u].

Proof. Let K = Frac(R) and let S = R \ {0} so K = S−1R. Since M is finitely generated over R,
S−1M is finitely generated over K and is thus a finite dimensional K vector space. Thus, there is
an isomorphism

Kn φ̃−−→ S−1M φ̃

(k1...
kn

)
= k1

m1

a1
+ · · ·+ kn

mn

an

for some n ∈ N and m1, . . . ,mn ∈ M , a1, . . . , an ∈ R \ {0}. Let u = a1a2 . . . an. Then define
φ : R[1/u]n → M [1/u] by φ =

[
m1

a1
. . . mn

an

]
, so φ is just the restriction of φ̃ to R[1/u]n ⊂ Kn,

which is well defined since mi

ai
∈ M [1/u] for each i. Since φ is a restriction of φ̃ and φ̃ is an

isomorphism, φ has trivial kernel. Thus, we have a short exact sequence

0 R[1/u]n M [1/u] cokerφ 0
φ

Since M is finitely generated over R, M [1/u] is finitely generated over R[1/u], so cokerφ is also
finitely generated over R[1/u]. Thus, let x1, . . . , xm ∈ cokerφ generate cokerφ as an R[1/u] module.
By exactness of localization and since φ̃ is an isomorphism, S−1 cokerφ = 0. Therefore, cokerφ is
torsion, since for all x ∈ cokerφ, x

1
= 0 in S−1 cokerφ implies there is some a ∈ R \ {0} such that

ax = 0. In particular, there exists a1, . . . , am ∈ R \ {0} such that a1x1 = 0, a2x2 = 0, . . . , amxm =
0. Let v = a1 . . . am. Then cokerφ[1/v] = 0. Therefore by exactness of localization (and that
R[1/u][1/v] = R[1/(uv)]), we have the following exact sequence:

0 R[1/(uv)]n M [1/(uv)] 0
φ′

Thus, M [1/(uv)] is free over R[1/(uv)] as desired.

86



Exercise 9. Let A be a unique factorization domain which is a Q-algebra. Let K be the fraction
field of A. Let L be a quadratic extension field of K. Show that the integral closure of A in L is a
finitely generated free A-module.

Exercise 10. Compute the Galois groups of the Galois closures of the following field extensions:

(a) C(x)/C(x4 + 1)

(b) C(x)/C(x4 + x2 + 1).

where C(y) denotes the field of rational functions over C in a variable y.

Proof. (a) Let y be a formal variable (representing x4 + 1) and let F = C(y). Then let K =
F [T ]/(T 4 + 1 − y). Let us find the Galois closure of K over F and Gal(K/F ). Consider
the polynomial T 4 + 1 − y ∈ F [T ], and notice that F = FracC[y]. Therefore by Gauss’
lemma, the polynomial T 4 +1− y is irreducible in F [T ] if and only if it is irreducible in C[y].
Furthermore, T 4+1−y is irreducible in C[y] by Eisenstein and 1−y being a prime. Therefore,
K = F [T ]/(T 4 + 1 − y) is a field of degree 4 over F . Furthermore since F has four distinct
4th roots of unity, for any root x of T 4 + 1− y in K, ix,−x,−ix are also roots of T 4 + 1− y.
Therefore, K is a splitting field for T 4 +1− y, with splitting (T − x)(T − ix)(T + x)(T + ix).
Therefore (since the characteristic is zero, K/F is automatically separable), K/F is a Galois
extension of degree 4. Furthermore, notice by the transitivity of the Galois group that there is
a F -homomorphism σ ∈ AutF (K) such that σ(x) = ix. By linearity, we thus have σ2(x) = −x
and σ4(x) = x. Therefore, Gal(K/F ) = AutF (K) is an order 4 group with an element of order

4 and is thus congruent to Z/4Z

(b) Let y be a formal variable (representing x4 + x2 + 1) and let F = C(y). Then let K =
F [T ]/(T 4 + T 2 + 1 − y). By Gauss’ lemma, to show T 4 + T 2 + 1 − y is irreducible over F
it suffices to show it is irreducible as a polynomial in T over C[y]. It is equivalent to show
that the polynomial y − T 4 − T 2 − 1 is irreducible as a polynomial in y over C[T ], which is
clear since it is linear. Thus, T 4 + T 2 + 1 − y is irreducible so K is a field of degree 4 over
F . Let x represent a formal root of T 4 + T 2 + 1− y in K. Notice that since y = x4 + x2 + 1
and y is algebraically independent over C, x is also algebraically independent over C in K.
Therefore, there is a field homomorphism C(T ) φ−→ K by T 7→ x. Furthermore, F is in the
image of φ since y is, so φ is surjective and thus K ∼= C(x) with y = x4 + x2 + 1. In K, the
polynomial T 4 + T 2 + 1− y factors as (T − x)(T + x)(T 2 + x2 + 1). Let us show T 2 + x2 + 1
is irreducible in K[T ]. Since K ∼= C(x), by Gauss’ lemma it suffices to show that T 2 + x2 + 1
is irreducible in C[x], which is true by Eisenstein. Therefore, K/F is not Galois, but letting
E = K[T ]/(T 2 + x2 + 1), E/F is the splitting field of T 4 + T 2 + 1− y and is thus Galois. Let
z ∈ E be a formal root of T 2 + x2 + 1 so z2 = −x2 − 1. Notice that T 2 + x2 + 1 factors as
(T − z)(T + z) in E. Since E/F is Galois and degree 8, Gal(E/F ) is an order 8 group. By
the Galois correspondence, since K/F is not a normal extension [E : K] = 2, Gal(E/F ) is
not Abelian contains a non-normal subgroup of order 2. The only order 8 subgroup with a
non-normal subgroup of order 2 is D4, so Gal(E/F ) ∼= D4.
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Spring 2019

Exercise 1. Let G be a finite solvable group and 1 ̸= N ⊂ G be a minimal normal subgroup.
Prove that there exists a prime p such that N is either cyclic of order p or a direct product of cyclic
groups of order p.

Proof. Let 1 ̸= N ⊴ G be a minimal normal subgroup. Notice that N cannot have any non-trivial
characteristic subgroups. Therefore since [N : N ] char N , either [N : N ] = N or [N : N ] = 1. Since
G is solvable and thus so is N , [N : N ] = N is impossible, so [N : N ] = 1. Therefore, N is Abelian.

Therefore by the classification of finite abelian groups,

N ∼= Z/pm1
1 Z× · · · × Z/pmr

r Z

for primes p1, . . . , pr and positive integers m1, . . . ,mr. Let M be the set of elements in N of order
p1 (along with the identity). Let us show that M char N . Let ψ : N → N be an automorphism.
Automorphisms preserve the order of elements, so ψ(M) ⊆M . Furthermore, M is a subgroup since
N is abelian. Therefore, M is characteristic, so either M = 1 or M = N . Since (1, 0, . . . , 0) ∈ M ,
we cannot have M = 1, so M = N . Therefore, every element of N is order 1 or p1, so N must be
of the form Z/p× · · · × Z/p.

Exercise 2. An additive group (abelian group written additively) Q is called divisible if any
equation nx = y with 0 ̸= n ∈ Z, y ∈ Q has a solution x ∈ Q. Let Q be a divisible group
and A is a subgroup of an abelian group B. Give a complete proof of the following: every group
homomorphism A→ Q can be extended to a group homomorphism B → Q.

Proof. Let A
φ−→ Q be an abelian group homomorphism and A ⊂ B. Define the set S of ordered

pairs (C,ψ) for C a (Z)-submodule of B and ψ : C → Q an abelian group homomorphism such
that the following diagram commutes:

A Q

C

φ

ι
ψ

S := {(C,ψ) | A ⊆ C ⊆ B a submodule and ψ : C → Q commuting with φ}
Give S a partial order by (C,ψ) ⪯ (C ′, ψ′) if C ⊂ C ′ and ψ′|C = ψ. Consider a totally ordered
chain in S:

(C1, ψ1) ⪯ (C2, ψ2) ⪯ . . .
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Then, notice that C =
⋃∞
i=1Ci is a Z-submodule of B and we can define ψ : C → Q by ψ(c) = ψi(ci)

for i the smallest index such that c ∈ Ci. This is an abelian group homomorphism since each ψi
agrees on their shared domains. Therefore, (C,ψ) is maximal in this totally ordered subset. Thus
by Zorn’s Lemma, there is a maximal element (C,ψ) of S. Let us show that C is necessarily equal
to B.

It suffices to show that for any C ⊊ B and ψ : C → Q commuting with φ that (C,ψ) is not maximal
in S. Thus, take any such C,ψ and let x ∈ B \ C. Let us show that there exists ψ′ : C + xZ→ Q
which commutes with φ. We have a short exact sequence:

0 kerπ C ⊕ Z C + xZ 0π

Let (a, n) ∈ kerπ such that n ∈ Z+ is minimal. If no such (a, n) exists, then kerπ = 0 since
(a, 0) ∈ kerπ implies a = 0. We claim that kerπ = (a, n)Z. Let (b,m) ∈ kerπ. By Z division in
the second coordinate, there exists p, q ∈ Z non-zero such that

p(a, n) + q(b,m) = (a′, gcd(m,n)) ∈ kerπ

for some a′ ∈ A. By minimality of n, gcd(m,n) = n. Therefore, a′ = a since (a′ − a, 0) ∈ kerπ, so
(b,m) is a Zmultiple of (a, n) as desired. Since Q is divisible, there exists an element y ∈ Q such that
ny = ψ(a). Define ξ : C ⊕Z→ Q by (b,m) 7→ (ψ(b)−my). Notice that ξ((a, n)) = ψ(a)− ny = 0.
By the first isomorphism theorem, this map then factors through C ⊕ Z/ kerπ ∼= C + xZ as
ψ′ : C + xZ→ Q, defined on C by ψ and on xZ by ψ(x) = y. Therefore, (C,ψ) ⪯ (C + xZ, ψ′), so
(C,ψ) is not maximal. Therefore the only maximal element of S must be of the form (B,Ψ), so φ
extends to a group homomorphism Ψ commuting with φ and the inclusion.

Exercise 3. Let d > 2 be a square-free integer. Show that the integer 2 in Z[
√
−d] is irreducible

but the ideal (2) in Z[
√
−d] is not a prime ideal.

Proof. Recall that we have a multiplicative function N : Z[
√
−d]→ N by N(a+ b

√
−d) = a2 + db2.

Thus to show that 2 is irreducible, it suffices to show that every element of norm 1 in Z[
√
−d] is a

unit and there are no elements of norm 2. First, suppose that x = a + b
√
−d satisfies N(x) = 1.

Then we must have b = 0 since d > 2, so a = ±1. Thus, x = ±1. Similarly if N(x) = 2, then b = 0
since d > 2, but there is no square root of 2 in Z so there are no elements of norm 2. Therefore, 2
is irreducible in Z[

√
−d].

Now let us show that the ideal (2) is not a prime ideal by finding elements a, b ̸∈ (2) such that
ab ∈ (2). First notice that

(2) =
{
a+ b

√
−d | a, b ∈ 2Z

}
Since (2) = {2x | x ∈ Z[

√
−d]}.
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Now we have two cases. If d is odd, then notice that

(1 +
√
−d)(1−

√
−d) = 1 + d2 ∈ (2)

but 1±
√
−d ̸∈ (2). If d is even, then we have that

(2 +
√
−d)(2 +

√
−d) = (4− d) + 4

√
−d ∈ (2)

but 2±
√
−d ̸∈ (2). Therefore, (2) is not a prime ideal in Z[

√
−d] as desired.

Exercise 4. Let R be a commutative local ring and P a finitely generated projective R-module.
Prove that P is free over R.

Proof. See Spring 2024 problem 5 (commutative not necessary).

Exercise 5. Let πn denote the nth cyclotomic polynomial in Z[x] and let a be a positive integer
and p a positive prime not dividing n. Prove that if p|πn(a) in Z, then p ≡ 1 mod n.

Proof. Let n > 1 an integer. Let us show that if p is a prime not dividing n and p ̸≡ 1 mod n, then
πn(x) has no roots in Z/p[x]. This will imply that if a prime q not dividing n satisfies q|πn(a) for
some a ∈ Z+, then a is a root of πn(x) in Z/q[x], so q ≡ 1 mod n, as desired.

Thus let p prime, p ∤ n, and p ̸≡ 1 mod n. Notice that the polynomial f(x) = xn(p−1) − 1 in Z/p[x]
has no repeated roots since f ′(x) = n(p − 1)xn(p−1)−1 and f(x) have no shared roots (since p ∤ n).
Therefore, f has exactly p− 1 roots counted with multiplicity, since zero is not a root of f but each
element of Z/p× is a root of f by Fermat’s little theorem. Notice that

f(x) = (xp−1 − 1)(x(p−1)(n−1) + x(p−1)(n−2) + · · ·+ xp−1 + 1)

And xp−1 − 1 has exactly p − 1 roots, so g(x) = (x(p−1)(n−1) + x(p−1)(n−2) + · · · + xp−1 + 1) has no
roots in Z/p[x]. Furthermore since xm − 1 =

∏
d|m πd(x) for all m, we have:∏

d|(p−1)n

πd = f(x) = (xp−1 − 1)(x(p−1)(n−1) + x(p−1)(n−2) + · · ·+ xp−1 + 1) =
∏

d|(p−1)

πd
∏

d|(p−1)n,d∤(p−1)

πd

Since p ̸≡ 1 mod n by assumption, n does not divide p − 1. Therefore since πn appears a single
time in the above product of xn(p−1), πn(x) divides g(x). But we already observed that g(x) has no
roots in Z/p[x], so πn(x) has no roots in Z/p[x], as desired.
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Exercise 6. Let F be a field of characteristic p > 0 and a ∈ F×. Prove that if the polynomial
f = xp − a has no root in F, then f is irreducible over F.

Proof. Suppose that f = xp − a has no root in F. Let F[α] = F[x]/(xp − a) be a field extension of
F with a root α of f . Notice that in F[α], f splits as:

f(x) = xp − a = (x− α)p

Therefore, if f were to factor nontrivially into monic polynomials as f = g · h in F[x], then g(x) =
(x−α)q in F[α][x] and h(x) = (x−α)p−q for some 0 < q < p by unique factorization. In particular,
notice that q treated as an element of F is invertible. By binomial expansion we have:

g(x) = (x− α)q = xq − qαxq−1 + · · · ± αq

Thus if g(x) ∈ F[x], then qα ∈ F, so α ∈ F. This is a contradiction since f has no root in F by
assumption. Therefore, f is irreducible over F.

Exercise 7. Let F be a field and let R be the ring of 3× 3 matrices over F with (3, 1) and (3, 2)
entry equal to 0. Thus,

R :=

F F F
F F F
0 0 F


(a) Determine the Jacobson radical J of R.

(b) Is J a minimal left (respectively right) ideal?

Proof. (a) Recall that the Jacobson radical is the intersection of the maximal left ideals of R
(equivalently, right ideals, equivalently, the set of elements x ∈ R such that id−axb is invert-

ible for all a, b ∈ R). First notice that L =

F F F
F F F
0 0 0

 is a left ideal of R. Furthermore, it

is maximal since any left ideal of R properly containing L contains a matrix with a non-zero
entry in the lower rightmost corner, and since F is a field, thus contains all of R. Now let I
be any left ideal of R not contained in L, and thus contains a matrix A = {aij} with a33 ̸= 0.

Then letting B =

0 0 0
0 0 0
0 0 1

a33

 ∈ R, we have that BA =

0 0 0
0 0 0
0 0 1

 ∈ I. Then it is easy to

see that

S =

0 0 F
0 0 F
0 0 F

 ⊂ I
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Now let us show that for each left ideal J ⊂M2(F) that

Ĵ :=

 J

[
F
F

]
[
0 0

]
F


is a left ideal of R. Ĵ is clearly an additive subgroup of R. To show it is closed under left
multiplication by R is a straighforward matrix computation: let A ∈ M2(F), v ∈ F2, r ∈ F,
B ∈ J , w ∈ F2, and s ∈ F:

[
A v[

0 0
]
r

]
·
[

B w[
0 0

]
s

]
=

[
AB Aw + sv[
0 0

]
sr

]
∈

 J

[
F
F

]
[
0 0

]
F


Recall that the Jacobson radical of M2(F) is zero (for instance by explicitly identifying the
maximal left ideals of M2(F) with matrices which vanish on a one dimensional space), so

J(R) ⊂ L ∩

J(M2(F))
[
F
F

]
[
0 0

]
F

 =

0 0 F
0 0 F
0 0 0


But also notice that by our previous analysis that every maximal left ideal of R is either L or

contains S. Thus, J(R) ⊃

0 0 F
0 0 F
0 0 0

, so J(R) =
0 0 F
0 0 F
0 0 0

.
(b) J(R) is not a minimal right ideal since

0 0 F
0 0 0
0 0 0

 is a right ideal of R. J(R) is a minimal

left ideal since any non-zero left ideal I ⊂ J(R), I contains a non-zero matrix

0 0 a
0 0 b
0 0 0

, and
then multiplying by

a−1 0 0
0 0 0
0 0 0

 ,
 0 0 0
a−1 0 0
0 0 0

 on the left, or by

0 b−1 0
0 0 0
0 0 0

 ,
0 0 0
0 b−1 0
0 0 0


if a = 0, yields a basis for J(R), so I ⊃ J(R).

Exercise 8. Prove that every finite group of order n is isomorphic to a subgroup of GLn−1(C).

Proof. Let G be a finite non-abelian group of order n. Let C be the number of conjugacy classes of
G and let V1, . . . , VC be the irreducible C representations of G up to isomorphism. Let V ∼= Cn be
the regular representation of G: i.e., V = Cn with basis elements eg indexed by the elements g ∈ G,
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and G acts on V by h(eg) = ehg. Let ρV : G→ GL(V ) be the group homomorphism associated to
the regular representation. Recall that as a G representation,

V ∼=
C⊕
i=1

V ⊕ dimVi
i

Consider the representation W of G:

W =
n⊕
i=1

Vi

Let us show that the homomorphism ρW : G → GL(W ) is injective. Notice that ρV : G → GL(V )
is injective from the definition of the regular representation. Let ρi : G → GL(Vi) be the group
homomorphism of the G action on Vi. The kernel of ρV is the set of elements g ∈ G which act
trivially on V , i.e., the set of elements g ∈ G which act trivially on each irreducible component Vi.
Therefore,

0 = ker ρV =
C⋂
i=1

dimVi⋂
j=1

ker ρi =
C⋂
i=1

ker ρi = ker ρW

Therefore, ker ρW = 0. Since G is nonabelian and
∑C

i=1(dimVi)
2 = n, there is some j ∈ [1, C] such

that dimVj > 1. Therefore, dimW < n. Therefore (since W ∼= Cm for some m < n), we have an
injective group homomorphism ρ : G → GL(Cm) for m < n, and thus we can compose with the
inclusions GL(Cm) ↪→ GL(Cn−1) to obtain an injective group homomorphism ρ′ : G → GL(Cn−1)
as desired.

It remains to show that the statement holds for G abelian. By the classification of finite abelian
groups,

G =
m∏
i=1

Z/aiZ

for unique integers a1|a2| . . . |am each greater than 1. Z/aiZ embeds into GL(C) by [1] 7→ e2πi/ai .
Thus there is an injective group homomorphism of G into GL(Cm). Since each ai > 1 and |G| =∏m

i=1 ai, m < n, so by composing with the inclusion GL(Cm) → GL(Cn−1), there is an injective
group homomorphism of G into GL(Cn−1).

Exercise 9.

(a) Find a domain R and two nonzero elements a, b ∈ R such that R is equal to the intersection
of the localizations R[1/a] and R[1/b] (in the quotient field of R) and aR + bR ̸= R.

(b) Let CRing be the category of commutative rings. Prove that the functor CRing → Set
taking a commutative ring to R to the set of all pairs (a, b) ∈ R2 such that aR + bR = R is
not representable.
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Proof. (a) Let R = Z[x] and let a = 2, b = x. Notice that R[1/a] consists of elements of the

form p(x)
2m

for p ∈ Z[x] and m ∈ N, and similarly R[1/b] consists of elements of the form q(x)
xn

.

Since Z[x] is a UFD, if p(x)
2m

= q(x)
xn

, we must have 2m divide p(x) and xn divide q(x), i.e., after
reducing, x = n = 0. Therefore, Z[x][1/a] ∩ Z[x][1/b] = Z[x]. However, 2Z[x] + xZ[x] ̸= Z[x].

(b) Let F : CRing → Set be the described functor on objects. It extends to a functor on
morphisms by Fφ : FR → FS with Fφ((a, b)) = (φ(a), φ(b)) for φ : R → S a ring ho-
momorphism. Suppose that F was representable, so there existed some R ∈ CRing and a
natural isomorphism Φ : Hom(R,−) ⇒ F (−). By the Yoneda lemma, natural transforma-
tions Hom(R,−)⇒ F (−) are in a natural correspondence with elements of F (R). Thus, take
any (a, b) ∈ F (R) (so aR + bR = R), and by the Yoneda lemma Φ : Hom(R,−) ⇒ F (−) is
defined by

ΦS : Hom(R, S)→ F (S)

ΦS(φ) = Fφ((a, b)) = (φ(a), φ(b))

Let us show that for any choice of (R,φ), ΦS is not an isomorphism, so F is not representable.
Assume for the sake of contradiction that ΦS is bijective for all S. Then consider ΦZ[x][1/2] :
Hom(R,Z[x][1/2])→ F (Z[x][1/2]). Since 2 is invertible in Z[x][1/2], 2Z[x][1/2]+xZ[x][1/2] =
Z[x][1/2], so there is a unique ring homomorphism (by assumption of Φ an isomorphism) φ1 :
R→ Z[x][1/2] such that φ1(a) = 2, φ1(b) = x. Similarly, there is a unique ring homomorphism
φ2 : R → Z[x][1/x] such that φ2(a) = 2, φ2(b) = x since (2, x) ∈ F (Z[x][1/2]). Additionally,
there is a unique ring homomorphism φ3 : R → Q(x) = Frac(Z[x]) such that φ3(a) =
2, φ3(b) = x. Furthermore, for the inclusions ι1 : Z[x][1/2] ↪→ Q(x) and ι2 : Z[x][1/x] ↪→ Q(x),
we have ι1 ◦ φ1 agrees with φ3 on a, b, and similarly for ι2 ◦ φ2. Therefore by uniqueness,
ι1 ◦ φ1 = ι2 ◦ φ2 = φ3. In particular,

Imφ3 =
(
Im(ι1 ◦ φ1) ∩ Im(ι2 ◦ φ2)

)
⊂

(
Z[x][1/2] ∩ Z[x][1/x]

)
= Z[x]

Z[x][1/2]

R Q(x) Z[x]

Z[x][1/x]

⊆∃!φ1

∃!φ2

∃!φ3

ψ

⊇
⊆

Therefore since Z[x] is a subring of Q(x) and imφ3 ⊂ Z[x], φ3 induces a ring homomorphism
ψ : R→ Z[x] defined by ψ(r) = φ3(r). In particular, ψ(a) = 2, ψ(b) = x. Since aR+ bR = R,
there exist r ∈ R, s ∈ R such that ar + bs = 1. Then 1 = φ3(ar) + φ3(bs) = 2φ3(r) + xφ3(b),
which is a contradiction since 2Z[x] + xZ[x] ̸= Z[x]. Thus, ΦS is not an isomorphism.
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Exercise 10. Let C be an abelian category. Prove that the following are equivalent:

(a) Every object of C is projective.

(b) Every object of C is injective.

Proof. Let us first show that (a)⇒ (b). Let X, Y, Z objects of C, ψ : Y ↪→ Z a monomorphism and
φ : Y → X a morphism. Let us show that there exists a morphism Ψ : Z → X such that Ψ ◦ψ = φ
(i.e., X is injective, so every object of C is injective). Since C is abelian, we have cokernels, and
since every object of C is projective (in particular cokerψ), the following diagram is satisfied:

Z cokerψ

X Y cokerπφ

ψ
∃ id

In particular, the exact sequence Y
ψ−→ Z → cokerψ splits, so Z is isomorphic to Y ⊕ cokerψ. In

particular, there is a section ι : Z → Y of ψ. Therefore, we define Ψ : Y ⊕ cokerψ → X by φ ⊕ 0
which clearly satisfies the following commutative diagram:

Y ⊕ cokerψ Z

X Y

φ⊕0

ι⊕π

φ

ψ

Therefore, X is injective.

(There is an alternate argument for (b) ⇒ (a) pointed out to me by Rhea, using that if X is a
projective/injective object of C, then X is an injective/projective object of Cop. If every object of
C is injective, then every object of Cop (which is still an abelian category) is projective, so by (a)
⇒ (b), every object of Cop is injective. So every object of C is projective).

Now let us show that (b) ⇒ (a). Let X, Y, Z be objects of C, ψ : Y ↠ Z an epimorphism and
φ : X → Z a morphism. Let us show that there exists a morphism Ψ : X → Y such that ψ ◦Ψ = φ.
Since every object of C is injective by assumption, kerψ is injective, so the following diagram is
satisfied:

Z kerψ

X Y kerψ

φ ∃ψ id

in particular, the exact sequence kerψ ↪→ Y
ψ−→ Z splits, so Y ∼= kerψ ⊕ Z. Therefore, we define

Ψ : X → kerψ ⊕ Z by Ψ(x) = (0, φ(x)) which clearly satisfies the following commutative diagram:

Z

X kerψ ⊕ Z0⊕φ

φ
ψ̃

Therefore, X is projective, so every object of C is projective.

95



Fall 2018

Exercise 1. Let Q8 = {±1,±i,±j,±k} be the quaternion group of order 8.

(a) Show that every non-trivial subgroup of Q8 contains −1.

(b) Show that Q8 does not embed in the symmetric group S7 as a subgroup.

Proof. (a) Any non-trivial subgroup of Q8 contains one of ±i,±j,±k or −1, and thus contains
their square which is −1 (or already contains −1).

(b) Suppose ψ : Q8 → S7 were an injective homomorphism ab absurdo. Then ψ preserves
orders, so ψ(i) is an order 4 element of S7 and thus has cycle type either (abcd)(ef) or
(abcd) for distinct integers 1 ≤ a, b, c, d, e, f ≤ 7. Without loss of generality by applying
an isomorphism to S7, assume that ψ(i) = (1234) or ψ(i) = (1234)(56). In either case,
ψ(i2) = ψ(j2) = ψ(k2) = (13)(24). Therefore since both ψ(j), ψ(k) have cycle type (abcd)(ef)
or (abcd) and (

(abcd)(ef)
)2

= (ac)(bd) =
(
(abcd)(ef)

)2

in S7, we have that one of the following holds for 5 ≤ a, b ≤ 7 distinct integers:

ψ(j) =


(1234) Case 1

(1432) Case 2

(1234)(ab) Case 3

(1432)(ab) Case 4

In Case 1 or 2 or if ψ(i) = (1234), ψ(j) commutes with ψ(i), which is a contradiction since i, j
don’t commute in Q8. Thus we may assume that ψ(i) = (1234)(56) and ψ(j) = (1234)(ab) or
ψ(j) = (1432)(ab). These two cases are equivalent by replacing j with −j, so assume without
loss of generality that ψ(j) = (1432)(ab). Then ψ(i)ψ(j) = (ab)(56). In particular, ψ(i)ψ(j) is
an element of S3, the symmetric group on the set {5, 6, 7}. Therefore, ψ(i)ψ(j) is not order 4:
but this is a contradiction with ψ being an injection, since this implies that ψ(k) = ψ(i)ψ(j)
is not order 4.

Exercise 2. Let G be a finitely generated group having a subgroup of finite index n > 1.
Show that G has finitely many subgroups of index n and has a proper characteristic subgroup (i.e.
preserved by all automorphisms) of finite index.
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Proof. Let H ≤ G be of index n, and let ψH : G → Sn be the action of G on the left cosets G/H
of H. Without loss of generality, order the cosets of G/H so the first coset is eH = H, so in
particular StabidSn

(ψH) = H. Therefore, there is a surjective map Hom(G,Sn) → S, where S is
the set of subgroups of index n or smaller in G by ψ 7→ StabidSn

(ψ). Therefore, it suffices to show
that Hom(G,Sn) is finite. Let {x1, . . . , xk} be a finite generating set of G. Every homomorphism
ψ : G → Sn is determined by its action on the set {xi}. Furthermore, |Sn| = n!, so there are at
most n! choices of the image of each xi. Therefore, |Hom(G,Sn)| ≤ (n!)k <∞, so there are finitely
many subgroups of index n.

Let H1, . . . , Hr be all of the subgroups of index n in G, and let N =
⋂r
i=1Hi. Any automorphism

φ : G→ G permutes the set {H1, . . . , Hr}. Therefore,

H(N) = φ(H1 ∩ · · · ∩Hr) = φ(H1) ∩ · · · ∩ φ(Hr) = H1 ∩ · · · ∩Hr = N

soN is characteristic. Let us show thatN is finite index by showing that the intersection of two finite
index subgroups in G is finite index. Let H,H ′ ≤ G be of finite index. Let G act on G/H,G/H ′ by
left translation (on each factor). Then the stabilizer of (H,H ′) is H∩H ′, and by the orbit stabilizer

theorem [G : H ∩H ′] ≤ [G : H][G : H ′] <∞. (Also notice that [G : H], [G : H ′]
∣∣∣[G : H ∩H ′] since

[G : H ∩H ′] = [G : H][H : H ∩H ′] and vice versa).

Exercise 3. Let K/F be a finite extension of fields. Suppose that there exist finitely many
intermediate fields K/E/F . Show that K = F (x) for some x ∈ K (i.e., K/F is simple).

Proof. K is a finite algebraic extension over F and thus has a finite generating set x1, . . . , xn, and
without loss of generality take nminimal among such sets. Assume for the sake of contradiction that
n > 1 so there does not exist y ∈ K such that F (x1, x2) ⊂ F (y). Let us consider the subextensions
K ⊂ F (αx1 + x2) ⊂ F (x1, x2) for α ∈ K. Notice that F is not finite, since otherwise F would
be perfect and thus K would be a finite separable extension and thus simple. Therefore, there are
infinitely many choices of α. Since there are only finitely many intermediate extensions F ⊆ E ⊆ K,
there is some α ̸= β ∈ F such that F (αx1 + x2) = F (βx1 + x2). Thus, this extension contains
(α− β)x1. Since α ̸= β, we divide by α− β so this extension contains x1. But then this extension
also contains x2, and thus F (αx1 + x2) = F (βx1 + x2) = F (x1, x2). This is a contradiction, so K is
simple over F .

Exercise 4. Let K be a subfield of the real numbers and f an irreducible degree 4 polynomial
over K. Suppose that f has exactly two real roots. Show that the Galois group of f is either S4 or
of order 8.

97

https://math.stackexchange.com/questions/128538/does-the-intersection-of-two-finite-index-subgroups-have-finite-index


Proof. Let L be the splitting field of f over K, so Gal(L/K) = G is the Galois group of f . Let
f have roots r1, r2, r3, r4 ∈ L, and assume r1, r2 are the real roots. We have an injective group

homomorphism G
ψ−→ S4 by sending an element σ ∈ G to its action on the roots {r1, r2, r3, r4}.

Since f is irreducible, ψ is a transitive action on r1, r2, r3, r4. Therefore, |Orbψ(r1)| = 4. Recall
that there is a complex conjugation action τ ∈ HomR(C). Since K ⊆ R and L ⊆ C, τ restricts
to an element τ ′ ∈ G which fixes r1, r2 and does not fix r3, r4 (since R is the fixed field of τ , and
r3, r4 ̸∈ R by assumption). Furthermore, τ is order 2, so τ ′ is order 1 or 2, but since it does not fix
r3, it must be order 2 in g. Therefore, σ′ ∈ Stabψ(r1), so Stabψ(r1) is a subgroup of G containing
an element of order 2. Therefore, |Stabψ(r1)| = 2k for some k ∈ N, so

|G| = |Orbψ(r1)||Stabψ(r1)| = 8k

also, the order of G divides |S4| = 24, so either |G| = 24 and ψ is an isomorphism or |G| = 8, as
desired.

Exercise 5. Let R be a commutative ring. Show the following:

(a) Let S be a non-empty saturated multiplicative set in R, i.e., if a, b ∈ R, then ab ∈ S if and
only if a, b ∈ S. Show that R ∩ S is a union of prime ideals.

(b) If R is a domain, show that R is a UFD if and only if every nonzero prime ideal in R contains
a non-zero principal prime ideal.

Proof. (a) Notice that S contains 1 since it is nonempty, and thus contains all units of R. Let
η : R → S−1R the canonical morphism for the localization by S. There is an inclusion
preserving correspondence of prime ideals of S−1R and prime ideals of R disjoint from S by
p 7→ η−1(p). Take any x ∈ R \ S. Let us show that η(x) is not a unit in S−1R. Suppose for
contradiction there existed r/s such that x/1 · r/s = 1/1 in S−1R. Then, there would exist
t ∈ S such that

t(xr − s) = 0 txr = st ∈ S
But x ̸∈ S and S is saturated, which is a contradiction. Thus, η(x) is not invertible, and
thus generates a proper ideal I of S−1R which is contained in a maximal (and thus prime)
ideal p of S−1R. qx := η−1(p) is thus a prime ideal of R containing x and is disjoint from S.
Therefore, R/S =

⋃
x∈R/S qx as desired.

(b) Let S be the set of elements in R which can be expressed as a (finite) product of non-zero
primes and units in S. S is clearly multiplicative. Let us show that S is saturated. Suppose
ab ∈ S for a, b ∈ R. Then ab = up1 . . . pr for a unit u and primes p1, . . . , pr. By primality,
pr divides one of a, b. Say pr divides a, so a = a1pr for a1 ∈ R. Let b1 = b ∈ R. Then
a1b1 = up1 . . . pr−1, and pr−1 divides one of a1b1. Repeating this process, we have arbr = u,
so both ar, br are units. Furthermore, we have that a =

∏
l∈S plar for a finite subset S of

{1, 2, . . . , r}, and b =
∏

l∈Sc plar. Therefore, a and b can be expressed as a finite product of
primes and units and are thus in S.
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Let x ∈ R \ S. Let us show that x = 0, which will imply that R is a UFD. Suppose for the
sake of contradiction that x ̸= 0. Since R \ S is a union of prime ideals by part (a), there is
a non-zero prime ideal p containing x. By assumption, p contains a principal prime ideal (p),
so p ∈ (p) ⊂ p ⊂ R \ S. But p ∈ S since it can be expressed as a finite product of primes
(namely, p = 1 · p). This is a contradiction, so R \ S = {0} as desired.

Exercise 6. Let A be an integrally closed Noetherian domain with quotient field F and K/F be
a finite separable field extension.

(a) If {x1, . . . , xn} is a basis for K as an F -vector space, show that there exists {y1, . . . , yn} in K
such that TrK/F (xiyj) = δi,j for all i, j.

(b) If B is the integral closure of A in K, show that B is a finitely generated A-module.

Proof.

Exercise 7. Let F : C → D be a functor with a right adjoint G. Show that F is fully faithful if
and only if the unit of the adjunction η : IdC → GF is an isomorphism.

Proof. Let ϵ : FG → IdD be the counit of the adjunction. Consider the following diagram in Set
for X, Y ∈ C:

MorC(X, Y ) MorC(X,GFY ) MorD(FX,FGFY ) MorD(FX,FY )
η∗Y

F∗

F∗

∼

ϵ∗FY

(5)

Where η∗Y and ϵ∗FY are defined by post composition with ηY , ϵFY :

Y GFY FGFY FYηY ϵFY

Notice that the composition MorC(X,GFY ) MorD(FX,FGFY ) MorD(FX,FY )
F∗

∼

ϵ∗FY

is

the usual morphism of hom-sets by the adjunction of F and G, and in particular is an isomorphism.
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Diagram 5 commutes, i.e., F∗ = η∗FY ◦ F∗ ◦ η∗Y : MorC(X, Y ) → MorD(FX,FY ) by the unit-counit
relation:

FY FGFY FY
FηY

IdFY

ϵFY

Therefore, F∗ : MorC(X, Y ) → MorD(FX,FY ) is an isomorphism for some X, Y if and only if η∗Y
is an isomorphism. Therefore, F is fully faithful if and only if η∗Y is an isomorphism for all Y . By
Yoneda, F is thus fully faithful if and only if η is an isomorphism.

Exercise 8. Give an example of a diagram of commutative rings whose colimit in the cate-
gory of commutative rings is different from its colimit in the larger category of rings (and ring
homomorphisms).

Proof. Z[x] is the free ring with one variable and also the free commutative ring with one variables.
Let I be the diagram

Z[x] Z[x]

so colim−−−→I
= Z[x] ⊔ Z[x] is the coproduct of Z[x] with itself (in the corresponding categories). In

CRing, Z[x]⊔Z[x] ∼= Z[x, y] since Z[x, y] is the free commutative ring in 2 variables. To show that
Z[x, y] ̸= Z[x]⊔Ring Z[x], it suffices to show that there is ring R and morphisms φ1 : Z[x]→ R,φ2 :
Z[x] → R such that for any ring homomorphisms ι1, ι2 : Z[x] → Z[x, y], there is no ψ making the
following diagram commute:

Z[x] Z[x]

Z[x, y]

R

φ1

ι1

φ2

ι2

̸∃ψ

Let R be any noncommutative ring with a, b ∈ R such that ab−ba ̸= 0. Define φ1, φ2 : Z[x]→ R by
φ2(x) = a, φ2(x) = b. In order for the diagram to commute, ψ(ι1(x)ι2(x)−ι2(x)ι1(x)) = ab−ba ̸= 0,
but since Z[x, y] is commutative this is impossible.

Exercise 9. Let f : M → N and g : N → M be two R-linear homomorphisms of R-modules
such that idM −gf is invertible. Show that idN −fg is invertible as well and give a formula for its
inverse. [Hint: You may use Analysis to make a guess.]

100



Proof. Using analysis as an intuition, we write the nonsense equations

1

idM −gf
= idM +gf + gfgf + . . .

1

idN −fg
= idN +fg + fgfg + . . .

Letting h = 1
idM −gf , we thus write

idN +fhg = idN +fg + fgfg + · · · = 1

idN −fg

It is straight forward to check that idN +fhg is in fact (idN −fg)−1:

(idN −fg)(idN +fhg) = idN −fg + f(h(gf − idM))g = idN

(idN +fhg)(idN −fg) = idN −fg + f((gf − idM)h)g = idN

Exercise 10. Consider the real algebra A = R[x, y] = R[X, Y ]/(X2 + Y 2 − 1) where x and y are
the classes of X and Y respectively. Let M = A(1 + x) + Ay be the ideal generated by 1 + x and
y. (This is the Möbius band.)

(a) Show that there is an A-linear isomorphism A2 ∼−→ M ⊕M mapping the canonical basis to
(1 + x, y) and (−y, 1 + x).

(b) Show that there is an A-linear isomorphism A
∼−→M⊗AM mapping 1 to ((1+x)⊗(1+x))+y⊗y.

Proof. (a) The existence of such an A-linear homomorphism ψ is immediate from the universal
property of A2 as a free A-module. Thus, it remains to show it is an isomorphism onto its
image. First we show that ψ. Notice that A is an integral domain since X2 + Y 2 − 1 is
irreducible by Eisenstein (considering X2 + Y 2 − 1 as a polynomial in X and that Y − 1 is a
prime in R[Y ] dividing the constant term once). Let a, b ∈ A, and suppose that ψ(a, b) = (0, 0).
This implies that a(1 + x) + by = 0 and −ay + b(1 + x) = 0. Multiplying both equations by
1 + x, y yields the equations

(1) : by(1 + x) = −a(1 + x)2 (2) : ay(1 + x) = −by2

(3) : ay(1 + x) = b(1 + x)2 (4) : by(1 + x) = ay2

Combining equations (1), (4), we have:

−a(1 + x)2 = ay2
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If a ̸= 0, then this implies (1 + x)2 = −y2 since A is a domain. Equivalently, that Y 2 +X2 +
2X + 1 ∈ (X2 + Y 2 − 1) ⊂ R[X, Y ]. But this is not true, for instance by plugging in X = 1
and Y = 0. Therefore a = 0. Similarly, combining equations (2) and (3) yields

−by2 = b(1 + x)2

If b were not zero, then since A is a domain this would imply y2 = −(1 + x)2. But by the
same reasoning this is not true, so b = 0. Thus, ψ is injective.

To show ψ is surjective it suffices to show that (1 + x, 0), (y, 0), (0, 1 + x), (0, y) are in its
image. Since (1+ x, y), (−y, 1+ x) are clearly in the image of ψ, it suffices to show that (y, 0)
and (0, y) are in the image of ψ. Notice that:

ψ((y, x− 1)) = (y(1 + x), y2) + (−y(x− 1), x2 − 1) = (y + yx− xy + y, y2 + x2 − 1) = (2y, 0)

ψ((x− 1,−y)) = (x2 − 1, y(x− 1)) + (y2,−y(1 + x)) = (x2 + y2 − 1, xy− xy− 2y) = (0,−2y)
Thus (by multiplying by 1/2,−1/2), (y, 0), (0, y) are in the image of ψ so ψ is surjective.

(b) The existence of such an A-linear homomorphism φ is immediate since A is free as a module
over itself. Thus, we only need to show that it is an isomorphism. First we show that φ is
a surjection. Notice that since M is generated as an A-module by 1 + x and y, M ⊗A M
is generated by (1 + x) ⊗ y = y ⊗ (1 + x), y ⊗ y and (1 + x) ⊗ (1 + x). Let us show that
1⊗ (1 + x) ∈M ⊗AM . We have:

φ(1) = (1+x)⊗(1+x)+y⊗y = 1⊗(1+x)2+1⊗y2 = 1⊗
(
1+2x+x2+y2

)
= 1⊗

(
2+2x

)
= 2·

(
1⊗(1+x)

)
This computation showed us two things: (1 + x) ⊗ 1 ∈ M ⊗A M and that y ⊗ y is in the
span of (1 + x) ⊗ 1 ∈ M . Therefore, all the generators of M ⊗A M are in ⟨(1 + x) ⊗ 1⟩, so
M ⊗A M = ⟨(1 + x) ⊗ 1⟩. Therefore, ψ is surjective. Furthermore, M ⊗A M is naturally an
A-submodule of A ⊗A A, and A ⊗A A

∼−→ A by the homomorphism ρ(a ⊗ b) = ab. We have
that the composition

A
φ−→M ⊗AM ↪→ A⊗A A→ A

is defined by 1 7→ 2 · (1 + x) and is therefore injective. In particular, φ is injective, so φ is an
isomorphism.

Exercise 11. Let G be a finite group, ω be a primitive 3rd root of 1 in C and suppose that the
complex able of G contains the row

1 ω ω2 1

Determine the whole complex character table of G, the order of the group and the order of its
conjugacy classes.
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Proof. Let χ1 be the irreducible character of above. Then χ1 ⊗ χ1 gives another character, and
we have the trivial character. By column orthogonality, the last row is of the form a 0 0 − 3/a
for a ∈ Z+ the dimension. Since each entry of the character table is an algebraic integer, we must
have a = 1 or a = 3. But a ̸= 1 since the value of the character at 1 must bound the other values
of the character on other group elements in absolute value. Thus, |G| is the sum of the squares
of dimensions of the irreducibles, and is therefore 1 + 1 + 1 + 32 = 12. Furthermore using column
orthogonality, the size of the conjugacy classes are 1, 4, 4, 3 (going left to right). One can show that
G ∼= A4 using the facts that G/[G,G] ∼= Z/3 and there are 4 conjugacy classes of G.

Exercise 12. Let F be a finite field and K ⊂ F the subfield of an algebraic closure generated by
all roots of unity. Find all simple finite dimensional K-algebras.

Proof. First we show that K = F . Let α ∈ F and let f(x) be its irreducible polynomial over F .
Let L = F (α) so [L : F ] is finite and α ∈ L. Let n = [L : F ] so |L| = qn, where q = |F |. Then
L× is a finite group of order qn − 1, so since α ∈ L×, αq

n−1 = 1. Therefore, α is a root of unity, so
x ∈ K. Therefore, F = K.

Now let S be a simple finite dimensional K-algebra. By Wedderburn, S ∼= Mn(D) for a division
K-algebra D with [D : K] finite. Since K is algebraically closed, there are no finite extensions
D/K for D a division algebra, so S ∼= Mn(K) for some n. Thus, these are the only simple finite
dimensional K-algebras.
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