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Spring 2025

Exercise 1. Let p be an odd prime number and let K be the splitting field of 2? — 1 over Q.
Show that K contains a unique subfield F' such that [F' : Q] = 2 and determine, as property of p,
whether F'is a real or a complex quadratic extension of Q.

Proof. The splitting field of 2”7 — 1 is the pth cyclotomic field which has Galois group (Z/pZ)* =
Z/(p — 1)Z. 1 prove this further below if you haven’t seen it. Therefore since K/Q has a cyclic
Galois group of order p — 1, by the Galois correspondence, there is a unique field extension Lj/Q
for every integer k|(p — 1). In particular since p is odd, 2|(p — 1), so there is a unique subfield F
of K such that [F: Q] = 2. Tt is the fixed field of the unique subgroup H C (Z/pZ)* of index
2. This unique subgroup consists of the elements which are squares modulo p. In particular if we
write ( € K for a non-trivial root of x” — 1, then the element

a=)» "eF

heH

gla)=>Y ¢"=> "=a

heH heH

is fixed by H since for g € H,

Also notice that a is not in Q, since if it were, then it would imply that ¢, (2, ..., (P~! satisfy both
S ¢t=0and > ner ¢" =0, which contradicts that [K : Q] = p— 1. Therefore, F' = Q(c). Thus
to check whether F is real or not, it suffices to check whether « is preserved by complex conjugation
(after a choice of embedding K < C, for instance by ¢ ~ €2™/?). Complex conjugation corresponds
to the element 7 € G defined by 7(¢) = ¢~*. In particular,

() = ZC_h er

heH

Thus, 7(a) = « if and only if —1 € H, i.e., —1 is a square modulo p, and otherwise 7(«) # «, thus
F'is not real. It is an important fact in elementary number theory that —1 is a square modulo p if
and only if p is congruent to 1 modulo 4. Therefore, F' is real if and only if p = 1 mod 4.

Proving that K/Q is Galois with Galois group (Z/pZ)*.

The polynomial 27 — 1 factors as (z — 1)(2P~' + 2P 2 + .-+ + 1) = (2 — 1)®,(x). The polynomial
®,(x) is the pth cyclotomic polynomial and is irreducible. One way to see this is using Eisensteins
criterion with a clever choice of change of coordinates x +— x + 1.

Thus, the splitting field of 2P — 1 is the splitting field of ®,(x). Let K = Q[z]/®,(z), which is a
field since @, is irreducible over Q. Then K has at least one formal root ¢ := [z] € K of ®,(z).
Also, notice that all powers of ¢ also satisfy (¢¥)? — 1. Since ®, is irreducible of degree p — 1,


https://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares
https://en.wikipedia.org/wiki/Eisenstein%27s_criterion#Cyclotomic_polynomials

...., (P71 are Q-linearly independent, and in particular are distinct elements of K. Therefore,
,C2, ..., (P71 are all distinct roots of 27 — 1 in K. Therefore by degree considerations,

P —1=(x—-D(x—-0...(x -
so 2P — 1 splits in K[z]. Thus, K is the splitting field of Q.

In particular, this implies that K/Q is a Galois extension of degree p — 1. Let G = Galg(K).
Since K is the splitting field of the irreducible polynomial ®,(z), G' acts transitively on the roots
of ®,(z) in K, which are ¢,(?,...,¢(?"!. In particular, for each integer k € [1,p — 1], there is an
element o, € G such that o3(¢) = ¢*. Furthermore, this integer & fully determines the element oy,
since K = Q((¢). Therefore, there is a bijection ¢ : (Z/pZ)* — G by k — ox. It is also a group
homomorphism since

2a-5)(€) = 7asl0) = ¢ = ¢*¢" = 0(Qn(Q) = pla) 0 0(8) (¢

and elements of G' are determined by their action on (. O]

Exercise 2. Let R be a UFD. Show that any non-zero prime ideal of R[x] which contains no
non-zero elements of R is principal.

Proof. Let K = Frac(R) the fraction field of R. Let p C Rx] be a prime ideal such that pn R = {0}.
Let f € p of minimal degree, which exists with deg f > 0 since p is non-zero and has no elements
of degree 0. Let ¢(f) be the content of f: the GCD of its coefficients in R (unique up to a choice
of unit). Then we have that f = ¢(f) - u - f’ for f’ having content ¢(f’) = 1, and w a unit in R.
Since p is prime and ¢(f) is not in p, we must have f’ € p. Thus, without loss of generality assume
that f has content 1. Also notice that if f factored non-trivially in K[z| as f = g - h, then it would
also factor non-trivially in R[x] by Gauss’ lemma. By primality of p, then one of g, h would be in
p, contradicting the minimality of deg f. Therefore, f has content 1 and is irreducible in K[z], and
is thus irreducible in R[z].

We claim that p = (f). Suppose that there were g € p such that f did not divide g. Then by the
division algorithm, in K [z] there would be p, ¢ € K[x] such that

g(z) = p(z) f(x) + q(z)

for deg ¢ < f and ¢ non-zero. After multiplying by an element o € R such that ap(z), aq(z) € R[x],
we have

ag(z) = ap(z) f(z) + aq(z)

for ap(z),aq(x) € Rlz]. Since ag(x),ap(z)f(x) are all in p, so is ag(z). But then p contains a
non-zero element ¢ of degree less than f which is a contradiction. O



Exercise 3. Show that the alternating group A, has a unique irreducible representation of degree
3 over C and compute the character of this representation.

Proof. Clearly it’s enough to just compute the whole character table of A4. Notice that |Ay] =
41/2 = 12. The fact that they told us there is an irreducible representation of degree 3 is a nice
hint: we know > . dim x? = 12, so this tells us there are 4 irreducible characters with dimension
1,1,1,3.

xirr

First we compute the conjugacy classes of A4. A computation shows that the following sets consist
of elements which are conjugate:

Cy = {1}, O = {(12)(34), (13)(24), (14)(23)}
Cs = {(123), (134), (142), (243)}, Cy = {(132), (124), (143), (234)}
To show that these are the conjugacy classes, it suffices to show that (123), (132) are not conjugate

in A4. This is a bit of a pain. In general, a conjugacy class in S, splits in A, if and only if it’s cycle
type consists of distinct odd integers.

Notice that H = C7 U C} is a normal subgroup of A4. Therefore we have a short exact sequence:
1> H— A —Z/3Z —1

And in particular this shows that the abelianization Ay/[A4, A4] of Ay is Z/3Z (this shows that
[A4, Ay is contained in H, but [A4, A4] is a non trivial normal subgroup of A4 so they are equal).
The one dimensional representations of any finite group G are given by the group homomorphisms
G — C* which are given by G/[G, G]. Thus, there are three one dimensional representations of Ay,
which are each trivial on H and send Cj, Cy to a 3rd root of unity. Let w = e2™/3. Then we have
the following character table:

Ci| Cy| Cs| Cy
1 1 1 1
1 |1 |w |w?
1 |1 || w

Then by dimension considerations, the third row must be a three dimensional representation. By
column orthogonality, this determines the final row.

Ci | Cy | Cs| Cy
1 1 1 1
1 |1 |w |w?
1 |1 [w?|w
3 —110 0

Exercise 4. Let R be an integral domain with quotient field F'. Show that if I is finitely generated
as an R-module, then F' = R.


https://groupprops.subwiki.org/wiki/Splitting_criterion_for_conjugacy_classes_in_the_alternating_group

Proof. Of all the commutative algebra theorems to learn for the qual, my favorite for is going up
and going down.

Since F' is finitely generated as an R-module, the inclusion R — F' is an integral extension of
commutative rings. Therefore, the Krull dimension of R is equal to the Krull dimension of F'.
Therefore, every prime ideal of R is maximal. Since R is a domain, (0) is prime and thus maximal,

so R/(0) is a field, i.e., R is a field.

A more hands on solution: suppose there exists a non-zero o € R such that a=! € F is not in R.
Since F is a finitely generated R-module, o' is integral over R. Therefore, R[a]/R is an integral
extension. Thus, there is some n and elements a,_1,...,ay9 € R such that

a " a1+ ag =0
Multiplying by a™~!, we have
-1

at=—a,1—ayo0— —aa* ' €ER

so a~! € R. Thus, R is a field. O

Exercise 5. Let GG be a p-group for p a prime. Let F' be a field of characteristic p. Show
that the only irreducible representation of G in finite dimensional F' vector spaces is the trivial
representation.

Proof. We proceed by induction on |G|. For |G| = 1, a subrepresentation of F' is just a subspace
of F. The only non-zero vector space without proper subspaces is the trivial one, so the only
irreducible G-representation over F'is the trivial representation.

For induction, assume that for all p-groups G’ with |G'| < |G|, the only irreducible representation
of G' is the trivial one. Let V = F" be a representation of G of dimension greater than 1. Since G
is a p-group, it has non-trivial center, so take 1 # g € Z(G).

V being a G representation is equivalent to there being a group homomorphism p : G — GL(V). In
particular, notice that p(g) has minimal polynomial dividing /¢l — 1 since p(g!°!) = p(g)I¢l = Id.
In particular we see z/¢l — 1 = (z — 1)/ since F is characteristic p. Therefore, the only eigenvalue
of p(g) is 1. In particular, the subspace W C V of 1-eigenvalues of p(g) is non-zero. If W =V,
then p(g) acts on V trivially. This would imply that p factors as a morphism p : G/{g) — GL(V)
since g generates a normal subgroup of G. But then V' is a G/(g)-representation and thus has a
non-trivial subrepresentation by induction.

Thus, W C V is a non-trivial subspace of V. Furthermore for all h € G and w € W, we have

so g(h-w) = h-w, so h-w € W. Therefore, W is a non-trivial subrepresentation of V" as desired. [
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Exercise 6. Let R be a ring and let I’ be the forgetful functor R-Mod — Z-Mod. Determine
with full proofs left and right adjoint functors for F.

Proof. Let us show that as functors R-Mod — Z-Mod, we have an equivalence of functors F' =
Homy (R, —) and an equivalence of functors F' = (R ® —), treating R as a Z-R bimodule. Then by
the tensor-hom adjunction, Homy(R, —) : R-Mod — Z-Mod has a left adjoint R ® — : Z-Mod —
R-Mod, and R ® — has a right adjoint Homz (R, —) : Z-Mod — R-Mod, and so F' has these same
left and right adjoints. Showing these equivalences is straightforward. This exercise is a specific
case of the restriction of scalars functor R-Mod — S-Mod along a ring homomorphism f: S — R
being dully adjoint, with left adjoint extension of scalars: R ®g —, and right adjoint coextension
of scalars: Homg(R,—). Here R is an R-S bimodule via the ring homomorphism f : S — R. See
Wikipedia’s change of rings for details. O

Exercise 7. Prove that the group S5 x Sj is generated by two elements.

Proof. Recall that Ss is generated by 7 = (12),0 = (12345). This isn’t too hard to confirm, since
oro~t = (23),0%r072 = (34),037073 = (45),0%70™* = (51), and it’s not hard to show that these
transpositions generate all the transpositions of S5 and thus all of S5.

Also notice that o = 4% where v = 0% = (14253). I claim that (7,7), (7, 7) generate S5 x S;5. We
have that

(7_7 ’7)2 = (17 0)7 (77 T)5 = (17 T)
which generate the subgroup {1} x S5 C S5 x S5. Furthermore,

(77 ’7)5 = (7-7 1)7 (/77 7)2 = (07 1)

which generates the subgroup S5 x {95} C S5 x S5. Thus, (7,7), (7, 7) generate all of S5 x S5. [

Exercise 8. Prove that the ring of all algebraic integers is not a UFD.

Proof. I will let Z ¢ Q C C denote the ring of algebraic integers. I claim that there are no
irreducible elements of Z - i.e., non-unital elements which cannot be written as a product of non-
units. If o € Z is a non-zero non-unit (and an algebraic integer, i.e., satisfying a monic polynomial
f(x) € Z[z]), then y/a is also an algebraic integer, satisfying f(z?). But a = y/ay/a, and so /a
is a unit if and only if « is: so it is not a unit. Therefore any non-zero non-unit o in Z can be
expressed as a product of non-units, so there are no irreducible elements of Z.


https://en.wikipedia.org/wiki/Change_of_rings

Now notice that Z is not a field. For instance, 2 € Z is not a unit, since its inverse in Q is %, which

is not an algebraic integer - for instance because % satisfies the non-monic irreducible polynomial

27 — 1 in Z[x]. Since Z has non-units but has no irreducibles, it is thus not a UFD. O

Exercise 9. Let A € M,,(F) such that the characteristic polynomial of A is its minimal
polynomial. Let B € M, «,(F') such that AB = BA. Show that B = f(A), where f is a polynomial
over F'.

Proof. Here is a beautiful solution from stack exchange, using the rational canonical form of A. I
didn’t figure it out, below is a solution using Jordan normal form.

Assume for now that F' is algebraically closed. Putting A in Jordan normal form, we can write
" = @j;lw for V; a generalized \;-eigenspace of A for distinct eigenvalues \; € F. Since
B(A— X" = (A—\)"Bv for all A € F and m € N, B preserves generalized eigenspaces of A.
Therefore, with respect to the block decomposition F" = @le V;, we have that B = @le By, is
in block form. For A, \’ distinct eigenvalues of A, notice that Ay — X - I is invertible, as it consists
of Jordan blocks with A — X" on the diagonal. Also, its inverse (Ay — X')~! can be written as a
polynomial gy \(Ay) for gy € F[z] since

((AA—X)+X—)\)n:0

Therefore, if a polynomial f; can be found for each ¢ such that By, = f;(A,), then we can write

B = f(A), fOI‘ f = Zfz : H(x - Aj)ng)\i,/\j (:C)n

i=1 ji

since the polynomial (z — A;)" is zero on the Jordan block A, but (Ax;, — Ai)"(ga;) (Ax)" = I
by definition of gy, ;-

Thus, it suffices to consider A with only a single generalized eigenspace. Also we may assume A
is a single Jordan block since the minimal and characteristic polynomial of A are equal. After
subtracting its main diagonal which does not change whether B commutes with A or not, we may
assume \ = 0, so

01
0 1
0 1
0

If AB = BA, then for e; the elementary column vector with a 1 in the ith position and 0 elsewhere,
Ale; = 0, so A'Be; = BA'e; = 0 for all 4. In particular since ker A” = (e;,...,e;), we have


https://math.stackexchange.com/questions/178604/complex-matrix-that-commutes-with-another-complex-matrix/178633#178633

Be; C (e1,-..,€;), so B is upper triangular. Let B have coefficients b; ;, so b; ; = 0 for ¢ > j. Then

notice that
bir1;, 1<n
AB), ;=< "
(AB);; {0 o

(BA),; = {1 71
“ 0 j=1

Since AB = BA, we have b;;1; = b; j_1 for ¢ <n and j7 > 1. Or rewriting for k = j — 1, this says
that b, = b1 41 for 2 <n and k < n. Thus, B is symmetric along the non-main diagonal and is
upper triangular and is thus a polynomial in A.

The only final detail is to consider when F' is not algebraically closed. We can still write B as a
polynomial f(A) in A with coefficients in F. We may assume f is degree at most n — 1 by dividing
by the minimal polynomial of A. But then 1, A, A%, ... A" ! are F-linearly independent and thus
F-linearly independent since M,,(F) is the same F' dimension. So if any of the coefficients of f are
not in F, then neither is f(A). O

Exercise 10. Let F be a field and let A be a simple F-algebra of dimension n?. Prove that
A = M,(F) if and only if A has a left ideal of dimension n over F.

Proof. First notice that M, (F") has a left ideal of dimension n over F', namely the set of matrices
which contain V' C F™ for dimV = n — 1 in their kernel, or specifically the matrices with entries
a;; = 0 for j > 1. Thus it suffices to prove the if statement.

By Wedderburn’s theorem, A is isomorphic to My (D) for D a finite dimensional division algebra
over F'. Suppose that D # F. We will show that A has no left ideal of F' dimension n. By dimension
considerations, notice that we have k* dimp D = n? so dimp D = Z—i Thus, let I C My(D) be a
minimal non trivial left ideal, so I contains B for B € My(D) non-zero. In particular, I = My(D)-B.

Many statements of linear algebra (theory of modules over a field) apply to linear algebra over a
division ring. In particular, we have that My(D) is the endomorphism ring of D* in D-Mod, and
we can write D* = ker B @ W where B acts on ker B as zero, and B : W — D* is injective. Let
[ = dimp ker B. In particular, we can write:

B:kerBOW — D*=[0 B]

where B; is an injective (full rank) & x [ matrix. Therefore, B; has a left inverse C' : D* — W
which is necessarily D-linear. Therefore,

My(D) - B C My(D) - {g} 0 Bi] = {8 Id?XJ


https://stacks.math.columbia.edu/tag/0744

Multiplying on the left, this implies that

My(D)-B> [0 ('] [8 Idom} =[0 ]

for any k& x [ matrix C’. In particular, I is at least k - [ dimension over D. Since B is non-zero,
[ >0, so I is at least k dimension over D. But then

as desired, since k < n. O



Fall 2024

Exercise 1. Let G be a finite group and k a field of characteristic p dividing the order of G. Is
there any such k, G with an isomorphism of kG-modules kG = M; & M, for M; with dimension 1
over k7

Proof. No. Let M;j be a dimension 1 kG-module, so (up to isomorphism), M; = (k, ¢) for ¢ : G —
k* a group homomorphism. Suppose for contradiction that kG = M; & M; for some kG-module Mj,
so there is a surjective kG-module homomorphism 7 : kG — M; with a section ¢ : M; — kG such
that m o+ = Idy;,. The morphism 7 is non-zero, so (1) # 0. Thus after applying an isomorphism
to M;, we may assume that m(1) = 1 € k without loss of generality. Write ¢(1) in the usual k
basis of kG, so «(1) = > s ae9 for a; € k. Let e be the identity of G. Since ¢ is a kG-module
homomorphism, for all h € GG, we have:

Z o(h)agg = t(p(h)) =u(h-1)=h-u(1) = Zaghg = Z ap-149

geG geG h—lgeqG

Since the set {g}e¢ forms a k-basis for kG, the coefficient of g on each side must then be equal, so
o(h)ag = ap-1, for all g,h € G. In particular setting g = e, we have a;¢(h) = aj-1 for all h. Thus,
we have that «(1) = 3 (97" )arg. Thus,

(1) =7 ( 3 wlg Hag) =D elg ainlg) = 3 7(1)ar = [Glay = 0

geG geG geG

which contradicts ¢ being a section of . O]

Exercise 2. Let p,q be distinct prime numbers and consider the number field K = Q(\/p + 1/q).
Describe all subfields of K and inclusions between them.

Proof. Notice that K contains (/p + \/5)2 = p+ q+ 2,/pq, and thus contains ,/pg. Therefore,
K contains (\/p + /q)/Pq = P\/q + q/P- Since p, q are distinct, subtracting p(,/q + /p) yields
(¢ — p)y/P, and thus dividing by ¢ — p, K contains ,/p. Therefore, K contains /p, /q, and /pq.

Notice that K C Q(y/p,/q) since \/p + /q € Q(1/p, /7). But the above computation shows the

reverse inclusion, so in fact K = Q(y/p,/q). Since [Q[,/q] : Q] = [Q[\/p] : Q] = 2 (by Eisenstein
on 72 — q,7? — p), we thus have [K : Q] < 4 and [K : Q] a multiple of 2, so [K : Q] = 2 or 4.
Notice that since p, g are distinct, the discriminants of Q(,/p), Q(,/q) and Q(,/pq) are all distinct,
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since the discriminant of a quadratic number field Q(y/m) for m square free (and not 1) is equal
to m if m = 1 mod 4 and 4m otherwise (alternatively, in the field Q(,/p), can any element square
to be equal to ¢?). Therefore, K properly contains 3 distinct non-trivial number fields. Therefore,
[K : Q] = 4. Furthermore, notice that K is the splitting field of (z? — p)(2? — ¢) and is thus Galois.
Since K properly contains 3 distinct non-trivial number fields and K/Q is Galois, G = Galg(K)
has at least 3 non-trivial subgroups by the Galois correspondence and |G| = 4. There are only two
groups of order 4 and only one of them has at least 3 non-trivial subgroups, so G = Z /27 x Z/27.
In this case, G has exactly 3 non-trivial subgroups, so the following describes all subfields of K.

K

T
W oD o
\\\\g////

Q VPa)

Exercise 3. Let R be a commutative ring and S C R a multiplicatively closed subset. Con-
struct a natural transformation (in either direction) between the functors Hom S~ R(S™'M, S~ N)
and S™!Hompg(M, N), considered as functors of R-modules M and N. Prove that your natural
transformation is an isomorphism if M is finitely presented.

Proof. See problem 9. Spring 2020. O

Exercise 4. Let K be a field and f : M,,(K) — M,(K) a K-linear ring homomorphism. Prove
that m < n.

Proof. Let m > n, and let f : M,,(K) — M,(K) be a K-linear rng homomorphism, i.e., it
need not send send I, to I,. Let us show that f is the zero morphism so there are no such K-
linear ring homomorphisms. Since f is a K-linear rng homomorphism, f is also a K vector space
homomorphism. Since M,,(K) = K™ as a K vector space and M,(K) = K™, f has non-trivial
kernel so there exists A # 0 € M,,(K) such that f(A) =0. For 1 <14, j < m, define E;; € M,,(K)

1 ifa=ib=j . , .
to be the matrix with coefficients e, = 0 el J. Since A is non-zero, it has some entry
else
a;; # 0. Then notice that for k € [1,m], we have Ey;AE;, = a;;Eg;. Therefore,

F(Buw) = = (B AEw) = - (i) S(A)f(E) =0

v

11



Thus, Eyy, € ker f for all k, so I,,, = >"/" | Ejy, is in the kernel of f. Thus, f = 0 as desired. O

Exercise 5. Let A=R[X,Y]/(Y? — X*(X +1)).
(a) Prove that A is a domain.

(b) Suppose that A C B is an integral extension with B = R[Z, ..., Z,] a polynomial ring over
R. What is d?

Proof. (a) A is a domain if and only if the ideal (Y2 — X?(X + 1)) is prime. Since R[X,Y] is
a UFD by Gauss, it suffices to show that Y? — X?(X + 1) is irreducible. Let B = R[X] so
R[X,Y] = B[Y]. Notice that B is a UFD (in particular a PID) and X + 1 is prime. Then,
Y? — X?(X + 1) satisfies Eisenstein’s criterion with respect to the prime X + 1 and is thus
irreducible. Thus, A is a domain.

(b) Recall that integral extensions preserve Krull dimension. Thus, d must be equal to dim A
since dimR[Z;,...,Z4 = d. Thus it suffices to compute dim A. There is an injective R-
algebra homomorphism R[X] — A defined by X +— [X] by universal property of R[X] as a
free R-algebra. The kernel of this map is (Y? — X2(X + 1)) NR[X] = (0), so it is injective.
Thus we have

R[X] C A

I claim this is an integral extension. Since A is generated as an R[X]-algebra by Y, it
suffices to show Y is integral over R[X]. But Y satisfies a monic polynomial in (R[X])[T], so
dim A = dimR[X] = 1.

We can actually explicitly write A C R[t]. Since A is a domain, let K = Frac(A), so A C K.
Let t = Y/X € K. Then notice that t* = Y?/X? = X + 1, so R[t] C K contains X, and thus
also Y = (t* — 1)t. Therefore, A C RJt].

O

Exercise 6. Let G be the group of 3 x 3 complex matrices of the form

a1 0 0
az az 0
a31 dasz2 G33

with nonzero entries on the diagonal. Show that G is solvable.

12



Proof. (Ilike upper triangular more:) First notice that the transpose map GL,,(C) 5 GL,(C) is an
isomorphism between GL,,(C) and GL,(C)°?. Since for a group G, both G and G°P are isomorphic
as groups by g — ¢!, it suffices to show that the upper triangular matrices are solvable.

To show that G is solvable, it suffices to show that there is a short exact sequence

l1-N—G—-G/N—=0

for N < G such that N is solvable and G/ N is solvable. Notice that there are group homomorphisms

G2 Cfor1 <k <3 by ¥r(A) = ap (such set maps certainly exist, and we verify that
Ur(A)Yp(B) = Yr(AB)). Let

1 a b
N:{ 01 ¢ ‘a,b,ceC}
0 0 1

Notice that N is normal since it is the intersection of the normal subgroups ker 11 (A), ker ¢5(A), ker ¢3(A).
Furthermore, G/N is abelian and thus solvable since it is isomorphic to C* x C* x C*. Thus, it
suffices to show that NV is solvable. Consider

10 d
H:{Olo‘deC}
00 1

Let us show that H is normal in N. Notice that we have group homomorphisms @1,y : N — C
by ©1(A) = a, p2(A) = ¢ with notation as above. The intersection of their kernels is thus a normal
subgroup of N, which is exactly H. Thus we have

l1-H—N-—N/H—0

Notice that N/H = Cx C (the additive groups) and is thus Abelian. Thus it finally remains to show
that H is solvable. In fact, it is easily seen to be Abelian and isomorphic to C, so G is solvable. [

Exercise 7. Let ' = Q(%) Show that for every field £ containing Q, the ring F' ®gq E is either
a field, a product of two fields, or a product of three fields. Give examples of all three cases.

Proof. Notice that F = Q[z]/(z* — 5) via the map = — /5. For E a field containing Q, we thus
have
F ®q E = Qlz]/(2° —5) ®q E = E[z]/(z* - 5)

Let is prove this isomorphism. There is a map ¢ : Q[z]/(z*—5)x E — E[z]/(2*—5) by p(f,e) = f-e,
with respect to the inclusions Q[z]/(z® —5) < E[z]/(z® —5), E < E[z]/(x® —5), the first of which
exists by the relevant universal properties of Q-algebras. Furthermore, ¢ is clearly Q-bilinear and
thus factors as a Q-algebra homomorphism v : Q[z]/(z* — 5) ®g E — E[z]/(z® — 5). ¢ is clearly
surjective so it suffices to show that ¢ is injective. Since ¢ is the composition of multiplication in
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Elx]/(2* — 5) with inclusions, it suffices to consider when f -e € (23 —5) C E[z] is satisfied for
f € Q[z] C Elx] and e € E C E[z]. Since e is a unit in E[z], this is equivalent to when f € (2°—5).
Since (* — 5) g N Qz] = (2° — 5)gp), [ € (#® — 5) gy if and only if f € (2% — 5)g. Thus, the
kernel of 1 is trivial.

Suppose that z® — 5 factors into irreducibles in E[x] as ¢i(z)...g,(z). Since Q is characteristic 0,
each of the g; are distinct. Furthermore, » < 3. Thus by Chinese remainder theorem (and since
E[z] is a PID):

F ®q E = Elz]/(2° - 5) = Ela]/g1 x -+ x Elz]/g,

Furthermore, each of the E[z]/g; is a PID. Thus, F' ®g E is a product of one, two, or three fields,
and this number is determined by how many primes x® — 5 factors into in F[x]. Notice that in Q,
2% — 5 is irreducible, so F' ®q Q is a field (for a non-trivial example, Q[v/2] works also since 5 has
no cube root in Q[v/2]). In F, 2% — 5 partially splits as (x — v/5)(z% + z+v/5 + v/25), and splits no
further since the roots of 22 + zv/5 + /25 are strictly complex and F' C R. Therefore, F' ®q F is
a product of two fields. Finally, ® — 5 fully splits in C by FTA, so F ®q C is the product of three
fields, each isomorphic to C. m

Exercise 8. Let R be a commutative ring and M an R-module. Suppose that the functor
F : R-Mod — R-Mod defined by F(X) := Hompg(M, X) has a right adjoint. Show that M is
finitely generated as an R-module.

For the dual question (with tensor products) which has a nicer general answer, see problem &, Fall
2021. This solution was helped by this math overflow post and this stack exchange post.

Motivation for the solution: If Homg(M,—) has a right adjoint, then Homg(M, —) is exact,
so M is projective. Clearly this is not enough, since there are projective modules that are not
finitely generated. Another key property of having a right adjoint is preserving colimits, so we
need to find a colimit that Hompg(M, —) will not preserve unless M is finitely generated. Since
arbitrary colimits are “generated” by coequalizers (suffices to preserve cokernels in an abelian cat-
egory) and coproducts, we consider each separately. Since Hompg(M, —) is exact by assumption,
Hompg (M, —) will preserve coequalizers automatically. Thus, we need a coproduct [[A; of R-
modules such that Hompg(M, [[ 4;) # [[, Homg(M, A4;). In particular, we have a natural map
[[, Hompg(M, A;) — Homp(M, [T A;) by (¢i) — ¢, where p(m) = (p;(m));. This map is clearly
injective, so we show it is not surjective for some choice of {4;};. This amounts to finding a
morphism 1 : M — ][, A; such that infinitely many of the compositions M — [[, A; — A; are
non-zero (but since it has image in [ [, A;, ¥(m); is non-zero for only finitely many i for any m € M)

Proof. We proceed by contradiction, so assume that M is not finitely generated. We show that
Hompg (M, —) does not preserve coproducts. First we show that since M is not finitely generated,
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there exists an increasing sequence N1 C N, C ... of proper submodules of M whose union is equal
to M.

Let S be the set of submodules N C M such that M/N is a finitely generated R-module. S is
nonempty since (0) € S. Furthermore, S contains every principal ideal, since if M /(m) were finitely
generated, M would be. Thus, S has no maximal element, since any maximal element then must
contain every m € M, but M/M is (trivially) finitely generated. Therefore by (the contrapositive
of) Zorn’s lemma, there exists a chain Ly C Ly C ... with L; € S with no upper bound in S. In
particular, L = |J,.; L; is a submodule of M not contained in S, so M/L is finitely generated, say
by x1,...,x, for z; € M. Then letting K = (z1,...,x,) be the submodule of M generated by
Z1,...,%n, the chain L1 + K C Ly + K C ... has union L + K = M, but none of the modules
L; + K are equal to M since M/L; is not finitely generated.

Thus, let N; C Ny C ... be a chain of proper submodules of M whose union is equal to M. There is
a morphism ¢’ : M — [[, M/N; induced by the quotient maps M — M/N;. Since |J;=, N; = M, for
any m € M, m is contained in infinitely many of the N;. Therefore, ¢'(m) € [[, M/N; is non-zero
in only finitely many indices . Thus, treating [[, M/N; C [[, M/N; in the usual way, ¢ restricts
to a function ¢ : M — [[, M/N;.

By the universal property of coproducts, there is a unique R-module homomorphism

]O_O[ Hompg (M, M/N;) 2 Hompg(M, ]o_O[ M/N;)

=1 i=1

defined elementwise by
(i s M = M/N)E, = (mo (pilm)2)))

To show that Hompg (M, —) does not preserve coproducts, it suffices to show ® is not an isomorphism.
The image of ® in Hompg (M, [ [;2, M/N;) are the maps M — [[:2, M/N; where all but finitely many
of the compositions M — M /N; are zero. Notice that 1 does not have this property, since all of
the submodules N; C M are proper. Thus, ¥ ¢ Im®, so ® is not surjective.

O

Exercise 9. Let F be a field of characteristic # 2, and let a,b € F*. Let A := F(i,5)/(i* —a, j* —
b,ij + ji). Show that A is a simple algebra with center F'. You may use the fact that dimp A = 4.

Proof. Solution by Rhea Kommerell.
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Note that 1,17, j,7j generate A as an F-vector space, so the assumption that F' is 4-dimensional says
that these elements are linearly independent over F.

To show that A is simple, assume it has a nonzero two-sided ideal I. We will show that I = A. Since
I is nonzero, it has some nonzero element ¢; +coi+c3j+caij € I. Then ati(ei+coi+csj+cqij)i € I
SO ¢ + ¢t — c3j — c4ij € I. Adding this to our original element of I, we find 2c37 + 2¢4i5 € 1.
Multiplying on both sides by j, we find 2c3j —2c4ij € I. Then 2¢3j +2c415 +2c3] —2c41) = 4egg € 1.
Since k is not characteristic two by assumption, ¢3j € I. Since j is a unit in A, we are done as long
as cg # 0. If ¢c3 = 0, then ¢42j € I. Since 7 is a unit in A, we are done as long as ¢4 # 0. If ¢4 = 0,
then note that 2cot + 2c4ij = 2c9i € I by following the same argument as above but multiplying by
j on both sides instead. Then since 7 is a unit in A, we are done as long as ¢y # 0. But if ¢ = 0
then our original element of I is just a constant ¢; which is a unit. This completes the proof that
I =A.

Now to show that the center is F', suppose an element ¢y + ot + ¢37 + 427 is in the center. Then
i(c1 + ot + 3] + c417) = (¢1 + ot + ¢35 + c4ij)i so, cancelling ¢1i and caa on both sides, we get
c3tj + cqaj = —c3ij — cqaj. Since ij and j are linearly independent, it follows that c3 = ¢4, = 0. A
similar argument with multiplying by 7 shows that csij + c4bt = —co17 — c4bi, so co = 0. It follows
that the central element lies in F', as desired.

It turns out that this central simple algebra A over k is either a division algebra (non-split case)
or isomorphic to GLo(F) (split case). In particular, A is split if and only if there is a solution
to az® + by? = 1 for x,y € F. Read section 4 of these notes by Keith Conrad for proofs and
discussion. O

Exercise 10. Let G be the (dihedral) group presented by

(z,y | 2° =y = ayzy = 1)

You may use the fact that |G| = 10. Compute the character table of G.

Proof. Since G is presented with two generators z,y, every element of G can be written as a word
in z and y. Since G contains a relation of the form zy = y®z® (in particular, zy = yz 1), every
element of G can be written in the form %" for a,b € Z. Since z has order 5 and y has order 2,
every element of G can be written as 2% for 0 < a < 5 and 0 < b < 2. Since |G| = 10, every
element of G can be written uniquely in this form. Let us compute the conjugacy classes of G.

First we compute the conjugacy classes of the elements {1, z, 2% 23 z*}. Notice x commutes with
each of these elements. Therefore for C,. the conjugacy class of x%, the transitive group action
¥ : G — Aut(Cya) by conjugation has kernel containing z. Since G//(z) is generated by y, coker 1)
is generated by y and thus has order 1 or 2. Therefore, |Cya| = 1 or 2. Clearly the conjugacy class
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of 1is 1. Since yaxy = z* and yz?y = 23, the conjugacy class of z contains {z,z*} and likewise
{22, 23}. Since their conjugacy classes are of size at most two, these must be the conjugacy classes
of these elements.

Finally we observe that z%yxz~% = 2%%y. Therefore since we determined the other conjugacy classes,

{y, vy, 2%y, 23y, z'y} is the final conjugacy class.

Notice that since {1}, {z, 2*}, {22, 23} are conjugacy classes, Z/5Z = (x) < G is a normal subgroup
of G, and G/(x) = Z/27Z. This yields all of the one dimensional representations of G since [G, G] =
(x). Thus we have the first two rows of the table. Now consider the following group homomorphism:

cos(2m/5) —sin(27/5 10
¢ (z,y) = GLa(R) T sin((27r;5)) cos(gw/é))} LN [0 —1}

Notice that ¢(z)® = Id, p(y)? = Id, and p(z)p(y)p(x)p(y) = 1. Therefore, ¢ factors as ¢ : G —
GL2(R). We easily compute the character of ¢ as the third row of the following table. We notice
that (¢,)¢c = 1, so ¢ is irreducible. Finally, we deduce the final row of the character table using

column orthogonality.
{1} | {z, 2"} {2?, 27} {z"y}
1 1 1 1

1 1 1 —1
2 2cos(2m/5) | 2cos(4m/5) | O
2 2cos(4m/5) | 2cos(2m/5) | O
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Exercise 1. Let a be a complex root of 2% + 3 and let K = Q(«).
(a) Show that K/Q is normal.

(b) Compute the Galois group Gal(K/Q).

Proof. Let w = e?™/12 a primitive 12th root of unity. The roots of 2% + 3 in C are:
wV/3,w V3, W V3, w3, V3, w3

Let us show that for o any of the above complex roots, that Q(«) contains all of the roots of 2%+ 3,
so Q(a) is the splitting field of z® + 3. Tt suffices to show that w? € Q(«), since each of the roots
above differ by an integral power of w?. Also, w? = €™/% = 1/2 +iv/3/2, so it suffices to show
that iv/3 € Q(a). Notice that since of = —3, o® = +iV/3, so iv/3 € Q(a) as desired. Therefore,
K = Q(«) is the splitting field of 2% + 3 over Q and thus K/Q is normal.

Now let us compute Gal(K/Q). By Eisenstein, 2% + 3 is an irreducible polynomial, so it is the
minimal polynomial of . Therefore, [Q(a) : Q] = deg(z® + 3) = 6, so [K : Q] = 6. Therefore,
G = Gal(K/Q) is an order 6 group and thus isomorphic to either Ss or Z/6. Notice that v/3 € K,
for instance by (wv/3) - (w''v/3). Therefore, Q(+/3) is a subfield of K and thus corresponds to a
subgroup H of G. Furthermore, Q(3/3)/Q is not normal, since 2> — 3 is irreducible in Q[z] by
Eisenstein, and partially (but not fully) splits in Q(+/3) since the other roots are imaginary and
thus not contained in Q(\d/g) C R. Therefore, by the Galois correspondence H is not a normal
subgroup of G, so GG is nonabelian. Therefore, G = S3. n

Exercise 2. Prove the following two statements.
Every maximal ideal of C[z,y] is of the form (z — a,y — ) for o, 5 € C.
Every maximal ideal of R[z,y] is either of the form:

(1) (z —a,y — pB) for o, 5 € R, or

(2) (l,q) where [ € R[z,y] is linear and ¢ is an irreducible polynomial of degree 2 on either z or y.

Proof.
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(a) By Hilbert’s Nullstenschatz, maximal ideals of C[z,y| correspond (inclusion reversing) to
minimal (proper) Zariski closed subsets of C2. Since every point of C? is closed, the only
minimal closed subsets of C? are points («, 3). The correspondence is by («, 8) — I({(a, 3)})
which is the set of polynomials in Clx,y| which vanish on («, 5). Clearly both x — a,y — 8
are contained in this ideal, and they generate it by polynomial division first in the variable x
and then y.

(b) Since Clz, y] is an integral extension of R[z, y], the morphism ¢ : Spec(C[z, y|) — Spec(R[z, y])
defined by p — p N R[z,y| induced by the inclusion Rz, y] < C|x,y] is surjective. Further-
more, p € Spec(Clz,y]) is maximal if and only if p N R[z, y] is maximal in Rz, y|. Therefore,
all of the maximal ideals of Rz, y] are of the form p N R[z,y] for m = (z — o,y — ) with
a, 8 € C. Consider the sequence

R[z,y] = Clz,y] & C

Where ¢ is the usual inclusion and 7 is defined (by universal property) by z — «a,y — f.
Notice that kertom = p N Rz, y]. Thus, p N R[z,y| consists of the polynomials which are
zero when evaluated in C with x = o and y = . If both «, 5 € R, it is clear by polynomial
division that (xz — a,y — B)r,y generates ker: o m. Thus, without loss of generality assume
that « € C\ R. Since [C : R] = 2, let ¢ be the minimal polynomial of « in R[z]. Clearly
q € kercom. Since a € C\R, there exists some real numbers 7y, 7; € R such that roa+r; = 3.
In particular, I(x,y) = y — rox — 1 € kervom. Let us show that [, ¢ generate ker o 7, which
shows that every maximal ideal of R[z,y| is one of the two described forms. Thus, suppose
p(z,y) € kervom, so p(a, ) = 0 when evaluated in C. Since [ is monic of degree one in ¥,
there exists a real polynomial f € R[z,y] such that p — [f is a polynomial solely in . Thus,
p—Llf € Rlz] and (p — If) evaluated at a is 0. Therefore, since ¢ is the minimal polynomial
of ain R(z], ¢ divides p — I f, so p — If € (l,q). Therefore, p € (I, q) as desired.

Exercise 3. Find all positive integers n such that cos(27/n) is a rational number.

Proof. Let n € Z*, and let { = €*™/™ = cos(27/n) + isin(27/n). Assume cos(27/n) is a rational
number. Then Q(¢) = Q(isin(27/n)). Furthermore, w = isin(27/n) is a root of the rational
polynomial 22 — cos(27/n)? + 1 = 0. Therefore, [Q(isin(27/n)) : Q] < 2, so [Q(¢) : Q] < 2.
Recall that [Q(¢) : Q] is equal to the degree of the nth cyclotomic polynomial ®,,, which is equal
to p(n) for ¢ : Z* — Z* the Euler totient function. Suppose n = pi'...p* for primes pi, ..., px.
Recall that ¢(n) = @(p') ... e(p*) and ¢(p") > 2 for all p,r except for p € {2,3} and r € {1, 2}.
Therefore, the only possible values n for which cos(27/n) is rational are when ¢(n) < 2, which is
only satisfied by the previous note for n = 1,2, 3,4,6. We check by hand that each of these has a
rational value for cos(27/n). O

]
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Exercise 4. Let R be a Noetherian ring. Let I and J be two ideals of R. Show that

Tor®(R/I,R)J) ~ (IN.J)/1J.

Proof. ]

Exercise 5. Prove that a finitely generated projective module M over a local ring (R, m) is free.

Proof. Let P be a finitely generated projective R-module. Let m be the unique maximal ideal of
R, and let k = R/m be the residue division ring. Since P is finitely generated, k @z P = P/mP is
a finitely generated k£ module and is thus free, so there is an isomorphism for some n:

k" Y P/mP
defined by ¢ = ([#1] ... [xn]) for [z;] € P/mP. Let a1,...,x, € P be representatives of these
equivalence classes, and define ¢ : k" — P by ¢ = (xl xn). Let us first show that v is
surjective. We have an exact sequence:
Rt p » cokeryp —— 0

Applying the functor k£ ® g —, which is right exact, we have the following exact sequence:

k™ L k®r P —— k ®p cokerip —— 0

Since 1/} is an isomorphism, by exactness k ®g cokert) = coker®/mcokery) = 0. In particular,
mcoker ¢ = coker v, and coker v is the quotient of a finitely generated module and is thus finitely
generated. Therefore by non-commutative Nakayama’s lemma, since m = J(R), cokery = 0.
Therefore, 1 is surjective. Thus we have an exact sequence:

0 —— kere < s pr Y, p > 0

Since P is projective, this sequence splits. Since tensoring is additive, it preserves split exact
sequence, so k ®r — applied to this split exact sequence is again split exact, and in particular exact:

0 —— k®gkery g p > 0

Since 1& is an isomorphism, k ®p ker ¢ = ker¢)/mker ¢) = 0. Furthermore since the above sequence
splits, ker ¢ is a quotient of R™ and is thus finitely generated, so by non-commutative Nakayama’s
lemma again, ker ¢ = 0. O
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Exercise 6. Let G be a finite group of order 300. Show that G is not simple by considering its
action on its Sylow 5-subgroups.

Proof. Let ns be the number of 5-Sylow subgroups of G, i.e., subgroups of order 25. By the Sylow
theorems, 115|300 and ns = 1 mod 5. Therefore, n; € {1,6} by simple casework. If ns = 1, then the
5-Sylow of GG is unique and thus normal, so G' contains a non-trivial normal subgroup. Thus, assume
that ns; = 6, and let S be the set of 5-Sylow subgroups. G acts transitively on S by conjugation,
which induces a group homomorphism ¢ : G — Sg. Since the action is transitive, v is non-trivial
so 0 < ker) < G is a non-zero normal subgroup. Also, im 1) is a subgroup of Sg. If ¥ were injective
ab absurdo, then |im| = 300, which does not divide |Sg| = 720 and thus ¢ could not have been
injective at all. Therefore, kert) < G so kert < GG is a proper normal subgroup of G. n

Exercise 7. Let GG be a group and H a subgroup of G.
(a) If G is nilpotent, is H nilpotent?
(b) If H is normal in G and G is nilpotent, is G/H nilpotent?

(c) If H is normal in G and both H and G/H are nilpotent, is G nilpotent?

Proof.  (a) Yes. Recall that G is nilpotent if and only if the descending central series Gy = G, G =
G,Gl,...,G; = |G,G;_4],... eventually reaches 0. Let us show that H; C H N G; for all
1 € N by induction, which will show that H is nilpotent. This clearly holds for « = 0. Then
we have that

Higy=[H H]={zyz'y ' |z e Hye H} C{ayzly ' |2 eGye G} =[G,G]=Gip
by induction, as desired.

(b) Yes. Let No =G/H,N, = |G/H,G/H],...,N; = [G/H, N;_1] be the descending central series
of G/H. Let us show by induction that N; C (H - G;)/H, which clearly holds for i = 0. Let
7 : G — G/H be the canonical projection. Thus, for ¢ > 0,

Niyi = [G/H,N;] = {[z]lyllz] [y " | [z] € G/H, [y] € Ni}

since N; C (H-G;)/H, for every [y] € N;, there is a representative y € G; such that m(y) = [y].
Therefore,

Cn(zyz™y ") |2 € Gy € Gi} = (G, Gi]) = 7(Gin1) = (H - Gia) [ H

as desired. Therefore by induction, there is some n such that N, C (H - (1))/H = (1), so
G/H is nilpotent.

(¢) No. Consider Z/3 < Ss.
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Exercise 8.
(a) Let A be a finite abelian group and y a complex character of A. Show that

> Ix(@P < 1A x(1)

acA

(b) Let G be a finite group and A an abelian subgroup of G of index n. Let ¢ be an irreducible
complex character of G. Show that (1) < n (apply part (a) to the restriction of ¥ to A).

Proof.  (a) Since A is abelian, all of the irreducible characters of A are one dimensional, and are
orthonormal with respect to the inner product on complex class functions of A by

<X17 X2 Z X1 X2

aeA

X can be written as a finite sum of irreducible characters, so it is equal to

X =niX1+ -+ NeXk

for xi, ..., xx irreducible characters of A and ny,...,n; positive integers. Then we have:
> Ix(@) = A[(x, x)a = |A|<anx“2mx3>
acA

by bilinearity of ( , )4, we have:

k
=AY ning(xi, x;) 4

ij=1
since the x1,..., xx are orthornormal, we have:

|A\Zn Xis Xi) A ]A|Zn < ]A|an
The last inequality is clear since the nq,...,n; are positive integers. Furthermore, x(1) =

nix(1) 4+ -+ - 4+ nrx(k) = ny + ...nyg since each of the y; are one dimensional, so we have

> Ix(@ < A ()

acA

as desired.

(b) Let ¢ be a complex irreducible character of G. By part (a), we have:

v = ela() < o S (@ € o 3 (o)

acA gelG

since © is irreducible, 1 = (¢, ¢)q = ré;| > ge W(Q)\Z, S0

o i) |' G A

gGG
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Exercise 9. Let A be a finite-dimensional algebra over an algebraically closed field k. Recall that
the Jacobson radical J(R) of a left Artinian ring R is a nilpotent ideal and R/J(R) is semisimple.
Show that the following are equivalent:

(a) The simple A-modules are 1-dimensional.

(b) J(A) is the set of nilpotent elements of A.

Proof. Since A is a finite dimensional algebra over k, it is a finite dimensional vector space over A
and thus a left Artinian & module. Therefore, A is left Artinian over itself so J(A) is nilpotent.
Thus, J(A) is contained in the set of nilpotent elements of A. Also, A/J(A) is semisimple, and thus
by Artin-Wedderburn is isomorphic to a product ring for positive integers nq,...,n, and division
rings D1, ..., D, which are finite extensions of k:

AJJ(A) = My, (Dy) x -+ X My, (D)
Since k is algebraically closed, the only finite extension division rings of k are k itself, so in fact
AJJ(A) = M, (k) x -+ x M,, (k)

for ny, ..., n, positive integers. Let us show that both (a) and (b) are equivalent to ny = -+ = n, =
1.

First notice that any simple module M of A is annihilated by J(A): since J(A) - M is a proper
submodule of M by Nakayama and is thus 0 since M is simple. Therefore, the simple modules
of A correspond to simple modules of A/J(A). Furthermore, since A/J(A) is semisimple, all of
its simple modules appear as direct summands as a module over itself (since A/J(A) surjects onto
every simple module, and that surjection splits since A/J(A) is semisimple), and specifically the
simple modules are the modules M, (k), ..., M, (k) when written in the form above by the Artin-
Wedderburn theorem. Therefore, the simple A-modules all being 1-dimensional is equivalent to
n=---=n,=1.

Let x € A, so x can be written uniquely as (a + (by,...,b.)) for a € J(A) and (by,...,b.) €
M, (k) x -+- x M, (k). Since J(A) is nilpotent, a is nilpotent, so z is nilpotent if and only if
(b1,...,b,) is nilpotent. Thus, J(A) containing all the nilpotent elements of A is equivalent to all
of the rings M, (k),..., M, (k) having no nilpotent elements. This is clearly true if and only if
ny =---=n, =1, as desired. Thus, (a) & ny=---=n, =1« (b) O

Exercise 10. Let F' be a functor from a small category I to the category Ab of abelian groups.
Show that F' admits a colimit by constructing it as a quotient of €, F'(i) where 7 is indexed over
the objects of I.
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Proof. Let f; : F(i) — @, F(i) be the canonical inclusions. Let S be the set of morphisms {6%} ¢,
in F(I), i.e., 0% : F(i) — F(j) is the image of a morphism in I by F. Then, define the abelian
group A by

A=@F@)/(H05@) = filx) | V05 € S.va € F(i))

There are canonical inclusions g; : F'(i) = A by composing f; with 7 : @, F'(i) — A the projection
map. Then (A, {g;}) is a cocone of I. It is straightforward (although tedious) to show that it is
initial in the category of I-cocones in Ab using the universal property of €, F'(i) and the first
isomorphism theorem. O
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Fall 2023

Exercise 1. Let G be a group, let H C G be a subgroup of finite index n > 2, and let = € G.
Prove that [H : HNaxHx '] <n—1.

Proof. Proof 1: inspired by stack exchange. Consider the action of G' on the set G/H x G/xHz ™!
of left cosets of H and xHxz~!. The stabilizer of (H,zHx"') is H NxHz~!'. Also notice that the
orbit of (H,z '(xHxz™")) is of size n, corresponding to the left cosets of H. Thus, either the orbit
of (H,zHx™') is the same (of size n), or is disjoint and thus of size at most n?> —n = n(n — 1).
Either way, [G : HNzHz '] < n? —n which implies [H : H NzHz '] < n —1 as desired.

Proof 2: Let G act by translation on G/xHxz ! by ¢ : G — Autget(G/xHz ™). Then 1 restricts
to an action of H on G/xHxz ™!, which has stabilizer on xHz™! equal to H NzHxz~'. But also, H
fixes the left coset x7!(xHx™1), so the orbit of xHz ™! is either in this orbit and thus size 1 or is
disjoint and thus at most size n — 1. Thus, [H : H NzHx '] = |Orbity, (xHz )| <n —1. O

Exercise 2. Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of A
contains a finite product of nonzero prime ideals.

Proof. Let S be the set of nonzero ideals of A which do not contain a finite product of nonzero
prime ideals. Assume for the sake of contradiction that S is nonempty. Since A is Noetherian, S
contains a maximal element (by inclusion) /. Since I does not contain a finite product of nonzero
prime ideals, [ is itself not prime, so there exist a,b € A\ I such that a-b € I. By maximality of I,

I+ (a) contains a product of nonzero prime ideals p; ... p,, and I+ (b) contains a product gy - - -- Js-
Notice that (I + (a))(I + (b)) = I* + (a)I + (b)I + (ab) C I. Therefore, p;...p,q1...qs C I, a
contradiction. Thus, S is empty as desired. O

Exercise 3. Show that there is an isomorphism of Q-algebras Q[t] ®qp2 Q[t] = Q[z, y]/(2* — y?).

Proof. By universal property of Q[t] being the free Q algebra with one variable, there are Q-algebra
homomorphisms ¢1, @ : Q[t] = Q[x,y]/(2? — y?) defined by t + z,t + y. This induces a map
¥ QY] x Qt] — Qlx,y]/(2* — y?) defined by ¥(p,q) = ¢1(p)p2(q). Since ¢y, @y are Q-algebra
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homomorphisms, ¥ is Q bilinear. Also, v is Q[¢?] balanced since ¢ (t?) = 2% ~ y? = po(t?). Thus ¢
induces a Q-algebra homomorphism ¢ : Q[t] ®qp) Q[t] — Qlz, yl/ (2 —y?) by w(p®4q) = ¢1(p)2(a).

By the universal property of free Q-algebras, there is a unique Q-algebra homomorphism f :
Q[z, y] — Q[t] ®qyz Q[t] defined by f(z) =t® 1 and f(y) =1®¢t. We have that f(2?) =t*®1 ~
1®t* = f(y*), so f factors as a Q-algebra homomorphism p : Q[z,y]/(z* — y*) — Q[t] gz Q[t].
Since z,y generate Q[z,y]/(z* — y?) and t ® 1,1 ® t generate Q[t] @gpz; Q[t], it suffices to check
that wop and pop are the identity on these elements (easy check) to show they are inverses to one
another.

O

Exercise 4. Let K/F be a (finite) Galois extension of fields, and let &K'\ F'. Let E be a subfield of
K containing F' of largest degree over F' such that oo & E. Prove that E(«)/F is a Galois extension
of prime degree.

Proof. Let G = Gal(K/F) and H = Gal(E/F) < G. Since E is a maximal subfield of K not
containing «, by the Galois correspondence, every proper subgroup H' < H of H fixes a. Let
N = Gal(E(a)/F) < H, which consists of all the 0 € H which fix «, which forms a (proper)
subgroup of H. Therefore H has the property that the union of every proper subgroup of H is
the proper subgroup N < H of H. If H were not cyclic, then each h € H would generate proper
subgroup (h) < H and thus be contained in N, a contradiction. Thus, N is a maximal subgroup of
H for H cyclicso N 4 H and [H : N is prime, which by the Galois correspondence means E(a)/E
is Galois and [E(«) : E] is prime.

O

Exercise 5. Let F be a field, and let f(z) = > a;a’ be a polynomial of degree n > 1

with coefficients a; € F. Show that the splitting field of f(z?) over F contains a square root of
(—=1)"apa,*

n °

Proof. Fix an algebraic closure F of F, and let 71, ..., 7, be the roots of f in F so

flx)=a,(z—r1)...(x—ry)

Therefore, f(z?) factors as
f(@®) =an(2* —ry) ... (2% — 1)

Letting s; be a root of 22 — 7; in the algebraic closure, we then have:

f(@?) = an(x —s1)(x+51) ... (2 — sp)(x + 5,)
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In particular, sy, ...,s, € L the splitting field of f(x?) over F and s? = r; for 1 < i < n. Therefore,

n
L>a= Hsi
i=1
and

a? = (ﬁ 5)? = ﬁri = (=1)"apa;"
i=1 i=1

Exercise 6. For a positive integer n let C,, be the category with objects [1,n] := {1,2,...,n} and
morphisms Mor(7, j) an empty set if ¢ > j and a singleton otherwise. For positive integers m and
n, a nonstrictly increasing function f : [1,m| — [1,n] can be viewed as a functor C,, — C,,. Prove
that this functor f has right adjoint if and only if f(1) = 1.

Proof. f having a right adjoint ¢ means there is a natural bijection

%+ More,, (f(2), ) = More, (i, (7))

for all 1 € C,, 5 € C,,. Since the morphism sets are singletons or empty, any such ~ is natural, and
this statement is equivalent to

f(i) <jif and only if i < g(j)

for all i € Cy,,j € Cy,. Thus let us show that such a g exists if and only if f(1) = 1. If f(1) # 1,
then f(1) > 1 but 1 < g(1) for any nondecreasing function g : C;,, — C,,. Thus f does not have a
right adjoint.

Now assume that f(1) = 1. Define g : C,, — C,, by:

9(j) = max{i € G, | f(i) < j}
Notice that this exists since f(1) = 1, so there is always at least one element in the set {i €
Cy | f(i) < j}. Let us show that f is left adjoint to g by showing that f(i) < j if and only if
i < g(j). If f(i) < 7, then g(j) is the value ¢ maximal such that f(i') < j. Thus, f(i) < f(i'),
so i@ < 7. Therefore, i < g(j). If f(i) > j, then g(j) is a value i’ with f(i') < j by definition, so
f(i) > f(i') soi >4 = g(j) as desired.
[

Exercise 7. Let R be a PID and n > 1. Let M be a finitely generated R" -module, where R" is
the product of n copies of R. Show that there exists an exact sequence

0O>P—>Q—M-—=0

27



with P and () finitely generated projective R™ -modules.

Proof. Let A = R". Since M is finitely generated, there is a surjection (for sum m € N) ¢ : A™ —
M. Thus we have a short exact sequence

0—>keryp > A" —- M — 0

Thus let us show that every submodule of A™ is finitely generated projective. First notice that since
R is a PID, it is Noetherian, so R" is Noetherian. Therefore, ker¢) C A™ is finitely generated. Recall
that R"-Mod = R-Mod x R-Mod x --- x R-Mod by M — (e;M,esM, ... e, M) where ey, ..., e,
are the idempotents (1,0,...,0),...,(0,0,...,1) of R". Therefore, ker¢) = (Ny,...,N,) € R-Modx
- X R-Mod for Ny C R, Ny, C R™,..., N, C R™ ideals. If each of Ny,..., N, are projective
in R-Mod, then ker 1 is projective in R"-Mod since projectiveness is a categorical property. Fur-
thermore, (by the classification of FG modules over a PID), each of Ny,..., N, are free and thus

projective, so ker v is projective.
m

Exercise 8. Let A be a domain that is normal (i.e., integrally closed in its quotient field), and
let p be a prime ideal of A.

(a) Show that the localization A, is a normal domain.

(b) Suppose that A is Noetherian and that p is a minimal nonzero prime ideal of A. Show that
A, is a DVR.

Proof. (a) Let k be the fraction field of A, so A C A, C k. Let us show that if m € k satisfies a
monic polynomial in A,[x], then m € A,. Thus, suppose that there exists a;, s; € (A\p) such
that a o a

n-tZnl L0

Sn—1 51 5o

Let « = sg...8, € A\ p. Then we have that

m" +m

an(mn _i_mnil@ _'_ PPN + @
Sp—1 S0

n—1 n

Sn—1 S1 50

Notice that s;|a for 0 < i < n — 1, so the coefficients %:“k € A C k. Therefore, am € k
satisfies a monic polynomial in A|x], so since A is normal am € A. Therefore, since a € A\ p,
& € Ay, so Ay is integrally closed.

(b) A DVR is an integrally closed Noetherian domain with Krull dimension 1. Since the prime
ideals of A, are in bijection with the prime ideals of A contained in p, A, has a unique prime.

A, is Noetherian since A is and is integrally closed by part (a).
O
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Exercise 9. Find the dimensions and characters of all irreducible QQ-representations of the cyclic
group of order a prime p.

Proof. Q representations of Z/p are equivalent to QZ/p modules. Furthermore, QZ/p is a semisim-
ple ring by Maschke’s theorem since Q is characteristic zero. Therefore, all of the irreducible Q rep-
resentations of Z/p appear as direct summands of the regular representation QZ/p = Q[z]/(xP —1).
Notice that 7 — 1 = (z — 1)(2?~! + -+ + 1) is the factorization of #7 — 1 into irreducibles in Q.
Therefore, as a Q[z]/(2? — 1) module with z acting by multiplication by z,

Qz]/(a” = 1) = Qla]/(z — ) & Qla]/ (2" " + - +1)

Since 277!+ - -+1 is irreducible over Q, Q[z]/(zP~'+- - -+1) is a field, and thus is a minimal non-zero
ideal of Q[z]/(2P — 1). Therefore, Q[z]/(z — 1), Q[z]/(zP~ + - - - + 1) are irreducible Q[z]/(x? — 1)
modules and are clearly distinct. Thus, these are the only two irreducible Q-representations, of
dimension 1 and p—1. Let y; be the character of Q[z]/(z —1) and Y5 the character of Q[z]/(zP~! +
-++41). Then x; @ X2 = Xreg the character of Q[z]/(zP — 1), which is x(1) = p and (') = 0 for
0 <! < p. Also, x; is the trivial representation Z/p — Q* by 1 — 1, 50 X2 = Xyeg — X1. Thus,
x2(1) =p—1and yo(z!) = -1 for 1 <l < p.

O

Exercise 10. Let p: G — GL(V) be a finite dimensional irreducible representation of a finite
group G over the field of complex numbers. Prove that for every central element g € GG, the operator
p(g) is multiplication by a scalar.

Proof. Notice that p(g) : V' — V is a CG module homomorphism (a homomorphism of G represen-
tations) since p(g) o p(h) = p(g - h) = p(h-g) = p(h) o p(g) for all h € G. Since C is algebraically
closed and V is finite dimensional, there is a non-zero eigenvector v € V with eigenvalue A € C,
so p(g)(v) = Av. Therefore, p(g) — AIdy : V — V is a CG module homomorphism with nonzero
kernel, so ker(p — AlIdy) is a non-trivial CG submodule of V. Since V is a simple CG module, this
forces ker(p — A1dy) =V, so p is multiplication by A.

O
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Spring 2023

Exercise 1. Let F,F':C — D and G,G" : D — C be four functors such that F is left adjoint to G
and F’ is left adjoint to G'. Establish a bijection between the natural transformations o : F' = F’
and the natural transformations § : G’ = G. [Hint: Use GaG': GFG' — GF'G].

Proof. Letn:1¢ = GF,n' : 1c = G'F', e : FG = 1p,€ : F'G' = 1p be the units and counits of the
adjunctions. Then define a function v from the collection of natural transformations o : F = F’
to natural transformations G' = G by:

Vi) = & 25 qrar Lo qriar =S4 ¢

Similarly, define ¢ from natural transformations g : G' = G to natural transformations F = F”
by:

o(8)= F 2L raF 25 por =4
Let us show that ¢ o ¢(a) = a. We have:
potp(a) =eF o FGEF o FGaG'F' o FnG'F’ o Frf

By naturality of eF”, the following diagram commutes for any object X € C:

FGF'G'F'(X) —2"N , prarpr(X)
PG (x) )
FGF'(X) T, F(X)

Therefore, we have:
=F oel'"G'F' o FGaG'F' o FnG'F' o Fff

By naturality of eF” applied to FGa, we have for any object X in C:

€F(X)

FGF(X) ————— F(X)
FGax ax
FGF'(X) — X pr(X)
Therefore, we have

=F o(eF' o FGao Fn)G'F' o Fif =€ F' o (ao€eF o Fn)G'F' o Fff
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And by unit-counit relations, we have
=dF oaG'F o Frf
Finally by naturality of ag g, the following diagram commutes for all objects X € C:

FG'F'(X) —SX_, P'G'F'(X)

Fn'y F'n'y

F(X) o » F'(X)
Therefore, we have:
=dF oF'noa=a

By the counit relations. By a symmetric argument, 1 o ¢(3) = /8 for all natural transformations
B :G"'= G, s0 1, ¢ are inverses on the level of sets so ¢ is a bijection as desired. O]

Exercise 2. Let p, g be distinct prime numbers and consider the number field K = Q(\/p +,/q).
Describe all subfields of K and inclusions between them.

Proof. Notice that K contains /pg and thus both |/p and /g, so K = Q(\/p,/q). Now we can
check that p is not a square in Q(,/q) explicitly. Suppose let z = a +b,/q € Q(,/q) arbitrary. Then
if 22 € Q, either a = 0 or b = 0. There are no solutions to a? = p or b* = pq, so p is not a square
in Q(y/q). Therefore, [K : Q(\/q)] = 2, so [K : Q] = 4. Also, notice that K is Galois over Q since
it is the splitting field of (22 — p)(2? — ¢). Thus, G = Gal(K/Q) is order 4. Each element o € G is
determined by its action on ,/p, /¢, and must map ,/p to £,/p and /g — £,/q. Since there are
only 4 possible such automorphisms and |G| = 4, each of these choices yields a Q automorphism
of K. Therefore, G = (o,7) with o(\/p) = —/p,0(/7) = V@, 7(y/P) = /D, T(/7) = —/q. We
easily see that G = Z/2 x Z/2 which has 5 subgroups, which by the Galois correspondence gives
the following tower of subfields of K (with inclusions shown):

K

T
W oD o
\@‘z/

Q )
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Exercise 3. Give an example of an infinite field extension K C L such that L has only finitely
many field automorphisms fixing K.

Proof. Example 1: Let L = Q(2'/3,21/9,21/27 ). Then any Q automorphism of L is determined
by its action on 2'/3,21/9 . Furthermore, it must send 2'/3" to another root of 23" —1 in Q. But

since L C R, there is a unique solution to 2*" — 1, so each of 21/3,21/9 . must be fixed by any Q
automorphism of L. So Autg (L) = {Id}.

Example 2: Let K = F,(z0), and let L = Kz, x9,...]/(z} — x;-1). Equivalently, let K; =
Klx]/ (2 — x0), Ko = Ki[zo]/ (25 — x1),... and let L =J;°, K;. It is clear that [L : K] = co. An
element 0 € Autg (L) is determined by its action on each z;. By induction, o(z,) = x, since x,
must be mapped to a pth root of x,,_;, and there is only one. Thus, Auty (L) = {Id.}. ]

Exercise 4. Let M, (K) be the ring of n x n-matrices with coefficients in a field K, for n > 1.
Describe all possible ring homomorphisms M, (K) — K.

Proof. When n = 1, there are many possible X' — K homomorphisms (i.e., Galois theory!). Let

us show that for n > 2 that there are no ring homomorphisms M, (K) K. Suppose such a
existed. Let e;; € M,,(K) be the matrix with all zero entries but a 1 in the ijth entry. Notice that
€ii€ij — €ij€ii = €45, but since K is commutative,

Y(ei;) = Ylew)(eiy) — P(ei)(en) =0

Furthermore, letting j # i, we have that e;;e;; = e;. Thus, ¥(e;) = ¥(e;;)¥(ej;). But notice that
In = Z?:l €, SO

L = (In) = 3 (ei) = 0

which is a contradiction. Thus, such a ¢ cannot exist. O

Exercise 5. Let A be a local commutative noetherian ring and M a finitely generated A-module
such that every exact sequence 0 — M"” — M’ — M — 0 remains exact after tensoring with the
residue field £ of A. Show that M is free.

Proof. Let m C A be the unique maximal ideal of A so A/m = k. Since M is finitely generated,
M/mM is a finitely generated A/m = k module and is thus free. Thus, there is an isomorphism
¥ k" — M/mM defined by ¥(ly, ..., 1) = [mi]ly+- - -+[my]l,, for representatives my, ..., m, € M.
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Then define ¢ : A" — M by ¥(ay,...,a,) = aymi+- - -+a,m,. Let us first show that 1 is surjective.
We have an exact sequence

A Y M » cokery) —— 0

Tensoring with k is right exact, so this yields the exact sequence (using the fact that the functors
®ak and M +— M/mM are equivalent)

Y M /mM —— cokerp/mcokeryp —— 0

Since ¢ is an isomorphism and this sequence is exact, cokert) = mcoker. Since coker) is a
quotient of M, it is a finitely generated A module, and thus by Nakayama’s lemma there exists
m € m such that (1 —m) cokerty = 0. But since A is local, (1 —m) € A*, so coker ¢ = 0. Thus, ¢
is surjective and we have a short exact sequence:

0 — kere - yoAr Y M > 0

By assumption, exactness is preserved when tensoring with k, so we have an exact sequence of k
modules;

0 — kerdp/mkery —— k" —2s M/mM — 0

Since 1) is an isomorphism, kery) = mkert. Since A is Noetherian, and kere is a submodule of
A", ker) is a finitely generated A module. Thus by the same application of Nakayama, ker ¢ = 0
and 1 is an isomorphism. O]

Exercise 6. Let A be a commutative ring and let s € A. Let S = {1,s,s? ...}. Show that the
following assertions are equivalent:

(a) The canonical morphism A 2 S~'A is surjective.
(b) There is N > 0 such that s"A = sV A for all n > N.

(c) For N large enough, the ideal sV A is generated by an element e with ¢ = e.

Proof.

(c) = (b) Since e € sV A, let k € A such that e = sVk. Let us show that for n > N that s"A = sV A.
Clearly s"A C sV A. Thus take some e -a = s™Vka € sV A an arbitrary element of sV A. Let
m € N such that m - N > n. Then we have:

e-a=cma=s"Vkma e s"A
as desired.
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(b) = (a) Take an arbitrary element 2 € S™'A. By assumption, s" ™A = s¥ A, so there is a € A such
that s"*"a = sVb. Then we have that £ = ¢ = 5(a) since:

sN(b—as") =s"b—as"T" =0
Therefore, 7 is surjective.

(a) = (c) Since 7 is surjective, there is some k € A such that (k) ~ 1. In particular, this means that
there is some N such that

sV(sk—1) =0 sV = 5N

Let e = SVEN. Notice that e? = s?VE2V = sVEN = e. Also, k generates SV A since for any

sVa € sV A, we have esVa = s*VkNa = sVa.

O

Exercise 7. Let k be a field and let A = k[X,Y]/(X?, XY, Y?).

(a) Determine the invertible elements of A.
(b) Determine the ideals of A.

(¢) Determine the principal ideals of A.

Proof. Notice that k[X,Y] as a k-vector space has basis the polynomials X™Y™ for m,n € N. The
ideal (X2, XY, Y?) is a k-vector space of k[ X, Y] with basis all the polynomials X™Y™ for m+n > 2.
Therefore since quotients commute with the forgetful functor Ring — k-Mod, A is a 3 dimensional
k-vector space with basis X,Y, 1. Thus, any equivalence class in A can be identified uniquely with
an element of the form aX + bY + ¢ for a,b,c € k. The multiplication between such elements is
obvious.

(a) An element aX + bY + c is invertible if ¢ # 0, with inverse ¢ '(1 — aX/c)(1 — bY/c). An
element aX + bY is not invertible since (aX 4+ bY)(a’X + 'Y + ') = (daX + bY) # 1.

(b) and (¢) An ideal of A is also a k subspace of A. Let V = (X,Y), C A be the k span of X,Y.
A\V = A* by part (a), so any non-unital ideal of A us a k-subspace of V. Let us show that
all such subspaces are in fact ideals of A. This is clear for (0). Let W = (aX +bY), C V
be a one dimensional k subspace of V. It suffices to show that the generator of W is closed
under left multiplication by A:

(X +0Y +)(aX +bY)=aX +bY e W

Thus, each of the one dimensional subspaces of V' are principal ideals of A. (0) and A are
clearly principal ideals of A. The only remaining possible ideal is V' itself, which is clearly
an ideal by the above computation. V is not principal since we showed that for all v € V
non-zero, (v) C Ais a 1 dimensional subspace W of A (and thus not V).
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Exercise 8. Let GG be a finite group and let p be the smallest prime dividing the order of G. Show
that a subgroup H < G of index p must be normal.

Proof. Let G act on left cosets of H. Standard proof. O]

Exercise 9. Let G be a non-abelian finite group of order pg where p and ¢ are prime numbers
with ¢ > p. Determine the degrees of the irreducible characters of GG, and determine the number of
irreducible characters of a given degree.

Proof. Since g > p, there is a unique ¢-Sylow, and thus G = Z/q % Z/p for ¢ a non-trivial
homomorphism Z/p — Aut(Z/q). Such a homomorphism exists if and only if p|(¢—1), so p|(g—1).
The degree of an irreducible character of G divides |G|, and thus the possible degrees of irreducible
characters of GG are 1,p, q, and pq. Since the sum of the squares of the degrees of the irreducible
characters of G is equal to |G| and (pg)* > ¢* > pq, the irreducible characters of G are all degree
1 or p. Thus let us count the number of degree 1 irreducible characters of G. Every degree 1
representation of GG is automatically irreducible. The degree 1 representations of GG are the group
homomorphism G — C*. Since C'* is Abelian, each such representation factors through G/[G, G],
so it suffices to find all group homomorphisms G/[G,G] — C*. Since G is non-abelian, [G, G] is a
non-trivial normal subgroup. Also, [G, G] is contained in the ¢-Sylow N = Z/q by construction of
the semidirect product, so |G, G] = Z/q since the only non-trivial normal subgroup of G contained
in N is N itself. Therefore, the degree 1 representations of G are given by all group homomorphisms
G/|G,G) = Z/p — C*. There are p such representations, by 1~ e>™*/? for 0 < k < p. Therefore,
there are p degree 1 irreducible characters of G. Suppose there are k degree p irreducible characters
of G. Since the sum of the squares of the degrees of the irreducible characters of G is equal to |G|,

kp® +p =pq = |G|

Therefore, G has p degree 1 irreducible characters and q;fl degree p irreducible characters. O

Exercise 10. Let A be an artinian ring and let M be an A-module. Let B = Ends(M). Let
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f € B such that f(M) C Rad(A) - M, where Rad(A) = J(A) is the Jacobson radical. Show that
f € Rad(B).

Proof. To show that f € Rad(B), it suffices to show that (1 — fob) € B* for all b € B. Let
g = fob. Notice that g(M) = fob(M) C f(M) C Rad(A) - M. If we show that g is nilpotent
(there exists n € N such that g" = 0), then 1 — g is invertible with inverse 1+ g+ -- -+ ¢"~!. Thus,
let us show that g is nilpotent. Notice that

g*(M) = gog(M) C g(Rad(A) - M) = Rad(A)g(M)
since ¢g is an A module endomorphism. In particular applying the above n times, we have
9" (M) C (Rad(A))"(M)

Thus, it suffices to show that Rad(A) is nilpotent. This is a standard exercise for artinian rings
which we repeat here. Since A is artinian, the descending sequence Rad(A) O Rad(A)? D ... is
eventually constant. Thus, there is some n such that Rad(A)" = Rad(A)"™. Since A is artinian
it is also Noetherian by Akizuki-Hopkins-Levitzki, and thus Rad(A)" C A is a finitely generated A
module and thus by noncommutative Nakayama Rad(A)" = 0.

Note: usually (or at least in the course this year) we use that J(A) is nilpotent to prove Akizuki-
Hopkins-Levitzki, so this argument would be circular. That being said, on the qual you should
assume major theorems if it makes things easier. But we don’t need Akizuki-Hoplins-Levitzki:

Let I = Rad(A)" so I? = I. For contradiction assume that I # 0, there is a left ideal K such that
I- K # 0. Take a minimal such K, so K = () for some z € A. Then I%- (z) = I(I - (z)) =1 (x),
so by minimality / - (z) = (x). By noncommutative Nakayama and I C Rad(A), (z) = 0. O
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Fall 2022

Exercise 1. Find all subfields of the field F' = Q(2'/3, 3'/3).

Proof. First notice that Q(+v/2,v/3,w) is the splitting field of 2 — 2,23 — 3 for w = *™/3. Let
us show that [Q(+/3, v/2) : Q(v/3)] = 3, which will imply that Gal(Q(¥/2, v/3,w)/Q) is a group of
order 18 since [Q(+/3) : Q] = 3 by Eisenstein and [Q(+/3, ¥/2,w) : F] = 2 since F is purely real and

w has an imaginary component.

We will explicitly show that 2® — 2 has no roots in 23 — 3. There are better ways to do this
- ramification theory is the best (I don’t know it yet). Let a 4+ bv/3 + ¢v/9 = 2 € Q(+/3) be an
arbitrary element with 2® = 2. After multiplying by the common denominators of a, b, ¢ and dividing
by any common divisor, assume that a, b, ¢ are coprime integers such that 23 = 2k3 for some k € Z*.
Considering the coefficient of 1 and +/3 in their product, we have a® + 3b* + 9¢* 4+ 18abc = 0 mod 2
and a?b + 3ac? + 3b%c = 0 mod 2. In particular,

a®+ b+ =0mod 2

a’b + ac® + b*c = 0 mod 2

The only solutions to a?b+ ac? +b%*c = 0 mod 2 are if all of a, b, ¢ are even or if exactly two are. But
a, b, c are coprime by assumption, so exactly two of them are even. But then a®+ 0%+ ¢® = 1 mod 2,
a contradiction. So #* — 2 has no roots in Q(+/3) and is thus irreducible.

Thus, G = Gal(F(w)/Q) is order 18. Also, every element of G must send v/3 to another root of
2% — 3 and likewise for w with 22 + 2 + 1 and /2 with 2® — 2. There are thus 18 total choices
for any element of GG on these three elements. Furthermore, any element of G is determined by its
action on v/3, ¥/2, and w, so every choice of permutation of the roots of these polynomials yields an
element of G. Thus we can explicitly write a generating set of G:

a: V2 V2,3 wV3,w i w Bzwﬁw%,%%%,wr—)w
viV2 V2, V3 V3w w?

It is then easy to compute that o® = 83 = 42 = id, afa™t = 8, yvay = o™, 8y = 371, By order

considerations, this describes G completely as (Z/3 x Z/3) X, Z/2 with ¢ : Z/2 — Aut(Z/3 x Z/3)
by ¥(1)(a,b) = (—a, —b). The subfields of F' correspond to the subgroups of G containing w. There
are the subgroups G, (v), and 4 subgroups of order 6: {(a,7v),(8,7), {afB,7), (aB? 7). The fixed
fields G'7 of these groups contain Q(v/2), Q(v/3), Q(v/6), Q(+/12), and since z° — a is irreducible by
Eisenstein for a = 2, 3,6, 12, these are exactly the fixed fields by degree considerations. Thus, the
subfields of F' are these four fields, F' itself, and Q. m
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Exercise 2. Let P(z) = 2% + 3.
(a) Find the splitting field of P.

(b) Determine the isomorphism type of the Galois group of P over Q.

Proof. (a) %+ 3 is irreducible over Q by Eisenstein’s criterion, or since —3 is not a square in Q.
The roots of 2 + 3 (fixing an embedding Q — C) are:

6 6 6 6 6 6
wv/3, w3, w3, w3, W V3, w3

for w = e™/6 @ a primitive 6th root of unity. Clearly the splitting field P contains

F = Q(wv/3) = Q(z)/(P(z)). Let us show this is the splitting field of P by showing that
w? € F, and thus every root of P. Notice that w? = e™/3 = # Also notice that

(wv/3)? = w?V/3 = iV/3, and thus F contains w? as desired. Thus, F is the splitting field of
P.

(b) Since [F' : Q] = 6, the Galois group of P over Q is order 6 and thus is either Z/6Z or Ss.
Notice that F' > (wv/3) - (w'V/3) = /3. Therefore, F D Q(+/3). Also notice that Q(v/3) is
not a normal extension of Q since the polynomial 2® — 3 is irreducible over Q but does not
split over Q(3/3) C R since the other roots of #* — 3 are imaginary. Therefore, Gal(F/Q) is
not Abelian, so Gal(F/Q) = Ss.

]

Exercise 3. Let GG be a finite group, p a prime number and H a subgroup of G with [G : H| = p.
Assume that no prime number smaller than p divides the order of G. Show that H is normal in G.

Proof. Let S be the set (of size p) of left cosets of H, and let G act on S by left translation. This
induces a homomorphism ¢ : G — S, with ker¢p C H. We have that |G| = | ker¢||im|, so

|G|’|ker@/}|p!. Since (p — 1)! is relatively prime to G, |G|‘|ker@/1|p. In particular, |G| < |ker|p <
|H| - [G: H]. But |G| = |H|-[G : HJ, so |kery| = |H| and kert¢) = H, so H is normal in G. O

Exercise 4. Let p be a prime number at least 3. Find a set of representatives up to conjugation
for the group GL(2,Z/p) of 2 x 2 invertible matrices.
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Proof. By Jordan canonical form, every matrix A € GL(2,Z/p) with characteristic polynomial
(x — A1) (z — Ag) for A1, Ag € Z/p is conjugate to exactly one of the following:

{ Pol AOJ ’(Al,AQ) € (F/p*)*/ (A1, A2) ~ (A%Al))}

U 3 e}

Thus, the remaining matrices have irreducible characteristic polynomial, and are thus conjugate to
exactly one of the following by Rational canonical form:

{2

2% + bz + a irreducible in T, [x]}

Exercise 5. Let G be the group presented by G = (a,b | a* = 1,0? = a?,bab™' = a™!). You may
use that G has order 8. Compute the character table of G.

Proof. There is a surjective group homomorphism G — H for H the quaternions, and is an isomor-
phism since |G| = |H| = 8. Since H has 5 conjugacy classes, there are 5 irreducible representations
of H (up to isomorphism), and the sum of the squares of their dimensions is 8. Thus, exactly 4 are
one dimensional and one is two dimensional. The one dimensional representations are easy enough
to find. Orthogonality gives the two dimensional representation.

WO [ ][ Gy | (k&)
1 1 1 1 1
1 1 -1 -1 1
1 1 -1 1 -1
1 1 1 -1 -1
2 -2 0 0 0

Exercise 6. Let G be a finite group, let V' be a finite-dimensional complex vector space and let
m : G — GL(V) an irreducible representation. Let H be an abelian subgroup of G. Show that
dimV < [G: H].
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Proof. Let us show that if dim V' > [G : H] is a representation of G it admits a proper subrepresen-
tation. 7 restricts to H, so V is also an H representation. Since the only irreducible representations
of an abelian group are one dimensional, V=V, & --- @V, as H-representations, with each V; a one
dimensional C vector space with an H action. Thus let v € V} non-zero so hv € (v) for all h € H.
Let g1H, goH, ..., gp.H be the left cosets of H in G, and define v; = g1 -v,v0 =g+ v, ..., 0 = gi - V.
Let W = (vy,...,vg) be the C-span of vy, ...,v;. Notice that W is a proper subspace of V since it
is dimension at most [G : H] < dim V' and is non-zero since each v; is non-zero. Thus let us show it
is a subrepresentation of V. It suffices to show that for all ¢ € G and 1 <i < k that gv; € W. We
can write g = g;hg,; ! for some 1 < j < k and h € H by considering the left H coset of gg;. Then,
we have:

gui = gihg; 'giv = gjhv = Agjv

where \ € C satisfies hv = Av, which exists since H acts on v by scalars. Thus, W is a proper
subrepresentation of V' so V' is not irreducible. O

Exercise 7. Let S be a multiplicatively closed subset of a commutative ring R. Show that for a
prime ideal p in R disjoint from S, the ideal p - R[S™!] in the localization R[S™!] is prime. Show
that this gives a one-to-one correspondence between prime ideals in R that are disjoint from .S and
prime ideals in R[S™!].

Proof. Without loss of generality assume S saturated (in particular, contains 1). Let us define a
map 1) : Spec R — Spec R[S™!] (where Spec is the prime ideals of the given ring). We will define

U(p):={p/s|pep,seSt=p- RS

Notice the second equality holds since p is an ideal. In particular, this implies that ¥ (p) is an ideal
in R[S™!. Now we show it is prime. Assume that a/s;-b/ss = p/s € p- R[S™!]. Then by definition
there exists ¢ € S such that t(sab — ps;se) =g 0, so abst = ps;s € p. Since p is prime and s, are
in S which is disjoint from p, either a,b € p, so either a/sy or b/sq are in 1(p). Thus, ¥(p) is prime.

This shows we have a well defined function ¢ from primes in R disjoint from S and primes of
R[S™'. Now we show it is injective. If p # q so without loss of generality g € q \ p, let us show
that £ ¢ pR[S™']. For if it were, we would have

p

%: =dJteS|tlgs—p)=r0
s

tqs € p, a contradiction

Therefore, v is injective. Also, v is surjective by pulling back any prime ideal p’ of R[S™!] by the
localization map 7 : R — R[S™!], which then clearly has image p’ back in R[S™!] by . ]
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Exercise 8. Let A be a commutative ring. Show that the following two statements are equivalent:
(a) Every prime ideal of A is equal to an intersection of maximal ideals of A.

(b) Given any ideal I of A, the intersection of the prime ideals of A/I is equal to the intersection
of the maximal ideals of A/I.

Proof. (a) = (b): Since every maximal ideal of A/I is prime, it suffices to show that every
prime ideal p of A/I is the intersection of maximal ideals in A/I. By the correspondence
of prime ideals, there exists p € A a prime ideal in A containing I such that p/I = p. By
assumption (a), p/I is the intersection of maximal ideals {m;};c; (for some indexing set .J).
Since their intersection is p which contains I, each of the m; contain I and thus correspond
to maximal ideals {m;};c; of A/I. Furthermore by the correspondence theorem:

p=5/1=((m:)/T=(m,

icJ ieJ

(b) = (a): Take any prime ideal p of A, so A/p is an integral domain and thus (0) is prime.
By assumption, the intersection of the prime ideals of A/p is equal to the intersection of the
maximal ideals, so there is a set {m;};c; of maximal ideals of A/p such that (., m; = (0).
By the correspondence of ideals, each m; corresponds to a maximal ideal m; containing p, and
furthermore (0) 2 (| m; implies p D (| m;. Since each m; contains p, we thus have p = (.., m;,
so p is the intersection of maximal ideals of A as desired.

O

Exercise 9. Let ¢ : Ab — Gp be the functor that takes an abelian group A to A in the category
of groups. Show that ¢ has a left adjoint a. Does ¢ has a right adjoint? Does « have a left adjoint?
Justify your answers.

Proof. The left adjoint « is the abelianization functor. First isomorphism theorem gives a natural
bijection o between their hom-sets, and there are many checks to show it is natural.

¢ does not have a right adjoint because it does not preserve coproducts: ¢(Z/2) Ugp ¢(Z/2) =
7,/2 % 7.2 is an infinite group, while ¢(Z/2 x Z/2) is finite.

a does not have a left adjoint because it does not preserve kernels. Consider Cs <% A5 by 1 +—
(12345). Then « applied to this diagram yields C5 < 1, which has kernel C5. Thus ker a(¢)) = 1.
But a(kery) = a(C5) = Cs. O
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Exercise 10. Compute the Jacobson radical J(R) for the following rings R. Justify your answers.
(a) Let R = Endg(V), for a real vector space V' of countably infinite dimension. Compute J(R).

(b) For any finite extension field F' of Q, let R be the integral closure of Z in F'. Compute J(R).

Proof. (a) For U a one dimensional subspace of R, the set my of matrices A € R vanishing on
U is a left ideal of R (easy exercise). Let us show my is maximal. Let U = (v) and Av # 0.
Let us show that the left ideal generated by my + A is R. Let B be a linear transformation
such that B(Av) = v. Then idy —BA € my, so idy € (my + A), so (my = A) = R as desired.
We have that J(R) is the intersection of all of the left maximal ideals. Thus any A € J(R)
vanishes on every one dimensional subspace of V', and thus is zero, so J(R) = {0}.

(b) Since R is the ring of integers of a finite field extension of Q, it is a Dedekind domain. Let

us show that J(R) = 0. Let a € R\ {0} and let I = (a). I uniquely factorizes into a product

of prime ideals, I =[], pi". By going up, R has infinitely many primes, so there is some g

prime in R not contained in the set {p;}. Also, R is Krull dimension 1, so q is maximal in /.

We have a ¢ q, since otherwise the prime ideal q would contain I and thus be a part of its
factorization into prime ideals. Therefore, a € q C [, maxima ™ = J(R), so J(R) = {0}.

O

Spring 2022

Exercise 1. Let F' be a field of characteristic not 2 and let the symmetric group S,, act on the
polynomial ring F[X,..., X,] by permuting the variables, for n > 2. Let A = (F[X,,..., X,,])""
and B = (F[X,...,X,])° be the fixed subrings, where A4, < S, is the alternating group.

(a) Show that A is an integral extension of B.
(b) Show that A = B[4] for some ¢ € A such that A := §2 belongs to B.

(c¢) For n =2, describe A as a polynomial in e; = X; + X5 and e; = X7 Xs.

Proof. Define 0 = [],_;(z; —x;) € Flz1,...,z,]. Notice that § € A, since any transposition (ab)
results in an odd number of sign changes of §, so (ab)(d) = —d. Thus for all o € A,,, 0(d) = 4.
Lemma: For all P € A, there exists ()1, Q2 € B such that

P=Q+0Qs

Proof. Define ), = w, R = w so P = (@, + R. Notice that (; € B since for all o € .5,,,

either 1) 0 € A, and 7 = (12)0(12) is in A,:

oP+ (12)r(12)(12)P P+ (12)7P P+ (12)P
2 N 2 n 2

oQ1 =
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or 2) o0 =7(12) = (12)7' for some 7,7 € A,:

(12)7'P +7(12)(12)P _ P+ (12)P

oQ = 5 5

Now let us show that for all transpositions (ab), (ab)R = —R. Since (ab) is a transposition,
(ab) = (12)7 for 7 € A,, and (ab) = 7'(12) for 7 € A,. Then we have:

(12)7P - 7(12)(12)P _ (12)P — P _

2 N 2 —h

(ab)R =

Now let us show that for each 1 < i # j < n, the polynomial (z; —z;) divides R. It suffices to show
that for the evaluation map 7 : F[Xy,..., X,] — F[Xq,... X , X, = R defined by 7(X;) = X
and 7(X}) = X for k # i, we have w(R) = 0. Notice that 7 is unique and exists by the universal
property of free commutative F-algebras. Let us show that 7 = 7o (ij) : F[Xy,...,X,] = R. By
the universal property of free algebras, it suffices to show that the maps agree on each Xj. For
k & {i,j} this is obvious since (ij) Xy = X;. We have (ij)X; = X, and (ij)X; = X;, but since
7(X;) = m(X;) = X;, m = wo (ij). Therefore,

m(R) = n((ij)R) = n(—R) = —7(R)

Therefore, 7(R) = 0, so (X; —X) divides R. Therefore since each of the polynomials X; — X divide
R and each are relatively prime in F[X7, ..., X,], their product § divides R. Therefore, R = Q)
for some Q2 € F[Xy,...,X,]. Furthermore, for all transpositions (ij), we have (ij)R = —R and
(1j)0 = =4, s0 (ij)Q2 = Q2. Thus, Q € B as desired. ]

(a) and (b) A = B[] by the above lemma and ¢ is integral over B since A := §? is in B. Therefore, A is
integral over B.

(a) AQ = (Xl - X2)2 = X12 + X22 - 2X1X2 = 65 - 462

Exercise 2. Let R be aring, S; = (0 —» X Ly % 75 0) a short exact sequence of right

R-modules and Sy = (0 — L KME NS 0) a short exact sequence of left R-modules in which
M is free. Show that if Z®p S, = (0 > Z®@r L — Z®@r M — Z ®r N — 0) is exact then the
sequence S7 ®g N is exact as well.

Proof. By right exactness of the tensor product, the fact that M is free (and thus ®M is exact),
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and the assumption that Z ® S; is exact, the following diagram is exact:

X®h Y®h ZR®h

XL ver 22 700 — 0

0

Now we perform a diagram chase to show that the top row is exact. It suffices to show that f @ N
is injective. Let 0 € X ® N such that f ® N(o) = 0. The following picture is a better proof than
whatever I could write:

o —>f®N 0
P
Jda ----- > Jy LN

Exercise 3. Let GG be a finite p-group and let H < GG be a proper subgroup. We write as usual
H9 = gHg™! for every g € G.

(a) Show that the normalizer Ng(H) of H in G is strictly larger than H.

(b) Show that if H is not normal in G then there exists another proper subgroup H < K < G
and g € G such that K9 = K but HY # H.

Proof. (a) Let us proceed by induction on |G|. The claim is trivial for |G| = p. Recall that the
center Z(G) of a p-group G is always non-trivial. Let |G| = p", and let H < G be a proper
subgroup. If H does not contain Z(G), then H C Z(G) - H normalizes H. Thus, assume
Z(G) € H < G. By induction, the normalizer N = Ng,z()(H/Z(G)) strictly contains
H/Z(G). Let N = Z(G)N be the corresponding subgroup of G' containing N, i.e., 7~ *(N)
for 7 : G — G/Z(G) the quotient map. Let us show that N normalizes G. Then N properly
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contains H since the correspondence between subgroups of G' containing Z(G) and subgroups
of G/Z(G) preserves inclusions and proper inclusions.

Let n € N and h € H. Since N/Z(G) normalizes N/(Z(H), there exists a,b,c € Z(G) such
that (an)(bh)(an)™! = ch. Since Z(G) is the center, we thus have

(an)(bh)(an)™ = ch
nhn™' = (b"'c)h € H
Thus, N normalizes H, as desired.

(b) Since H is not normal in G, then K = Ng(H) is not all of G. Therefore, K’ = Ng(K) =
N (Ng(H)) properly contains K. Thus, there exists g € K'\ K. We have that K9 = K since

g € Ng(K), but H9 # H since g ¢ K, and K is the normalizer of H.
[

Exercise 4. Let R be a commutative ring and M be an R-module.
(a) Show that Hompg(—, M) : R-Mod® — R-Mod admits a left adjoint.

(b) Show that for every R-module X, the module Hompg(X, M) is a direct summand of
S := Hompg(Homg(Hompg (X, M), M), M).

Proof.  (a) By the tensor-hom adjunction, there exists a bijection vy ny natural in M, N, L:
yung : Homg(N ® L, M) = Hompg(L, Homg(N, M))

Since R is commutative, N ® L = L ® N, so there is also a bijection (natural in all three

variables) +/:
Yyng : Homg(N ® L, M) = Hompg(N, Homg(L, M))

I'and v we have a natural (in all three variables!) bijection:

Composing '~
HOHIR_MOd(N, HOHIR<L, M)) = HomR_Mod(L, HOHIR(N, M))

Identifying Hom g noa (N, Hompg(L, M)) with Hompg poaer (Hompg (L, M), N), we have a natu-
ral bijection:

HOIIIR_MOdOP (HOIIIR(L, M), N) = HOIIlR_MOd(L, HOIDR(N, M))

Thus, Hompg(—, M) : R-Mod® — R-Mod admits the left adjoint Homg(—, M) : R-Mod —
R-Mod*".

45



(b) Define ¢ : Hompg(X, M) — S by f — (¢ = ¢(f)), so ¢ sends f to the evaluation map ey
at f. We have «(f + ag) = o(f) + aw(g) for all @ € R, f,g € Hompg(X, M), so ¢ is an R-
module homomorphism. Then define r : S — Hompg(X, M) by ¢ — (x — (e;)), where
e, € Homp(Hompg (X, M), M) is the evaluation map at x. We have (¢ 4+ ap) = r(v) + ar(¢),
so 7 is also an R-module homomorphism. Let us show that r ot = Idyomp(x,ar), Which implies
that ¢ is injective and r is a retraction of ¢, so Homg(X, M) is a direct summand of S with
respect to the inclusion ¢. Thus, let f € Homg(X, M) and let x € X

rouf)@) =r(e = ¢(f)) (@)
Let ¢ € S be «(f) defined on elements by ¢ — ¢(f). Then,
= r()(x) = ¢(ex) = ex(f) = f(2)

as desired.

Exercise 5. Let k be a commutative ring and let G be a finite group. Prove that k with trivial
G action is a projective kG-module if and only if the order of GG is invertible in k.

Proof. 1f |G| is invertible in k, then kG is a semisimple ring and thus every short exact sequence
in kG splits. Thus, k is a projective kG-module. I'm not sure if the qual committee would’ve liked
this short of a proof, so consider a short exact sequence

O0—-M-—->N-—=k—=0

for M, N kG-modules and k with trivial G-action. There is a “forgetful” functor U : kG-Mod —
k-Mod which is restriction of scalars by the ring homomorphism k& — kG by a +— alg. Since k is
a field, M, N, k are all free as k-modules, so the sequence M — N — k splits in k-Mod. Pick a
section ¢ : k — N. Then define ¢ : kK — N on the level of sets by

1
p(r) = € gzé;g?/)(k‘)

Clearly ¢ is a k-vector space homomorphism as it is the sum of £-Mod homomorphisms. Further-
more for all g € G and r € k,

1 / !
plor) = olr) = o 3" guk) = % S k) = golr)

g'eG g'eG

Thus, ¢ is a kG-module homomorphism, and is a section of the map N — k since 1 is.

Now suppose Char(k)’|G| so |G| is not invertible in k. Define ¢ : kG — k by 1/1(2960 agg) =

> gec Gg- This is clearly a surjective kG homomorphism, so it suffices to show that i has no
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section. Since k has trivial action of G, for any ¢ : k — kG a kG-linear homomorphism, we
must have gp(1) = ¢(1) for all g € G. In particular, ¢(1) must be stable under multiplication
by all elements of G. Thus, p(1) = >, _,ag for some a € k. But then we have that ¥ (¢(1)) =

¢<dec ag) = k-a = 0. Thus for all kG homomorphisms ¢ : k — kG, the composition ¢ o ¢ is

geG

zero, and thus there are no sections kK — kG. Thus, k is not projective as a kG module. O]

Exercise 6. Let GG be a group of order 30.
(a) Prove that G contains an element of order 15.

(b) Prove that G is the semidirect product of cyclic subgroups of order 15 and 2.

Proof. Let ngy, ng,ns be the number of 2, 3,5 Sylows in G. We have that ng € {1,10} by the Sylow
theorems since n3|G and ng = 1 mod 3, and similarly ns € {1,6}. Notice that if n5 = 6, then there
are 24 elements of order 5 in GG. If n3 = 10, there are 20 elements of order 2 in G. These cannot
simultaneously be true, so either n3 = 1 or n5 = 1. Let Hy, Hy thus be a 3-Sylow and 5-Sylow of GG
respectively, so at least one of them is normal in GG. Therefore, N = H; Hs is a subgroup of G since
one of Hy, Hy is normal in G and the other is a subgroup. Furthermore, 15 divides |N| since 3,5
divide N, and |N| < |H,||Hz| = 15 so |[N| = 15. A group of order 15 must have both the number
of 3 and 5 Sylows equal to 1 by the Sylow theorems, so N = Z/5 x Z/3, and G thus contains an
element of order 15. Furthermore, [G : N] =2 so N < G. Let H be any Sylow 2-subgroup of G, so
NNH=1,N-H=G. Then G = N <, H for some ¢ : H — Autg,p(/V) by the characterization
of semidirect products in Grp. n

Exercise 7. Let K/F be a finite separable field extension, and let L/F be any field extension.
Show that K ®p L is a product of fields.

Proof. Since K/F is a finite separable field extension, it is simple: i.e., generated by a single element
«. Thus, the L-linear map F|zx] — K defined by x — « is surjective, so K = Flz|/p(x) for an
irreducible polynomial p(x) € F[z]. Thus, we have:

K @p L2 (Fla)/p(x)) @p L= Lia] /p(x)

Let us explicitly show that the second congruence holds. First define ¢ : L[z] — (F [z]/ p(x)) QF

L by the universal property by z — (z ®p 1) since (F[m]/p(x)) ®p L has a natural L-algebra
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structure. Notice that ) (p(z)) = p(x) ® 1 = 0 by F-linearity of ¢. Thus, ¢ factors as an L-algebra
homomorphism ¢ : L|z]/p(z) — ( Flx] /p(x)) ®p L defined on monomials by lz" — (2" ® ).

Now define a set function ¢ : Flz]/p(x) x L — Llz]/p(z) by ¢([f],l) = [f - 1. This map is
well defined (and is F-linear in the first coordinate) since if g = f + rp for f,r € Fl[z], then
lg-1 = [If +rpl] = [lf] + [rpl] = [f -1]. CLearly ¢ is F-balanced and F-linear in the second
coordinate, so ¢ factors as an F-module homomorphism ¢ : F[z|/p(x) @z L — L[z|/p(x). On the
level of elements, we clearly have that ¢, are two sided inverses to one another. Therefore, ¢ is
actually a F-algebra homomorphism and is the inverse to .

Let p(x) = ¢1(x) - -+ - - gu(x) be the prime factorization with ¢y, ...,q, € L[z] irreducible. Since p
is separable, each of the qi,...,q, are distinct and thus relatively prime. By Chinese remainder
theorem, we have:

Llz]/p(x) = Llz]/qi(x) x - x L[z]/gn(x)
and each L[z]/q;(z) is a field since the ideals (¢;) € L[z] are maximal. O

Exercise 8. A nonzero idempotent e = €? in a commutative ring R is called primitive if it cannot
be written as the sum of two nonzero idempotents x and y such that xy = 0. Prove that every
nonzero Noetherian commutative ring admits a primitive idempotent.

Proof. Let F = {(1 —e) | ee R\{0},e* = e} be a collection of ideals in R. Since R is Noetherian,

F contains a maximal element I = (1 — e) for some idempotent ¢* = e in R. Let us show that e
is primitive. Suppose ab absurdo that e = x + y for non-zero idempotents z,y such that xy = 0.
Let us show that (1 — ) 2 (1 — e), which contradicts the maximality of (1 — e). Notice that
(1—e)=(1—2)(1—y),s0(1—x) 2 (1—e). Since e is an idempotent and R is commutative, R is
naturally isomorphic to the product of rings eR x (1 — e) R with eR having ring structure inherited
from R with identity element e, and (1 — e)R having identity element (1 — ). In particular, this
isomorphism is defined by ¢ : R — eRx(1—e)R by ¢(a) = (ea, (1—e)a), with inverse p(a, b) = a+b.
Therefore, (1 —e)z = (1 —y)(1 —x)z = (1 —y)(x — 2?) = 0, and similarly (1 —e)y = 0. Therefore,
er =z € eR and ey = y € eR. In particular, y € (1 — e)R since eR, (1 — e)R are disjoint ideals of
R. However, y € (1 — )R since y = y(1 — z). Therefore, (1 —z) # (1 —e€),s0 (1 —z) 2D (1 —e) as
desired. ]

Exercise 9. Let A be a (unital) algebra of dimension n over a field F. Prove that there is a
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(unital) F-algebra homomorphism from A ®p A°P to the F-algebra of n x n matrices, where AP is
the opposite algebra.

Exercise 10. Let F be a field of characteristic not 2 and let K = F( /a, V/b) be a biquadratic field
extension of degree 4 of F, for a,b € F* not squares. Suppose that b = 2% — ay? for some z,y € F
(i.e., b is a norm for the quadratic extension F'(y/a)/F). Prove that there is a field extension L of
K that is Galois over F' with Galois group the dihedral group of order 8.

Proof. Motivation for the choice of P: suppose that L is a field extension of K with the desired
properties. Then by the Galois correspondence, there exist field extensions F' C F(y/a) C K1 C L
and F C F(Vb) € Ky C L of degree 4 over F such that K, K, are not Galois over F. Since we
are given information about the norm of F'(y/a), let us consider K;. Since [K; : F(y/a)] = 2 (and
F is not characteristic 2), K, = v/ for some a = m +n+/a € F(y/a). By an educated guess, we let
a =z + yy/a where z,y € F satisfy b = 2% — ay®. We claim that L = F(a, 3) satisfies the desired
conditions.

Define:
P(T) = (T? — 2)* — y*a

Let us show that P € F[T] is irreducible. After choosing specific roots a of (T? — z) — y/a
and 3 of (T? — z) + yy/a in F(y/a) in an algebraic closure of F, the roots of P are of the form
a =z +yva,—a,f :=\/xr—y/a,—F. Notice that P(T) does not have any roots in K since
if it did have such a root 7, then (v? — x)/y would be a root of a in K. Furthermore if P were to
factor into quadratics, there are three possible such factorizations, noticing that o8 = Vb

(x—a)(z +a) = 2" — (z + yva) (¢ = B) (& +B) = 2" — (x —y/a) (1)
(x—a)(x—p) =" — (a+Br+ Vb (x+a)(z+B)=2"+(a+Bz+vb (2

(x—a)(+p)=a"—(a=B)z—Vb (+a)(z—p)=2"+(a=Br—Vb  (3)

Each of these possible factorizations contains a v/a or v/b term in one of the coefficients, and thus
cannot have coefficients in K since a, b are not squares by assumption. Therefore, P is irreducible
over F', so K = F(a) is degree 4 over F. Furthermore, F(y/a) C F(a) since (a? —x)/y is a square
root of a. Now let us show that K, # K. If K, = K, then it would follow that [K; : F(v/b)] = 2.
Thus, the polynomial P(T) would factor in F(v/b). By similar logic as before if there were a
root v € F(v/b) to P, then (y?> + x)/y would be a root of a in F(v/b), which is impossible since
[F(\/a,V/b) : F(v/b)] = 2 by assumption. Thus, P would factor into quadratics in F(v/b). Once
again considering the factorizations above, it is clear that the first doesn’t work so we must have
a+f € F(vVb) or a« — B € F(v/b). Notice that § = \/FE, so this is equivalent to saying that

all + \/LB) € F(v/b). But of course this implies that o € F(v/b), which is a contradiction since

F(v/b) has no roots of P. Thus, K; # K.
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The roots of P are exactly «, —a, \/757 —‘/?B. Since K; # K by the above argument, Vb ¢ K;.
Therefore, [K,(v/b) : K] = 2, and thus the splitting field L = F(a, v/b) of P satisfies [L : F] = 8.
Since L is a splitting field over F'; L/F' is Galois. Every F' automorphism of L is determined by its
action on a, v/, of which there are 8 possibilities combined since any such automorphism must send
a to another root of P and v/b — £+/b. Thus, every such permutation yields an F automorphism

of L since |Gal(L/F)| = [L: F| = 8. In particular, Gal(L/F") contains the following two elements:

s(a) =« s(Vb) = —Vb

It is not hard to see that s*> = Id and 7?(a)) = —a. Thus, 7 must be order 4 and r* # s. The group
Gal(L/F) is non abelian (since the subfield K is not Galois over F') and of order 8 and thus is
isomorphic to the quaternions or D4. The quaternions have a unique element of order 2, but since
s,r* are distinct elements of order 2, Gal(L/F) = D, as desired. O
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Fall 2021

Exercise 1. Let a € Q and b,d € Q* and suppose that d is not a cube in Q*. Find the minimal
polynomial of a + by/d over Q.

Proof. Since d is not a cube in Q, 2 — d is irreducible in Q and thus [Q(v/d) : Q] = [Q(a + bV/d) :
Q] = 3. Thus any monic degree 3 polynomial in Q[z] with o = a 4 bv/d as a root is the minimal
polynomial of . Thus the following is the minimal polynomial of «:

fa) = (1)

Exercise 2. Let K be a field, and consider the ring R = K[z]/(2?). Show that every free
submodule N of an R-module M is a direct summand of M.

Proof. We aim to show that for all free modules NV and injections ¢ : N — M that the short exact
sequence 0 — N < M — M /N — 0 splits. This is equivalent to showing that N is injective, so it
suffices to show that IV satisfies the following lifting property:

X ——Y

In fact, by an application of Zorn’s lemma, it suffices to show that IV satisfies the following lifting
for any ideal I of R:

I — R

.
///
k//

N

Notice that the ideals of R are in correspondence with the ideals of K|[x] containing (x?), which are
only the three ideals (z?), (z),(1). If I = (1) = R or I = (0) a lift trivially exists, so it suffices to
show that the following lifting is satisfied:

(¢) — R

v
l i 3
N
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Since N is free let N =] ., Rq for some indexing set J. Recall that elements of a coproduct can
be written as finite formal sums of the. Thus let I C J be a finite subset such that ¢(z) =>_ ., fa
for f, € Ro. Notice that 1(0) = x9(z) = > c; vfa s0 2fo = 0 for each o € I. Since R = K @ oK
as a K-vector space, xf, = 0 implies that f, = ax for some a € K. Thus, let g, € R, for each
a € [ satisfy xg, = fo. Then there exists a unique R-module homomorphism ¢ : R — N defined
by ¢(1) = > ¢/ 9a, and clearly p(x) = () so ¢ extends 1. Thus, N is injective as desired. [

Exercise 3. Show that there are no simple groups of order 24p, where p is a prime number greater
than 11.

Proof. Let G be a group of order 24p for p a prime greater than 11, and assume ab absurdo that G
is simple. Let n, be the number of p-Sylows in G. By the Sylow theorems, n,|G and n, = 1 mod p.
Since n,|G, we have n, € {1,2,3,4,6,8,12,24}. Since p is a prime greater than 11, none of
{2,3,4,6,8,12} are congruent to 1 mod p. Thus, n, = 1 or n, = 24. If n, = 1, then the unique
p-Sylow of GG is a proper normal subgroup, a contradiction. Thus, n, = 24. Thus 24 = 1 mod p, so
p|23 so p = 23. Since there are 24 p-Sylows, each congruent to Z /237 and with trivial intersection,
there are 24 - 22 elements of order 23 in GG. Thus, there are exactly 24 elements of order not equal
to 23 in G.

Let ng be the number of 3-Sylows in G, which are each isomorphic to Z/37Z. Since there are exactly
24 elements of order not equal to 23 in G, there are at most 24 elements of order 3 in GG, and thus
n3 < 12. By the Sylow theorems, n3|G and ng = 1 mod 3, so along with the fact that ng < 12,
either ng = 1 or ng = 4. If ng = 1, then the unique 3-Sylow is a proper normal subgroup of G.
Thus, ng = 4. Let S be the set of 3-Sylows in G. G acts transitively (and thus non-trivially) on S
by conjugation, which induces a non-trivial group homomorphism ¢ : G — Sy. Since |G| = 24 - 23
does not divide |Sy| = 24, v is not injective, and since 1 is non-trivial, ker is a proper normal
subgroup of G. Thus, G is not simple. O

Exercise 4. Let G be a cyclic group of order 12. For each of the fields F' = Q,R, and C, write
the regular representation F'[G] as a direct sum of simple (i.e., irreducible) modules.

Proof. Recall that F representations of G are equivalent (or defined to be) R = FG modules.
With this identification, the regular representation is F'G as a module over itself. By the universal
property of free F-algebras, there is an F-algebra homomorphism v : F|x] — FG defined by = +— ¢
where ¢ is a generator of G. Furthermore 1 is surjective since F'G is generated as an F-algebra
by g, and the kernel of 1 is generated by z'> — 1. Therefore, R = FG = Flx]/(2'? — 1). Let
p1,- .., pr € Flx] be irreducible so 2'* — 1 = [[/_, pi(z) is the prime factorization of 2'? — 1. Notice
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that x'2 —1 is square free in Clx], R[z], and Q|x], so each of the p; are distinct. Then by the Chinese
remainder theorem (and since F[x] is a PID),

R = Flal/(p1) x Fla]/(p2) x -+ < Flz]/(p)

Since Flz] is a PID and thus has Krull dimension 1, each of F[z]/(p;) are simple modules over
themselves. In particular as a module over itself,

R Flz])/(m)® - & Flz]/(p,)

and each of F[z|/(p;) are simple R-modules. Thus, to describe F[G] as a direct sum of simple
modules, it suffices to factor z'2—11in Q, R, and C. Let ¢ = €?>™/12 € C. Then as CG modules,there
is an isomorphism

CG = Cla]/(z—1) ®Cla]/(z - ¢) & - & Clz]/(z - ¢')

In R[z], 2'2—1 factors completely as 212 —1 = (z—1)(z+1)(2® = ((+ )z —1) ... (2> = (P + )z —1).
Thus,

RG = R[z]/(x —1) ®R[z]/(z + 1) O R[z]/(2®> = (C+ Oz + 1) @ --- @ R[z] /(2% — (> + B — 1)
Finally in Q[z], the cyclotomic polynomials are irreducible, so we have as QG modules:
QG = P Qla]/(¢a())
dln

Qlz] Qlz] Qlz] Q[z] Q[z] Qlz]
) e e P Y e ) Y 2D

Exercise 5. Consider a sequence of sets S7 for ¢ > 0 and maps ¢; : S; — S;_1 for ¢ > 1. Suppose
that there exists a positive integer N such that the orders of the images of the maps 1; are bounded
above by N. Show that lér_n S; is finite.

Proof. Recall that I&H S; can be explicitly represented (as a set) as sequences

S = @Si = {(81782a"') | 55 = Yip1(siy1) Vi € Z+} C HSZ»

Let us show that |S| < N. It suffices to show that if T = {(s],s},...) jvzﬁl} is a collection of N + 1
elements of S that some pair of them must be equal. Notice that for each index i € Z* and each
j € [1,N+1] we have s! = 1b;41(s],,), so s, € Imy);. Since |Imi;| < N, for each i there is some pair
(a;,b;) € [1, N + 1]% such that 8§ = s;’ By pigeonhole principle, there is thus some j, k € [1, N + 1]
such that (s7,s3,...) and (s* s& ...) agree at infinitely many indices. In particular for all i € Z*,
there is some M > ¢ such that 35\4 = sk . But then we have

Sz =iy10--- OQﬂM(Sgw) = ip1 00ty (sh) = st
Thus, (s7,s),...) and (s¥, s, ...) agree at every index and are thus equal. Thus, |S| < N. O
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Exercise 6. Consider the elements g = (12) and h = (23) in the symmetric group S;. Consider
the action of S3 on the polynomial ring C|x,y] determined by g(x) = vy, g(y) = z, h(z) = z — y,
and h(y) = —y. (Here S5 is acting on Clz,y| as a C-algebra. You need not check that this action
is well-defined). Let V' be the complex vector space of homogeneous polynomials of degree 3 in x
and y; this is mapped into itself by S3. Compute the character of V. When V' is written as a direct
sum of irreducible representations of S3, find the number of times each irreducible representation
of S35 occurs.

Proof. V has a basis of 2%, 2%y, xy?, y> as a C-vector space. Let p : S3 — GL(V) be the represen-
tation of V induced from the described action of S3 on C[z,y|. Let us write the matrices for p(g)
and p(gh) = p((123)) in terms of the basis 23, 2%y, ry?, y>. We have:

p(9)(@®) =y*  plg)(a®y) =zy®  plg)(ay’) =2y  p(9)(y’) ==

Thus with respect to the ordered basis 22, 2%y, xy%, 13, we have

0001
001
1000

Similarly,

p(gh)(2®) = (y — 2)° = y* — 32y + 3zy® —2°  p(g)(2%y) = —x(y — 2)* = —2° + 227y — zy°

p(9)(xy?) = ¥y —2) = —2* + 2%y p(g)(y®) = —a®

Thus,
-1 -1 -1 -1
3 2 1 0
1 0 0 O

Therefore with xy = Trop the character of V, x(id) = dimV =4, x(g) = 0 and x(gh) = —1+2 = 1.
Recall that the character table of S3 is given by the following:

{id} | {(12),(13),(23)} | {(123), (132)}
1

Triv 1 1
sgn 1 -1 1
w 2 0 -1

Thus, x = aTriv + bsgn +cW for some a,b,c € N. Since x(g) = 0, a = —b, and since x(id) = 4,
a+b+2c=4. This is a (very small) finite arithmetic problem and we find that the only possibility
is x = Triv + sgn +WW. [

Exercise 7. Define commutative Q-algebras A = Q, B = Q[z], and C = Q[z]|/(z(z — 1)). Let
A — C and B — C be the unique Q-algebra homomorphisms such that z in B maps to z in C.
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Describe the pullback (also called “fiber product”) R = A X¢ B in the category of commutative Q-
algebras as the quotient by an explicit ideal of the polynomial ring over Q on some set of generators.
Is R noetherian?

Proof. Solution by Rhea Kommerell.

Let m: B — C be the map described. As a set, R = {(¢,p(z)) € A x B : 7(p) = c¢}. Since the map
A — C is injective, R is isomorphic to the set of polynomials p(z) which equal a constant after
modding out by z? — x. Then p must have the form q(x)(2? — z) + ¢ for ¢(z) € Q[z] and ¢ € Q.

As a Q-algebra, R is generated by the set {z’(2*> — ) : i > 0}. In other words, there is a surjection
f: Qzo,x1,...] — R given by x; — z'(2? — x). Tt remains to describe the relations on these
generators. Certainly there are relations f(z;x;) = f(2itjr2) — f(2ipj41) for every i, j because
wizd (22 — 2)? = (292 — gt (22 — 7).

We claim that these are the only relations. Consider the algebra R’ = Q[z, z1, ...]/(xi%; — iy s —
Tiy;j+1). The relations makes it possible to write any element of R’ uniquely as a linear polynomial
in the z;s. (Uniquely because the relation is associative, that is, z;x;Tr = Titjikta + 2Titjrhts +
Titj+kt+2 NOo matter whether we expand x;z; or x;zy, first.) Similarly, in R, we can write any element
uniquely in the form g(x)(z? — x) + ¢. Since a linear term in R’ corresponds to a term c;z'(z? — x)
in R, this gives a bijection between R’ and R. So we have written R as a quotient of a polynomial

ring over Q.

The following argument was inspired by Stacks 15.5.1.

We argue that R is actually finite type over Q, hence Noetherian. We will apply the Artin-Tate
Lemma to R C A x B, which will immediately say that R is finite type as long as we can check the
conditions of the lemma - 1. that A x B is finite over R, and 2. that A x B is finite type over Q.

1. A x B is finitely generated as an R-module by the generators {(1,0), (0,1), (0,z)}. For exam-
ple, we can write (0, 2%) = (0, )+ 3F_, (z—2""1)(0,1) = (0, 2F —2* T4 a* 1 — . f 22—z 42).

2. A X B is finite type over Q because it is generated by {(1,0), (0,1), (0,2)}. In particular, both
A, B are finite type over Q.

]

Exercise 8. Let A be a commutative ring and 7" an A-module. Define a functor from A-modules
to A-modules by F(M) = M ®4 T. What is the right adjoint functor of F'?7 Show that if I has a
left adjoint, then 7" must be a flat A-module, and also a finitely generated A-module.
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Proof. By the tensor-hom adjunction, the right adjoint functor of F' is Homu (7, —). If F' has a left
adjoint, then F' is left exact, so T' is flat by definition. Thus let us show that if F has a left adjoint
then T is finitely generated. A much more general statement holds: F' has a left adjoint if and only
if T is finitely presented and projective. We are interested in the only if part of the statement,
which we will prove here as a slight extension of the problem.

Lemma: Let M be an A-module. If M @4 [[A = [[(M ®4 A) (with respect to the natural map
M®as[[A—=JIM ®a A) for all products of A, then M is finitely generated as an A-module.

Consider ¢ : M ® AM — MM the natural map defined by (m ® (as)serr) — (asm)senr which
is an isomorphism by assumption. In particular, the element ¢ = ($)seps (Which represents the

identity function M — M in the product) is in the image of ¢, so there exists my,...,m, € M and
al,...,a" € AM such that

Ao = (Somad) =
In particular, this states that for all s € S, there exists al,...,a? € A such that Y m;a’ = s.
Therefore, my, ..., m, generate M as an A-module so M is finitely generated.

Since T has a left adjoint T preserves limits and thus by the Lemma is finitely generated. Thus,
we have a short exact sequence
0=+ N—=-F—=T—=0

with F' a finitely generated free module. Thus, let us show that N is a finitely generated module
so T is finitely presented. By the Lemma, it suffices to show that ®4 /N preserves products of A.
Consider the following commutative diagram from applying the functor ® 4 [ A and the naturality
of the map L®, [[A — [] L ®4 A for all A-modules L:

0 — > NRQa[JA—— FRu[[A —— T®4][A

| | l |

0 — [[N®UA — [[FR1A —= J[T®4A
Since F is finite free, every vertical map except possibly N@4]J[ A — [[ N ®4 A is an isomorphism.

Thus by the 5-lemma (after extending the diagram with zeroes to the left), N@[[A = [[N®4 A
is an isomorphism as desired. Thus, N is finitely generated so T is finitely presented.

Courtesy of this stack exchange post for a much needed hint. O]

Exercise 9. The outer automorphism group of a group H is the quotient of the group of automor-
phisms of H by the subgroup of inner automorphisms. It is known that the outer automorphism
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group of every finite simple group is solvable. Using that, show that if GG is a finite group with a
normal subgroup N such that both N and G/N are nonabelian simple groups, then G is isomorphic
to the product group N x (G/N).

Proof. Note that N,G/N are non-trivial. Let ¢ : G — Aut(N) be the action of G on N by
conjugation. Composing with the quotient map, we have ¢ : G — Aut(N)/Inn(N). By definition,
Inn(N) = ¢(N). Therefore, 9 factors through the quotient G/N as ¢ : G/N — Aut(N)/Inn(N).
It is known (as stated in the problem) that since N is simple, Aut(N)/Inn(N) is solvable. Since
G/N is simple, either @ is the trivial map or it is injective. But since G/N is nonabelian and simple,
G/N is not solvable, and thus cannot be embedded as a subgroup of a solvable group. Therefore,
@ is the trivial map.

Therefore ker ¢ = G//N is non-trivial.
Let us show that kervy < G — G/N yields an isomorphism ker ¢ = G/N.

keryp —— 0

I l

G —Y 5 Aut(N)

| |

0 Aut(N)
G/N Inn(NV)

First take any [g] € G/N. Since ¢([g]) = 1, we have ¥(g) € Inn(N), so ¢ = nh for n € N
and h € kert. In particular, [g] = [h], so ker¢) — G/N is surjective. Now take any h € ker
which is mapped to [1], so h € N. Since N is non-abelian and simple, N has trivial center so
keryy "N = Z(N) = 1. Thus, h = 1, so ker¢y — G/N is injective. Thus, ker¢p — G/N is an
isomorphism.

Therefore we have nonabelian simple normal subgroups N < G and H < G, and since H = ker v,
H commutes with N. Let us show NH = G. Take any g € GG. Notice that by the commutivity
of the above diagram, Imiy = Inn(N). Therefore, ¥(g) = ¥ (n) for some n € N, so g = nh for
h € kery. Thus, NH =G,s0 G= N x H= N x G/N.

O

Exercise 10. Let R; and Ry be rings (not necessarily commutative), and let M be an (R, Rs)-
bimodule. Then the matrices

Ry M

0 Ry

form a ring R, by the usual formulas for matrix addition and multiplication. Compute the Jacobson
radical of R in terms of M and the Jacobson radicals of R; and R.
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Proof. The Jacobson radical J(R) of R is the intersection of all maximal left ideals of R. For any
left ideal I of Ry, the following set is a left ideal of R:

I M
Si= o )

Furthermore, S; is maximal if and only if I is maximal, since there is a ring homomorphism R — R,
by taking the upper left coordinate which gives an order preserving bijection between left ideals of
Ry and left ideals of R of the form S;. Similarly, for any left ideal J of Ry, the following is a left
ideal of R, and similarly is maximal if and only if J is maximal:

R, M
TJ::[OI J]

Therefore,

JRm= () I> () sSn ) TJ:{J((IE” J(J\é)}::[{

ICR maximal IC R1 maximal JC Ry maximal

Now let us show that for any maximal left ideal I of R that I C K. This will imply that J(R) C K,
so J(R) = K. If I is of the form S; or T as above, clearly I C K. Otherwise by maximality, I is
not contained in any of the S; or T);. Let I; C R; be the left ideal of elements in the upper left
entry of elements in I and [y, C R, the left ideal of elements in the lower right entry of elements
in I. If I; or I, are proper than they are contained in some maximal ideal and thus I would be
contained in some S; or T';. Thus,
v )
ID

0 Ry

o]

and thus is the unital ideal R. Therefore, K C [ for all maximal ideals I so K C J(R). Therefore,

But this means that I contains

= [ M
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Exercise 1. Prove that the direct sum | |Z/pZ over all prime integers p is not a direct summand

of the product [[Z/pZ.

Proof. Let us first characterize all injective homomorphisms ¢ : | |Z/pZ — [][Z/pZ. First notice
that the elements of | |Z/p, [[Z/p may be written as sequences of elements a € Z/p:

|_|Z/pZ = {(ag,ag, ...) | ay € Z/p,a; =0 for all but finitely many Z}

[1z/vz = {(QQ,ag,...) | a, € Z/p}

Let v : | |Z/pZ — []Z/pZ be injective, and let es = (1,0,...),e5 = (0,1,0,...),... be a natural
Z generating set of | |Z/p. For ¢ to be injective, it must send e, to an element of order p for each
prime p. But the only elements of order p in [[Z/pZ are those of the form (0,...,0,a,0,...) for
a # 0 € Z/p. Furthermore, ¢ is determined by its action on ey, es,... since they generate | |Z/p.
Thus after composing with an isomorphism of [[Z/p, the only inclusion ¢ is the obvious inclusion

L JZ/p — []1Z/p sending e, to e,.

Since the only inclusions up to isomorphism are the obvious one by the above work, our notation
will assume | |Z/p C [[Z/p in the obvious way. Suppose ab absurdo that | |Z/p were a direct
summand of [[Z/p, so [[Z/p = | |Z/p ® @ for an abelian group . This would imply that
[1Z/p/|1Z/p = @ C [[Z/p. Let us show that @ is divisible, but no nontrivial submodule of
[17Z/p is divisible, a contradiction. Take an equivalence class [(ag,as,...)] € @ and take n € N.
Without loss of generality, assume that a, = 0 for all p|n, since two elements of [[ Z/p are equivalent
in @ if they agree in all but finitely many indices. Then, let b = [(as/n), (az/n),...] which is well
defined since n € Z/p* for all p 4 n. Then clearly nb = a, so @ is divisible. To show that no nontrivial
submodule of [[Z/p is divisible, it suffices to show that for all 0 # a = (as, as,...) € [[Z/p, there
exists n € N such a € n[[Z/p. For any such non-zero a, there is an index a, # 0. Then, notice
that a € ¢ [[Z/p, as desired.

O

Exercise 2. Let P C Z|z] be a prime ideal such that ZN P = 0. Prove that P is a principal ideal.
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Proof. Suppose P # 0 without loss of generality. Let g € P be a non-zero element of minimal
degree in P, and let ¢ # 0 be the GCD of its coefficients, so g/c = f € Z[x]. Then f-c¢ € P, and
since P is prime but ¢ ¢ P since Z N P = 0, we must have f € P. Let us show P = (f). Let h € P
a non-zero element. In Q[z], by polynomial division, there exist elements p € Q|z],q € Q[z]| with
deg q < f such that h = pf 4+ ¢. Multiplying both sides of the equation by D, where D € Z is the
GCD of the coefficients of p and ¢,

Dh = (Dp)f + Dq € Z[x]

Therefore, Dg = Dh — (Dp)f € P, but ¢ is of degree less than f, and thus ¢ = 0 since ZN P = 0.
Thus, h = pf. By Gauss’ Lemma, since f divides h in Q[z], f divides h in Z[z] (since the GCD of
the coefficients of f is 1), so P = (f) as desired.

0

Exercise 3. Prove that every group generated by two involutions (elements of order 2) is solvable.

Proof. Let H be a group generated by two involutions hi, hy. Then there is a surjective group

homomorphism (by universal property of free group and first isomorphism theorem) G Yo" by
a+ hi,b > hy where G = (a,b | a®> = b* = 1), and so H = G/ ker ¢ by first isomorphism theorem.
Therefore, since the quotient of a solvable group is solvable, it suffices to show that G is solvable.

Consider the subgroup N = (ab) < G. Notice that
b(ab)b™' = ba = (ab) ™' = a(ab)a™*

Therefore, N is a normal subgroup of G since a,b generate G, ab generates N, and aNa ' =
N,bNb~! = N. Notice that

G/N ={a,b|a*=b"=ab=1)27/2

Furthermore, N is cyclic since it is generated by a single element and thus Abelian. Therefore,
1 < N <G is a subnormal tower of G such that G/N, N/1 are abelian, so G is solvable. O

Exercise 4. Prove that the field extension Q(v/—3 + v/2) over Q is Galois and determine its
Galois group.
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Proof. Let L = Q(v/=3,v/2). First notice that [Q(+/2) : Q] = 6 since 2% — 2 is irreducible over Q
by Eisenstein. Also, the remaining roots of 2® — 2 are w’+/2 for 0 < j < 6 and w = ¢™/3 = %j’
Therefore, 2% — 2 splits in L. Also, 2% — 2 does not split in Q(+/2) since Q(v/2) € R and x5 — 2
does not split in R. Therefore, the splitting field of 2° — 2 is at least degree 12 over Q and is
contained in L, and thus is equal to L. Furthermore, Gal(L/Q) = G is of order 12, and each
g : Gal(L/Q) is determined by its action on v/2,y/—3. Furthermore, g(v/2) must be a root of 2% — 2
and similarly for g(v/—3) and z2 +3. Thus, there are only 12 possibilities for elements of Gal(L/Q),
and since |G| = 12, all such possibilities yield a Q automorphism of L. In particular, we have Q
automorphisms of L o and 7 which are of order 6 and 2 respectively:

o3 =3 o(VB) = V3
A(V2) =3 (VB = V3

Furthermore, we check that oror = id;:
o1o7(V2) = 070(V2) = 0T(WV?2) = o(—wV?2) = V2
oror(vV/=3) =07(—vV—-3) = v—-3

Therefore, G has relations 0% = 72 = o707 = 1, so Dg — G. By order considerations, Dg = G.

Now let us show that Q(v/—3 + v/2) = L. It is clear that Q(v/—3 + v/2) C L, so by the Galois
correspondence there is a subgroup H C G such that Q(v/—3++v/2) = L. Thus it suffices to show
that Q(v/—3 4 v/2) is not fixed by any non identity element of G so H = 1. For 0 < j < 6, we have
09 (vV/=34+/2) = V/=34+wiv/2. And for 0 < j < 6, we have 0/7(v/=3++v/2) = —/—3+w/ /2. Thus
o/ and /7 do not fix Q(v/=3 + v/2) for any 0 < j < 6 (except the identity), so Q(v/—3 + V/2) =
Q(v/=3,v/2) as desired. O

Exercise 5. Let GG be a finite group and let ¢ € . Suppose for every irreducible complex
character x of G we have |x(g)| = |x(1)|. Prove that g is in the center of G.

Proof. Let C' be the conjugacy class of g. By column orthogonality,
Z (o) = |G|
—cl

Where x1, ..., x, are the irreducible characters of GG. Using column orthogonality with the identity
(or because it’s a well known identity on its own),

> b =[G

Therefore, |C| =1, so g is in the center of G. O
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Exercise 6. Let A be a commutative ring, let P be a flat A-module and let I be an injective
A-module. Show that Hom (P, I) is an injective A-module.

Proof. To show Hom4 (P, I) is injective, we must show that Hom 4 (—, Hom (P, I)) is exact. Hom(—, M)
is always left exact, so it suffices to show that for an injection M I, N that the induced morphism
f« is surjective:

Homm (N, Homu(P, I)) £ Hom (M, Hom (P, 1))

By naturality of the tensor-hom adjunction ~, the following diagram commutes:

Hom (P & N, I) —— Homy (N, Homa(P, 1))

l(P®f lf*

Hom (P & M,I) —— Homu (M, Homa(P, I))

Since P is flat, P®@ M Pl p ® N is injective since P ® — preserves injections. Therefore, (P ® f).

is surjective in the above diagram since [ is injective. In more detail, applying Hom(—, I) to the

short exact sequence

0PN 2LPRN Skt P f — 0

yields a short exact sequence

0 — Hom(ker P ® f, 1) — Hom(P ® N, T) 225 Hom(P ® M, 1) — 0

Therefore since the diagram commutes and ~ is a bijection, f, is surjective. O

Exercise 7. Let p be a prime number, k a field of characteristic p and G be a (finite) p-group.
Let M be a finitely generated kG-module that admits a k-basis B such that G- B C B C —B (i.e.
Vg € G,Yb € B,g-b= =+l for b € B). Show that M admits a k-basis By invariant under G (i.e.
G - By C By without sign).

Proof. ]

Exercise 8. Let A be a (non-zero) ring in which the only right ideals are (0) and A. Show that
A is a division ring.
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Proof. Notice the assumption implies that A is not the zero ring, i.e., 1 # 0. For all non-zero a € A,
a - A is a non-zero right ideal of A, and thus equal to A since (0), A are the only right ideals of A
by assumption. Thus, there exists ¢ € A such that ac = 1. ¢ is also non-zero, so there exists b € A
such that c¢b = 1. Furthermore, we have

a = a(ch) = (ac)b =10

Therefore, ac = ca = 1, so A is a division ring. O

Exercise 9. Let R be a commutative ring and A, B be two (not necessarily commutative) R-
algebras. Consider the functor Homp a1g(A ®r B, —) : R-Alg — Set, from R-algebras to sets.
Construct two homomorphisms f: A - A®g B and g : B -+ A ®g B and show that they induce
an injection

Ne - HomR_Alg(A XRRr B, C) — HomR_Alg(A, C) X HOHIR_Alg(B, C)

natural in C' € R-Alg. Identify the image of no explicitly.

Exercise 10. Let A be aring. Let m,n > 1 and P be a right A-module such that P* = A™. Show
that S — P ®4 S defines a bijection between the set of isomorphism classes of simple A-modules
and that of simple End 4(P)-modules.

Proof. Let us first show that P®4— : A-Mod — End4(P)-Mod is an equivalence of categories. By
Morita equivalence, it suffices to show that P is a finitely generated projective generator of A-Mod.
It is clear that P is finitely generated since P™ is. Since P is a direct summand of A™ which is
free, P is projective. Furthermore, it is a projective generator since every A-module is surjected
onto by a coproduct of A™, and thus by a coproduct of P". Thus let us show that being simple is
a categorical property, so P ® — induces a bijection on isomorphism classes of simple A-modules
and simple End 4 (P)-modules.

A simple A-module M is one which has no proper sub A-modules. In particular, Hom, (N, M)
consists of endomorphisms and the zero morphism for all N € A-Mod. This is a purely cate-
gorical statement, so in particular if M is simple, then P ® M is simple in End(P)-Mod since
Homgna,p) (N, P ® M) = Homu(N', M) for N’ the image of N under the inverse equivalence
Enda(P)-Mod — A-Mod. O
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Exercise 1. Let p < ¢ < r be primes and G a group of order pgr. Prove that G is not simple
and, in fact, has a normal Sylow r-group.

Proof. Let n, be the number of r-Sylows, and similarly for n,,n,. Suppose for the sake of con-
tradiction that n, # 1. Since n,|pgr and n, is relatively prime to r, then n, € {p,q,pq}. Since
n, = 1l mod r and p < ¢ < r, we must have n, = pq. Therefore, there are (r — 1)pg elements of
order r in G, since every r-Sylow is congruent to Z/rZ. Thus, there are pg other elements in G.
Since ng|pr, n, € {1,p,r,pr}. Since ¢ > p and n, = 1 mod ¢, n, € {1,r,pr}. Thus if n, # 1, then
ng > r. But this would imply that there are n,(¢ — 1) > r(¢ — 1) > ¢p elements of order ¢ in G,
which is impossible given there are (r — 1)pg elements of order r. Therefore, n, = 1, so there is a
unique ¢-Sylow N < G. Let H be any of the n, r-Sylows. Then N - H is a subgroup of G of order
|N - H| = rq. Therefore, [G : N - H] = p, the smallest prime dividing |G|, so N - H is normal in
G. But since conjugation of GG acts on the r-Sylows transitively, this implies that every r Sylow is
contained in N - H, which is impossible since |N - H| < (r — 1)pq. Therefore, r = 1. O

Exercise 2. Show that groups of order 231 = (3)(7)(11) are semi-direct products and show that
there are exactly two such groups up to isomorphism.

Proof. Let G be a group of order 231. Let Hs, H7, H1; be 3,7, and 11 Sylows of G respectively, so
H, =2 Z/nZ. Let ny; be the number of 11 Sylows in G. Since ny; € {1,3,7,21} and ny;; = 1 mod 11,
we must have ny; = 1. Therefore, Hy; is normal, so N = H; - Hy; is a subgroup of G, of order a
multiple of both 7 and 11. Thus, |N| =77 and [G : N] = 3, so N < 3. Furthermore, we have:

H3mN:6
HgN:G
N 4G

So G = N x, Hj for some « : H3 — Aut(N). Therefore, G is a semi direct product as desired. Let
us show that there are exactly two homomorphisms « : H3 — Aut(N) up to isomorphism of the
semidirect product. Notice that the only group of order 77 is Z/11Z x Z/7Z, so N = Z/11Z x L] TZ.
Therefore,

Aut(N) 2 (ZJ11Z) x (Z)TZ)* = ZJ10Z x Z/6Z = (Z)2)* x (Z/3) x (Z/5)

Thus, we aim to characterize homomorphisms « : Hz — (Z/2)? x (Z/3) x (Z/5) up to isomorphism
of the domain or codomain. By the universal property of the direct product, this amounts to

64



finding homomorphisms from Z/3 into Z/2,7Z/5 and Z /3. There are no non-trivial homomorphisms
Z]3 — Z/2,7/5. Therefore, we only need to consider homomorphisms Z/3 — Z/3. There are
three such homomorphisms (given by multiplication), but 1 — 1 and 1 — 2 are identical after
composing with an isomorphism of Z/3, and thus yield the same semidirect product. Thus, letting
a : Hy — Aut(NV) be the homomorphism defined by 1 + 1 on the Z/3 component of Aut(N), the
only groups of order 231 (up to isomorphism) are:

H3XN HgS]aN

Exercise 3. A ring R (commutative or non-commutative) is called a domain if ab = 0 in R implies
a =0 or b= 0. Suppose that R is a domain such that M, (R), the ring of n x n matrices over R, is
a semisimple ring. Prove that R is a division ring.

Proof. There is an equivalence R-Mod — M, (R)-Mod by R"® —, with R an R-M,,(R) bimodule.
Since M, (R) is semisimple, every short exact sequence in M, (R)-Mod splits. Therefore, every short
exact sequence in R-Mod splits, so R is semisimple (we’ve argued that a ring A being semisimple
is a categorical property of A-Mod). By Wedderburn, R = M, (D;) x - - - x M, (D,) for (non-zero)

division rings Dy,..., D, and ny,...,n, € Z*. Notice that M,,(D) is not a domain for m > 1, for
10 0 0
instance by [0 0 0 1 = 0. Furthermore, the product of two non-zero rings A, B is

not an integral domain, by (id4,0) - (0,idg) = (0,0), so r = 1. Therefore, R = M;(D) for a division
ring D, so R = D and R is a division ring. O

Exercise 4. Let M be a left R-module. Show that M is a projective R-module if and only if
there exist m; € M and R-module homomorphisms f; : M — R for each ¢ € I such that the sets

{mi}i617 {fz‘}z‘EI satisfy:
(a) If m € M, then f;(m) = 0 for all but finitely many i € I.

(b) If m € M, then m =, fi(m)m,.

Proof. First suppose that such {m;}cs, { fi}ics exist. Then consider the R-module homomorphism

R' % M by g(e;) = m; where ¢; is the usual basis vector for the ith coordinate of R!. Notice that
this map is well defined and unique by the universal property R!. Then define h : M — R! by

h(m) = fi(m)e;

el
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h is an R-module homomorphism since for each i € I the function m +— f;(m)e; is an R-module
homomorphism, and is well defined since f;(m) = 0 for all but finitely many ¢ € I. Now notice that

g0 him) = o 3 fitme: ) = 3 fimym; = m

el el

Therefore, g surjects from R onto M and h is a section, so M is a direct summand of R! and thus
free.

Now suppose that M is projective. There exists a free module with a surjection ¢ by B! % M
(for instance, by letting I be indexed by M and mapping e,, — M). Since M is projective, the
following short exact sequence splits:

0 —>kerg— R & M —0

In particular, there is a section h : M — R!. Define f; : M — R by h composed with the ith
projection R — R. Notice that for all m € M, h(m) € R! and thus all but finitely many of the
coordinates of A(m) (as an I tuple of R) are non-zero. Therefore, all but finitely many of f;(m) are
non-zero. Furthermore, letting m; = g(e;) for the usual basis vectors e; of R!, we have:

S fmms = 3 fitmate) = (35 5m)) = g0 hlm) = m

iel el iel

Exercise 5. Let F' be a field and f(z) = 25+3 € F[z]. Determine a splitting field K of f(x) over F
and determine [K : F| and Gal(K/F) for each of the following three fields: F' = Q, F' = F5, F = F5.

Proof. Case 1: F =Q
Let w = €2™/12_ Then the roots of f are

wV/3, W V3, W V3, w V3, w V3, w3

Therefore, the splitting field K /Q is generated by these 6 elements. Also, notice that [Q(wv/3) : Q]
since 2% 4 3 is irreducible by Eisenstein. Let us show that K = Q(w+/3). It suffices to show that
w? = # € Q(wv/3), and in particular that iv/3 € Q(w+/3). Notice that (wv/3)? = w3 = iV/3,
so [K : Q] = 6 as desired. Therefore, | Gal(K/Q)| = 6. Notice that L := Q(w?v/3) C K, and w?+/3
is a root of z® + 3. However, the splitting field of 3 + 3 (irreducible by Eisenstein) is not degree
3 over Q, since L = L' := Q(+/3) is a purely real extension of Q and thus not a splitting field of
23 + 3. Therefore, K contains a subfield which is not Galois over Q, and thus Gal(K/Q) is not
abelian. Therefore since | Gal(K/Q)| = 6, Gal(K/Q) = Ss.
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Case 2: F =T}

Notice that if o € F satisfies o = 3, then o +3 = 3* + 3 = 0 mod 5. Thus, (2° + 3) divides
2%+ 3 in F. Let K = F(«) be the splitting field of 22 + 3, so [K : F| = 2 (2% + 3 is irreducible by
casework). Also, Gal(K/F') = 7Z/2 and is generated by the Frobenius automorphism ¢5 defined by
x — 5. Let us show that 2% + 3 splits in K. It suffices to show that there are 6 distinct roots of
2%+ 3 in K. Suppose (a + ba) were a root of x® + 3 for a,b € Z/5. We have

(a+ba)® = ¢(a + ba)(a+ ba) = (a — ba)(a + ba) = a* — b*a* = a® + 20> = 2

By casework, we find that +(a), +(2 + 2a), £(2 + 3a) are roots of 2% 4+ 3. Therefore, 2% + 3 splits
over K.

Case 3: F =T,
In this case, we have
2%+ 3 =(2° - 2)(z* +2)

and since 2%+ 3 has no roots in F; by Fermat’s little theorem, both 2® —2 and 23 +2 are irreducible.
Furthermore, recall that the product of all irreducible degree 3 and degree 1 polynomials in F7 is
equal to 2™ — x which splits over K = F7s. Therefore, if L is the field F[a] for any root « of 23 — 2
in F;, then L is the unique extension of F; of degree 3 and both z® — 2, 2% + 2 split in L. Therefore,
letting K = L be the splitting field of 2% + 3, [K : F;] = 3 and Gal(K/F;) = Z/3. O

Exercise 6. Let K| C Ky C Kj be fields with K3/K, and K,/ K; both Galois. Let L be a minimal
Galois extension of K containing K3. Show if the Galois groups Gal(K3/K>) and Gal(K,/K;) are
both p-groups so is the Galois group Gal(L/Kj).

Proof. By the Galois Correspondence, we have the following, for G = Gal(L/K}), Hy = Gal(L/K,), Hy =
Gal(L/K3):

1<H3<dH, 4G
(But in particular, Hs may not be normal in G - this would be the statement that K3/K; is
Galois). Furthermore, G/H, = Gal(K>/K;) is a p-group and Hy/Hs = Gal(K3/K>) is a p-group.
Also, since L is a minimal Galois extension of K; containing K3, Hs; contains no (non-trivial)
normal subgroups of G - otherwise, such a normal subgroup would correspond to a subfield of
L which contains K3 and is Galois over K;. We exclude the case of H3 = 1, since in this case the
claim is trivial, so in particular we may assume that Hj is not normal in G. Consider the derived
series G1 = [G, G|, Gy = [G2, Gal, ... of characteristic subgroups of G. First notice that since G/Ho
is a p-group, it is solvable, so the derived series

Gr = (G/Hy, G/ 1), T = [Gr, G, ..
is eventually zero. Also, letting 7 : G — G/H, be the quotient map, we have

(G = n([G,G]) = [7(G),=(G)] = [G/H,G/H] = G,
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Therefore, 7(G1) = G,. Similarly, 7(G3) = Gy, and by finite induction there is some n such that
©(G,) = G, = 0 and thus G,, C Hs. By the same argument (since Hy/Hj is also a p-group and
thus solvable), there is some m such that G,, < Hj. But since Hj contains no non-trivial normal

subgroups, G,, = 0, so G is solvable.

Let N be a normal subgroup of G containing Hj of minimal order, so N is a minimal (non-trivial)
s

——
normal subgroup of G containing Hs. By S2019#1, N = C, x --- x C,, for a prime ¢ € Z and
r > 0. We also have that |N| = [N : Hs] - |Hs|, [N : H3] > 1, and [N : Hs] divides [G : H3] = p*.
Therefore, p divides [N : H3] and thus the order of N, so ¢ = p. Therefore, Hj is order a power of
p, 80

|Gal(L/Ky)| = |G| = |G : Hy|[Hy : H3| - |Hj|

is a power of p. n

Exercise 7. Let R be a Dedekind domain with quotient field K and I a nonzero ideal in R. Show
both of the following:

(a) Every ideal in R/I is a principal ideal.

(b) If J is a fractional ideal of R, i.e., 0 # J C K is an R-module such that there exists a d € R
with dJ C R, then there exists a 0 # x in K such that I +zJ = R.

Proof. O]

Exercise 8. Consider R = C[X,Y]/(X?, XY). Determine the prime ideals p of R. Which of the
localizations R, are integral domains?

Proof. The prime ideals of R are in (bijective, inclusion preserving, quotient preserving) correspon-
dence with the prime ideals of C[X,Y] containing X% and XY. Let p be a prime ideal of C[X,Y]
containing X2, XY. Since p contains X2, it contains X by primality. Since the prime ideals of
C[X,Y] containing X are in correspondence with the prime ideals of C[X,Y]/(X) = C[Y], we
restrict our search to the prime ideals of C[Y]. The prime ideals of C[Y] are the prinicipal ideals
generated by prime elements (and the (0) ideal) since C[Y] is a PID. Furthermore since C is alge-
braically closed, the only prime ideals of C[Y] are those of the form (Y —«) for a € C. Tracing back
through the correspondence, the prime ideals of R are thus the following, where z = [X],y = [Y]
are the equivalence classes of X, Y in R:

@  {@y-a)laec}
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Now let us consider the localizations R, for p in the previous list. Recall that localization commutes
with quotients in the following way. let q be the corresponding prime ideal in R = C[X, Y], and let
I = (X? XY). Then we have: )

Ry = (CIX, Y]y)/1
where I is the image of [ in C[X,Y],. First consider p = (2,y—a) for a € C\ {0} or p = (x). Then,
q=(z,y — ) or p = (), and thus C[X, Y], is the subring of C(X,Y") of the form Zgg for ¢ € q,
since C[X,Y] is a domain. The image I of I in C[X,Y], is thus the set of elements of the form

X:(p)g};/) + XY}; XY) for ¢, ¢' ¢ q. In particular, notice that since Y & q, 2¥ = X € [ = C[X, Yl

Therefore, 1. Therefore, I is a prime ideal of C[X, Y], since it corresponds to the prime ideal (X) of
C[X, Y] by the prime ideal correspondence of localization. Therefore, C[X,Y],/I = R, is a domain.
Now consider the case of p = (z, y) SO g = (X,Y). Then we have that C[X, Y], is the subring of

C(X,Y) of elements of the form E ) for ¢ € q. q € q is equivalent to ¢ having a non-zero constant

term. Let us show that % g I. Tt suffices to show that < < cannot be written as % + Xq# for q, ¢’
with having non-constant terms. Assume it could: then we would have

X X%» Xyy
- = - +
1 q q

Xqq' = X*pd + XYDq
q¢ = Xpqd +Yp'q

However Xpq' +Yp'q has a zero constant term in C[X, Y], but ¢¢’ does not. This is a contradiction,
so & g I (notlce that cancellation was possible since C(X,Y) is a domain). Therefore, & ¢ I.

Hovvever7 T € I, so I is not prime in C[X, Y]/, Therefore,
CIX,Y]/I =R,

is not a domain. O

Exercise 9. Let G be a finite group, F a field, and V a finite dimensional F'—vector space with
G % GL(V) a faithful irreducible representation. Show that the center Z(G) of G is cyclic.

Proof. Notice that the center Z(G) of G is a finite abelian group, and thus of the following form
for positive integers n.| ... |nz|n;:

Z(G) = Cpy X Cpy X -+ x Cy,

for C,, = Z/nZ the cyclic group with n elements. We ignore the case when Z(G) is trivial, so
we may assume that each n; is greater than 1. Thus, assume r > 2. Let ¢ = (1,0,...,0) and
h = (0,1,...,0) be generators for C,,, C,, respectively. Since g,h are in the center of Z(G),
p(g): V=V p(h): V — V are FG-module homomorphisms, since for any ¢’ € G, p(g’) o p(g) =
p(9) o p(¢") and likewise for h. Let F be an algebraic closure of F. Fix an F-linear basis of V so
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V' = F™ for some n, so p(g), p(h) are represented by matrices Ay, Ap 1 F — F™. We may naturally
treat Ay, Ap, as F-linear transformations F' — F since they are explicit matrices F™ — F™. Also
since p(g), p(h) commute, A,, A, commute.

Since F is algebraically closed, there exists an eigenvalue A € F of A,. Since A; commutes with
A,, A, restricts to a linear transformation on ker(A, — )\I ), and thus has a non-zero eigenvector
v in ker(A, — A). In particular, there is a non-zero v € F" which is simultaneously an eigenvector
of Ay with eigenvalue A and an eigenvector of Ay, with eigenvalue \'. Also notice that since Ay =
I, = A}?, X is an nyth root of unity and )\ is an nyth root of unity. We aim to show that there is
some a € Z/n1Z,b € Z/n>7Z not both equal to 0 such that A*\* = 1. If ) is not a primitive n;th
root of unity, this is clearly satisfied for a equal to n; divided by the order of ny. Thus, assume A
is a primitive nith root of unity. Then it follows that either A’ = 1 and we can take a = 0,b = 1,
or X' is a non-trivial power of A\. In any of these cases, there exists some (a,b) # (0,0) such that
A\® =1 as desired.

Therefore, A%A}v = A*X°0 = v, so A%A} has an eigenvalue of 1. Therefore, p(g®) o p(h’) — Idy :
V — V is an FG-module homomorphism with non-trivial kernel. Therefore since V' is irreducible,
p(g%) o p(b") —1dy is the zero map, so p(g®) o p(h®) = Idy. However, g*h® is not the identity in G, so
p is not faithful. Thus if G has non cyclic center, every irreducible representation is not faithful. [J

Exercise 10. Let C and D be categories, and suppose that every pair of morphisms in C admits
a coequalizer. Let F' : C — D be a functor that preserves coequalizers: i.e., if f,g : A — B are
morphisms in C and 7 : B — coeq(f, g) is the coequalizer morphism, then F(7) is a coequalizer
morphism for F(f) and F(g). Suppose also that if A is a morphism in C such that F'(h) is an
isomorphism, then h is an isomorphism. Show that F' is faithful.

Proof. Let X, Y € Obj(C) and suppose f, g € More(X,Y') such that F(f) = F(g). Let us show that
f=g. Let (Z,m) = coeq(f,g) for m: Y — Z and Z the coequalizer object. Then by assumption,
the pair (F(Z), F(m)) is the coequalizer of F(f), F(g). Since F(f) = F(g) by assumption, let us
show that F(Y") (with the identity map F(Y) SN F(Y)) is the coequalizer of F(f), F(g). Since
F(f) = F(g), for any object M € Obj(D) and morphism h : F(Y) — M, the pair (M, y) is a cocone
of the diagram formed by F(X), F(f), F(g), F(Y). Thus, we aim to show that for all (M, y), there
exists a unique morphism Y — M making the following diagram commute:

F(f)
Pty

F(X) F(Y) —— M
\Fgg)/f \d) ﬂlT

F(Y)

Of course, h makes the diagram commute and is unique since id is an isomorphism. Thus, (F(Y"),id)
is the coequalizer of F(X), F(Y). Therefore, F(Y) and F(Z) are (uniquelly with respect to the
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diagram) isomorphic by the uniqueness of colimits. In fact we can reprove this by hand, see that
the following diagram commutes and by uniqueness we must have F'(7) o g = idy:

F(Z)
F(f) F%(wﬁ
~— i .
F(X) F(Y) 4% F(Y)
L), x(ﬂ)a' N
lg |
F(Z)

Therefore, F'(7) is an isomorphism, so by assumption 7 : Y — Z is an isomorphism in C. Therefore
sincerof=mog mlomof=nlomogso f=g as desired. O
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Exercise 1. Let G be a group defined by G = (a,bla® = * = 1). Determine the order of all
non-trivial finite quotient groups.

Proof. First let us show that the order of any non-trivial finite quotient group of G is even. Let
G 5 G/N for N # G. Since G is generated by a,b, G/N is generated by a,b. Therefore, either
7(a) or w(b) is non-zero. Since a, b have order 2, one of 7(a), 7(b) has order 2, so 2 divides the order
of G/N.

Now let us show that for all even numbers 2n, there is a quotient G/N of order 2n. Let D,, be the
dihedral group with 2n elements, given by D,, = (z,y | 2" = 1 = y* zyzy = 1). Since y* = (zy)* =
1, by the universal property of free groups and quotient groups there is a homomorphism p : G — D,
with p(a) = y, p(b) = zy. Since y,xy generate D,,, p is surjective. Therefore, D,, = G/ ker p, so
|G/ ker p| = 2n as desired. O

Exercise 2. Let G be a finite group of order n > 1 and consider its group algebra Z[G| embedded
in Q[G]. Let A = Z|G]/a for the ideal a generated by g — 1 for all g € G.

(a) Prove that the algebra Q[G] is the product of Q and Q - a, where Q - a is the Q-span of a in
Q[G]. [Hint: first identify the unit 1g.4.]

b) Let B be the projected image of Z|G] in Q - a. Prove that A ®zg B = G as groups if and
(€]
only if G is a cyclic group.

Proof.  (a) Define e = |_c1;| >_gec 9- Notice that e is an idempotent because
o= E I = e S =i D
G2 G2 |G|
geG  heG 9eG  g—lheG geG
Therefore, as Q-algebras (i.e., as rings), we have
Q[G] = eQ[G] x (1 - €)Q[G]

With eQ[G] — Q[G], (1 — €)Q[G] — Q[G] the inclusions and Q[G] — eQ[G], Q[G] — (1 —
¢)Q[G] multiplication by e and (1—e) respectively (this isomorphism holds for any idempotent
e of a ring R).
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First, let us show that eQ[G] is canonically isomorphic to Q. Notice that for an arbitrary
a=3_ a.9 € Q[G], we have

ZgGG
LR S DRI /) YRR
9eG  g—lheG heH geG
Therefore, Q[G] = e-Q, so Q = eQ[G] is an isomorphism by a + a - e. This implies that

(1 — e)Q|[G] is a dimension |G| — 1 vector space over Q.

In particular, this also means that 1 — g € (1 —e)Q[G] for g € G, since 1 — g is annihilated by
e. Also, {1 —g]geG\ {1g}} is a Q-linearly independent set of |G| — 1 elements contained
n (1 —e)Q[G]. Thus since dimg Q[G] = |G| — 1, we have that (1 — e)Q[G] is exactly the
Q-span of g — 1, which is exactly aQ[G]. Therefore
Q6= @ x a-Q[G]

as desired.
There is an isomorphism of Z-modules

ZIG)/a ey B = B/aB

by sending [a] ® b — [ab]. Let us prove that B/aB = Z/|G|Z as an abelian group. Then,
A @z B =G if and only if G = Z/|G|Z, i.e., G is cyclic.

Since Z|G] is generated as an abelian group by {g}seq, B is generated as an abelian group by
{9(1 —€)}yec = {g — €}4ec. Therefore, a - B is generated as an abelian group by

R O I O

using the fact that g - e = e for g € GG. Therefore, a - B has a Z generating set

T :={1-g}oecr(1}

Also, these elements are Q-linearly independent in Q[G], so a - B = ZI¢I=1 with a Z-basis
{1 = g}gecriny-

Pick go € G not equal to the identity. Since B is generated as an abelian group by {g —
e}gec\{go}, B has a Z-basis {g — e}geq\i40} since this set is linearly independent over Q in
Q[G]. Then applying a change of basis, we find that B has a Z-basis

S={l—-ce}U{l— g}geG\{go,l}

by subtracting g — e from 1 — e. Then the inclusion a- B — B with respect to the bases T, .5
is a matrix ¢ : Z"71 — Z" L

a-Be—m— s B
[ [

~ ~

v v
Fn—1 i s 7n—1
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We explicitly compute that

—|G] 0 0 ... 0]

-1 1 0 :
p=|-1 0 1

L -1 L]

since

l—go=Glle—=1)+ > 1-g
9€G\{g0,1}
In particular, B/a- B = coker p = Z/|G|Z as desired.

Exercise 3. Prove that a noetherian commutative ring A is a finite ring if the following two
conditions are satisfied:

(a) the nilradical of A vanishes

(b) localization at every maximal ideal is a finite ring

Proof. Note: there are much easier ways to do this problem if you have more technology.

First we show that A has Krull dimension 0, so every prime ideal is maximal. Let p be a prime
ideal of A, and let m be a maximal ideal containing p. The ring A, is finite by assumption (b).
There is a correspondence between prime ideals contained in m and prime ideals of A, so the ideal
p generated by ny,(p) in Ay is prime. Furthermore, A/p = A,,/p as rings. Since p is a prime ideal
of Ay, An/p is a domain and thus a field since it is finite. Therefore, A/p is field, so p is maximal
by definition.

Now let m be a maximal ideal of A. Let S be the set of ideals defined by:
S :={Ann(m) | m e A\ m}

where
Ann(z) :=={a € A | ax =0}

Since A is Noetherian, there exists an z € A \ m such that Ann(z) is maximal in S. Now let us
show that Ann(x) contains every other Ann(y) for y € A\ m. Let y € A\ m. Then notice that
Ann(zy) O Ann(z) U Ann(y), since if az = ay = 0, then axy = 0. Furthermore by maximality
of Ann(z) and because A \ m is closed under multiplication, Ann(zy) 2 Ann(z) implies that
Ann(zy) = Ann(z), so Ann(y) € Ann(z). Thus, Ann(z) contains every Ann(y) for y € A\ m.
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For each maximal ideal m of A, let x, be chosen as discussed above so Ann(x,,) is maximal in Sy,.
let I = (2)m be the ideal generated by x,, for each maximal ideal m of A. Since A is Noetherian,
I is finitely generated by some zy,, ..., Ty, . Let us show that

77:A—>ﬁAmi

i=1

is an injection (induced by the localization maps 7y, : A — Ay, and the universal property of the
product). Let m be any maximal ideal. The kernel of 7, is all of the elements z € A such that
there exists a € A\ m such that xa = 0. In particular, z € I for some I € Sy, i.e., x - ap, = 0. Now
take any z € A not equal to 0. Since x # 0, Ann(z) # A and is thus contained in some maximal
ideal m. Then z ¢ ker 7y, so anr # 0. Since (Zy,,...,Tm,) generate I, there exists a,...,a; € A
such that ayn = o, a1 + -+ - + Ty, ai. Thus,

(Tmya1 + -+ + T ag)r # 0

Therefore, there is some 1 < ¢ < n such that xy,a;x # 0, and thus z € kern,,. Thus, n is an
injection. First we show that A has Krull dimension 0, so every prime ideal is maximal. Let p be a
prime ideal of A, and let m be a maximal ideal containing p. The ring A, is finite by assumption
(b). There is a correspondence between prime ideals contained in m and prime ideals of Ay, so the
ideal p generated by 7, (p) in Ay, is prime. Furthermore, A/p = A, /p as rings. Since p is a prime
ideal of Ay, An/p is a domain and thus a field since it is finite. Therefore, A/p is field, so p is
maximal by definition.

Now let m be a maximal ideal of A. Let S be the set of ideals defined by:
S = {Ann(m) | m € A\ m}

where

Ann(z):={a € A | ax =0}

Since A is Noetherian, there exists an z € A \ m such that Ann(z) is maximal in S. Now let us
show that Ann(x) contains every other Ann(y) for y € A\ m. Let y € A\ m. Then notice that
Ann(zy) O Ann(x) U Ann(y), since if az = ay = 0, then axy = 0. Furthermore by maximality
of Ann(x) and because A \ m is closed under multiplication, Ann(zy) O Ann(z) implies that
Ann(zy) = Ann(x), so Ann(y) € Ann(z). Thus, Ann(z) contains every Ann(y) for y € A\ m.

For each maximal ideal m of A, let x, be chosen as discussed above so Ann(z,) is maximal in Sy,
let I = (2)m be the ideal generated by x,, for each maximal ideal m of A. Since A is Noetherian,
I is finitely generated by some zy,, ..., Ty, . Let us show that

77:A—>ﬁAmi
i=1

is an injection (induced by the localization maps 7y, : A — Ay, and the universal property of the
product). Let m be any maximal ideal. The kernel of 7, is all of the elements z € A such that
there exists a € A\ m such that xa = 0. In particular, z € I for some I € S, i.e., x - ap, = 0. Now
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take any z € A not equal to 0. Since x # 0, Ann(z) # A and is thus contained in some maximal
ideal m. Then z & ker ny, so anx # 0. Since (Ty,, ..., Ty, ) generate I, there exists ay,...,a; € A
such that an = zm,a1 + - - + Ty, ax. Thus,

(Tmy01 + -+ + T ag)z # 0

Therefore, there is some 1 < i < n such that xy,a;x # 0, and thus = € kern,,. Thus, 7 is an
injection. 0

Exercise 4. Compute the dimension of the tensor products of two algebras Q[v/2] ®7z Q[v/2] over
Q and Q[v2] ®z R over R. Is R ®z R finite dimensional over R?

Proof. Let us show that for Q-algebras A, B, that A ®7 B is naturally isomorphic to A ®g B. It
suffices to show that for every Q-bilinear function ¢ : A x B — M for M a Q-algebra that 1 is
Q-balanced if and only if it is Z-balanced. In this case, both Q-algebras satisfy the same universal
property and are thus (uniquely) isomorphic. It is clear that any such Q-balanced 1 is also Z
balanced. Thus assume ¢ : A x B — M is Z balanced, so ¥(ma,b) = ¢ (a, mb) for all m € Z. Then,
let m/n € Q be any non-zero rational number. Then we have that:

W(ma/n,b) = (ma/n, (bn/n)) = ¥(ma, b/n) = ¥(a, mb/n)
by Z-balance, so 1 is Q-balanced. Thus, we have
Qlv2] ©2 Q[v2] = Q[v2] 8, Qv = (Q* © Q%*) = @™
So Q[v2] ®z Q[v/2] is dimension 4 over Q. Furthermore, we have:
Q[V2] ®g R = Q®? @y R = R®?
as an R module, so @[\/5] ®g R is dimension 2 over R. Finally, we have:
R ®z R = (QM ®g R) = R®™

so R ®g R is not finite dimensional over R. O

Exercise 5. If K # Q appears as a subfield (sharing the identity) of some central simple algebra
over Q of Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois
group of the Galois closure of K over Q.

Proof. ]
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Exercise 6. Let F be a finite field with at least 3 elements. Show that SLy(F) has order divisible
by 12.

Proof. Let |F| = ¢ a prime power greater than 2. Let us explicitly compute | SLo(F)|. Consider an
arbitrary element of My(IF)

a21 A2

A — {an a12:|

a1

a } to be a non-zero vector. For any such choice, there are
21

There are ¢ — 1 ways to choose v; = [

q* — q ways to choose the column v, Zu] to be non-colinear to the first column, so A has non-zero
21

determinant. Fix any such vy, vy. Notice that since det is bilinear,
{det [v; avs] | a € F*} =F"

Therefore, among the ¢> — ¢ ways to choose the column vy so A has non-zero determinant, exactly
(> —q)/|F*| = (¢* — q)/(qg — 1) = q of those choices yield a matrix with determinant 1. Since all
elements of SLy(IF) can be constructed uniquely in this way (picking v; # 0 and then picking vy to
not be colinear),
|SL2(F)| = (¢* = g = q(g — 1)(g + 1)

Now let us show that 12|(q(¢ — 1)(¢ + 1)). Since (¢ — 1),q,(¢ + 1) are three colinear positive
integers, exactly one of them is divisible by 3. If ¢ is odd, then both ¢ — 1,q + 1 are even and
thus 12|(¢ — 1)g(¢ + 1). If ¢ is even, then ¢ is a power of 2 greater than or equal to 4 so 4|q, so
12|(g = 1)q(q +1). O

Exercise 7. Let G be a p-group and 1 # N < G be a non-trivial normal subgroup.

(a) Show that N contains a non-trivial element of the center Z(G) of G.

(b) Give an example where Z(N) € Z(G)

Proof. (a) Since N < G, G acts on N by conjugation, say by ¢ : G — Autget(N) by ¢¥(g)(n) =
gng~t. By the orbit stabilizer theorem,

|IN| = Z [G : staby(n)]
n€Orbit(1)

Since G is a p-group, [G : staby,(n)] is either 1 or a power of p. And since N is a non-trivial
subgroup of GG, p divides the order of N. Thus taking modp of both sides, we have:

0= Z 1 mod p
nE-stable

Thus, the number of v-stable elements in N is divisible by p. There is at least one 1)-stable
element, the identity e € N, so there is another non-identity n € N which is ¢ stable. This
means that ¥ (g)(n) = gng™* =n for all g € G, so n € Z(G) as desired.
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(b) Let G be the quaternion group with 8 elements. Then (i) = Z/4Z is a normal subgroup of G,
but Z(N) =N ¢ Z(G) = {£1}.
[l

Exercise 8. Let R be a ring.
(a) Show that an R-module X is indecomposable if Endg(X) is local.

(b) Suppose that every finitely generated R-module M is isomorphic to X; & --- @ X, with all
Endg(X;) local. Show that such a decomposition is unique up to isomorphism and permuta-
tion of terms.

(¢) Given an example of an isomorphism X; & X, = Y; @Y, with End(X;) and End(Y;) local that
is not the direct sum of any isomorphisms X; = Y;, even up to renumbering the Y;.

Proof.  (a) Suppose that Endg(X) is local and X = M @& N. Then, we have endomorphisms
71, T € Endg(M @& N) by m(m,n) = (m,0) and me(m,n) = (0,n). Their sum m; + 5 is the
identity on Endg(M @& N). Since Endr(M & N) = Endg(X) is local, this implies that either
7, Or o is invertible, since the sum of non-invertible elements in a local ring is non-invertible.
Therefore, either M =0 or N = 0.

(b) Suppose that
X10Xo®--- X =2Y10Y2D--- DY,

for R-modules X;,Y; each with Endg(X;), Endg(Y;) local (and each X;,Y; non-zero). Let
VD, Xi — D)., Y; be an R-module isomorphism with two sided inverse ¢. Since finite co-
products coincide with finite products in R-Mod, Homp(®;~, X;, D), X;) = D27, Hompg(X;, Yj).

i=1,j=1
Let ¥ : Xy — Y, and ¢y, @ Y, — X, be the corresponding maps under this identification

(which can be concretely defined as X, — @], X, N @,_,Y; - Y;). Thus, ¢ is of the form
Vi o i

Unt - Ynm
and similarly for ¢. Therefore, since ¢ o ¢ =idg x,, for all 1 < a < m, we have
Pa1¥1a + Pa2th2a + -+ + PanPna = 1dx,
Similarly, for all 1 < b <mn,
Yo1p1s + Yo2p2e + - -+ Yompmy = 1dy,,

Since Endyx, is local, at least one of the ¢4;1j, is invertible since their sum is. After relabelling,
we can assume without loss of generality that 17 o ;1 = idx,. Therefore, this implies that
the there is a retraction of the following short exact sequence and therefore it splits:

0 —— X, <Py, » coker; —— 0
W

P11
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Thus, X; is a direct summand of Y; so by part (a) we have that 1; is an isomorphism.
Since 117 is invertible, after performing row and column reductions (i.e., composing with
automorphisms of X; @ --- @ X,,, Y1 @ --- @ Y,,), we have that there are isomorphisms p; :
X100 X,-X10 X, Y10---BY, >Y @ DY, such that:

Y [0 ... 0]
0
pQO@bOPl: : A

0

for an isomorphism A : Xo®---® X,, > Y1 ®--- B Y,. Therefore by induction, we have that
the set of X; are isomorphic pairwise with the set of Y;.

(c) Let R=Q and X; = X5 = Y] = Y5 = Q as left Q-modules in the natural way. Then, define
Y X1 8 Xy = Y1 @Y, by ¢(a,b) = (a,a+b). Also notice that Endg(X;) = Endg(Y;) = Q
which is a field and thus local. Furthermore, for any p; : X; — Y7, p @ X5 — Y5 Q-module
isomorphisms (i.e., multiplication by an element of Q), it is clear that ¢ # p; © ps. By
symmetry, this will not change if we permute Y7, Y5.

m

Exercise 9. Let R be a commutative ring and S C R a multiplicative subset. Construct
a natural transformation (in either direction) between the functors Homg-15(S™*M,S™'N) and
S~'Hompz(M, N), considered as functors of R-modules M and N, and prove it is an isomorphism
if M is finitely presented.

Proof. Let us define a natural transformation o : S~! Hompg(—, —) — Homg-15(S™'—, S~'—). The
data of such a natural transformation is for every R-module pair M, N, an R-module homomor-
phism sy : S7' Homp(M, N) — Homg-15(S™ M, S7'N). Notice that there is a natural R-module
homomorphism Hompg(M, N) — Homg-1z(S7'M, S7N) by the functoriality of the tensor prod-
uct (and recalling that S™'M = S™'R ®xr M). Furthermore, S acts invertibly on the R-module
Homg-1z(S™'M, S™'N) since this is naturally an S~'R module, so by the universal property of
localization there is an induced homomorphism from S~ Homg(M, N).

S~ Hompg (M, N)

Te~L_ auyN
il
-~y

Homp(M, N) S 225 Homg-15(S~1M, S~'N)

Thus, as the diagram suggests, define a;n to be this induced R-module homomorphism. Now let
us argue that « is natural in M, N. First notice that the natural transformation 8 : Homg(—, —) —
Homg-1z(S™1—, S71—) is natural by the functoriality of the tensor product. But since n : R-Mod —

S~'R-Mod by M — S~'M is essentially surjective and full, and an = 3 by definition, the naturality
of v is induced from the naturality of 5.
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Now let us show that if M is finitely presented, sy is an isomorphism (for all N). Since M is
finitely presented, there is a short exact sequence:

0—+R'SR" - M—0 (4)
Tensoring with ST R is exact, so we have an exact sequence:
0— S'RF 5 STIR™ — S7'M — 0
and taking Homg-1z(—, ST'N) we have an exact sequence of S~' R-modules, which can be treated
as an exact sequence of R modules by restriction of scalars:

0— 0 — Homg13(S7'M,STIN) — (STIN)" — (STIN)*
If we apply the left exact functor S~ Homg(—, N) to equation 4, we instead have:
0—0— S Homg(M,N) — (STN)" — (ST'N)*
Thus, let us show the following diagram is commutative and then by the 5 lemma we are done:

0 > 0 » ST'Homp(M,N) —— (STIN)" —— (S7IN)*

S

0 —— 0 —— Homg-1x(S7*M,S7IN) —— (S7IN)" —— (S7IN)k

This is a routine check. O

Exercise 10. Let R be a commutative ring and M a left R-module. Let f : M — M be a
surjective R-linear endomorphism. [Hint: let R[z] act on M via f]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f~' can be
described as a polynomial in f.

(b) Show that this fails if M is not finitely generated.

Proof.  (a) M is naturally an R[x] module by letting x act by f. Furthermore, since M is finitely
generated over R, it is finitely generated over R[x]. Let I = (x) be the principal ideal generated
by x. Since f- M = M, I- M = M. Therefore by Nakayama’s lemma, there exists p € I such
that p-m = m for all m € M. Since p € I, p is of the form p(z) = xq(z) for some ¢. Then it
follows that f=! = ¢(f), since for all m € M,

a(f)f(m) =p(z) -m=m
and q(f)o f = foq(f)

(b) Let R = Z and let M = | |,+Z. Thenlet f : M — M by f(e;) = f(e;—1) for i > 2 and
f(e1) = 0. Notice that this definition induces a unique Z-linear endomorphism M — M
by the universal property of the coproduct, so f uniquely exists as defined. Furthermore,
e1,€s,..., are in the image of f, so f is surjective since ey, eg, ..., form a Z generating set for

M. However, f is not an isomorphism since f has non-zero kernel.
O
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Exercise 1. Show that every group of order 315 is the direct product of a group of order 5 with
a semidirect product of a normal subgroup of order 7 and a subgroup of order 9. How many such
isomorphism classes are there?

Proof. Let G be a group of order 315 and let ng, ns, ny be the number of 3-Sylows, 5-Sylows, 7-Sylows
respectively. By the Sylow theorems and some basic arithmetic, ng € {1,7},n5 € {1,21},n; €
{1,15}. Let Hj be a 3-Sylow of G. Since the number of 3-Sylows is either 1 or 7 and G acts
transitively on the 3-Sylows by conjugation, K = Ng(Hj) is either order 315 or 315/7 = 45 by the
orbit stabilizer theorem. In either case, K contains a 5-Sylow Hy which is also a 5-Sylow of G.
Since Hs normalizes Hs, HsH3 < (G is a subgroup of G of order 45. Let us show as a lemma that
every group of order 45 is Abelian so Hy, H3 commute.

Lemma: Let H be a group of order 45. Then H is Abelian.

The number of 5-Sylows in H is equal to 1 by the Sylow theorems, since both 3,9 are not congruent
to 1 mod 5. Therefore, H = Z/5 x L for L a group of order 9. Since Aut(Z/5) = Z/4, there are
no non-trivial group homomorphisms L — Z/4 since there are no subgroups of L of even order.
Therefore, H = Z/5 x L. Furthermore, any group L of order 9 is Abelian since L has non-trivial
center, so H = Z/5 x L is Abelian.

Therefore, Hs, Hy commute, so Hy < Ng(Hs). If ny = 21, then by the orbit stabilizer theorem with
respect to the action of G on the set of 5-Sylows we must have |Ng(H;)| = 315/21 = 15. However
since Hy < Ng(Hj), we must have 9 = |H3| dividing |Ng(Hs)|. Therefore, ns = 1. Let H7 be a
7-Sylow of G. Since n5 = 1, H; normalizes Hs, so HsH; < G is a subgroup of order 35. Every
group of order 35 is Abelian so H5 normalizes H;. If n; = 15, then we have Ng(H;) = 315/15 = 21
which 5 does not divide, which is impossible. Thus, n; = 1.

Since n; = 1, H; < G, so N = H;Hj is a subgroup of G. Also since Hs commutes with H; and
Hj, Hs commutes with N. Therefore N Hs is a subgroup of G of order 315 and is thus equal to G.
Furthermore, N N Hs = {e} by order considerations. Therefore, G = N x Hj. Furthermore since
H; 9 G, H; < N, so N = H; x Hs for a 3-Sylow Hj. The only groups of order 9 are Z/9 and
Z/3 x 7/3, and Aut(Z/7) = Z/6. Thus, there are 4 groups of order 63 up to isomorphism:

Z)TXZ/9  TJTXNTL)Y  LJTXZ/3XZ)3  L)TxT)3xZ/3

Where the above semidirect products are with respect to the non-trivial automorphism - i.e., defined
by Z/9 — 7Z/6 by 1 — 2 and Z/3 x Z/3 — Z/6 by (1,0) — 2. Any other choice of group
homomorphism yields an isomorphic semidirect product. O
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Exercise 2. Let L be a finite Galois extension of a field K inside an algebraic closure K of K.
Let M be a finite extension of K. Show that the following are equivalent:

()
(b)
(c)

LNM=K.
(LM : K| =[L: K|[M : K]

every K-linearly independent subset of L is M linearly independent.

Proof. Since L is a finite Galois extension of K, L is a finite simple extension, so L = K (z) for some
x with minimal polynomial p(T) = T™ + a,, 1 T" ' + - - - + a¢ which splits in L, and ML = M(z).

(a) = (b)

(c) = (a)

We have:
[M(z) : K] = [M(x): M|[M : K]

Thus it suffices to show that the minimal polynomial of x over M is still p. Let ¢ € M|[T
be the (monic) minimal polynomial for =, so ¢(T) = T™ + b, (T™ ' + -+ + by for some
bp_1,...,bp € M. Since p splits in L, all of the coefficients b,_1,...,by are in L. Since
LN M = K, we thus must have b, _1,...,by € K. Thus, ¢ € K[T1], so ¢ = p by the uniqueness
of minimal polynomials. Thus, [M(z): M] = [L : K].

Let S = {ry,...,rx} be a K-linearly independent subset of L so k < n. Notice that
{1,...,2"" '} forms a K basis for L = K(z) and {1,...,z" "'} forms an M basis for M(z)
since [M(z) : M] = [K(z) : K] which follows from

(M(z) : M[M : K] = [M(z) : K] = [K(2) : K][M : K]

and the fact that [M : K] is finite. S can be extended to a K basis r1,..., 7k Tki1, -, Tn
of L. Then, {1,z,...,2" '} C (ri,...,rn)x C (ri,...,ra)pr. Thus, {ry,...,7,_1} spans
M(x) = ML as an M-vector space, and since dimy; M(x) = n, ry,...,r, is an M basis of
M (z). Therefore, r1,...,r) are M-linearly independent.

Let a € L\ K. Then {1, a} is linearly independent over K since a ¢ K. Thus by assumption
{1,a} is M linearly independent over M so a ¢ M. Thus (L\ K)NM = {.

]

Exercise 3. Let I be the ideal (z? —y? + 22, (zy+1)*— 2, 2%) of R = C[z,y, 2]. Find the maximal
ideals of R/I, as well as all of the points on the variety

V(I) = {(a,b,c) € C* | f(a,b,c) =0 for all f €I}
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Proof. The maximal ideals of R/I are in correspondence with the maximal ideals of R containing I.
Furthermore by the Nullstellensatz, the maximal ideals of R are in correspondence with the points
of the variety V(I). Thus, let us compute V(I). Let a,b,c € C. Then (a,b,c) € I if and only if
f(a,b,c) =0forall f € I. Thus, (a,b,c) € I ifand only if ¢ =0, a*>—b*+c* =0, (ab+1)*—c* = 0.

Since ¢ = 0 implies ¢ = 0, this simplifies to the equations ¢ = 0,a?> — b*> = 0,ab = —1. Since
a? — b?> =0, either a = —b or a = b. Thus, the equations split into two possibilities:
c=0,a=ba*=—1 c=0,b=—a,a*=1

In the first case, the only solutions in C? are (0,4,4) and (0, —i, —7), and in the second case the only
solutions are (0,1,—1) and (0,—1,1). Thus, V(I) is the set of these 4 points, and the maximal
ideals of R/I are in correspondence by (a,b,c) — (z —a,y — b,z — ¢). O

Exercise 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring
M, (Z) of n-by-n matrices with Z-entries with n > 1.

Proof. Notice that a module being simple is an additive categorical property, in the sense that a
module M € R-Mod is simple if and