Representations of the Symmetric Group from Geometry JNIVERSITY DF UTAH® Sean Howe Emil Geisler

High Dimensional Geometry

Geometry is the study of the shape of mathematical objects. There are many A representation of S_n is a homomorphism $\rho: S_n \to \operatorname{GL}(V)$ where V is a complex intricate connections between geometry and other areas of math, particularly in vector space. the study of the complex numbers (\mathbb{C}) and related algebraic constructions. An *irreducible representation* is a representation which cannot be expressed as a

Figure 1. The planes x = y, y = z, and x = z in \mathbb{R}^3 . $PConf_3(\mathbb{R})$ is the complement of these planes in \mathbb{R}^3 .

We aim to study complex configuration space, denoted as $\mathrm{PConf}_n(\mathbb{C})$ where n is the dimension. In recent years, researchers have shown that the geometry of $\operatorname{PConf}_n(\mathbb{C})$ stabilizes as n tends toward infinity. However, the limiting geometry of $\operatorname{PConf}_n(\mathbb{C})$ is still mostly unknown.

Partitions and Young Diagrams

Let n be a positive integer. A *partition* of n is way of writing n as a sum of positive integers. For instance, n = 4 has 5 partitions:

2 + 22 + 1 + 11 + 1 + 1 + 13 + 1Young Diagrams are a convenient way of visualising partitions as non-increasing stacks of boxes.

The Symmetric Group

The symmetric group of degree n, denoted S_n , is the group of permutations of the integers $1, 2, \ldots, n$. The following is an example of an element of S_5 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$$

This notation represents $\sigma(1) = 2, \sigma(2) = 5, \sigma(3) = 4, \sigma(4) = 3, \sigma(5) = 1$. Any permutation can be written in "cycle form" as the product of disjoint cycles. For instance $\sigma = (125)(34)$. The cycle type of a permutation is the length of each cycle, represented as $\sigma = (abc)(de)$. Cycle types describe the conjugacy classes of S_n . There is a correspondence between Young Diagrams with n boxes, cycle types in S_n , and partitions of n:

 $\iff 5 = 3 + 1 + 1 \iff (abc)(d)(e) = \text{conjugacy class in } S_n$

^{*}University of Utah

Representations of the Symmetric Group

direct sum of other representations. Every representation of S_n can be expressed uniquely as a direct sum of irreducible representations.

There is a correspondence between irreducible representations of S_n and Young Diagrams with n boxes. Therefore, to classify any representation $\rho: S_n \to \mathrm{GL}(V)$, it suffices to find the integer multiplicity corresponding to each Young Diagram with n boxes.

Figure 2. An example of decomposing a representation of S_4 into irreducibles, where the *j*th Young Diagram corresponds to an irreducible representation ι_i . Then, $a_i = \langle \rho, \iota_i \rangle_{S_n}$.

Homology and Cohomology

The *i*th degree of homology represents the number and structure of the idimensional "holes" in a space. *Cohomology* is algebraically dual to homology and expresses the same information. However, cohomology associates a ring rather than a group for each degree i. The ith degree of cohomology (over the rationals) of a space X is denoted $H^i(X; \mathbb{Q})$.

Figure 3. The torus and sphere have isomorphic degree 0 and degree 2 homology but differ in degree 1.

Representation Stability of Configuration Space

Degree n configuration space over \mathbb{F} is the space of ordered n-tuples with pairwise distinct elements in \mathbb{F} :

 $PConf_n(\mathbb{F}) = \{ (x_1, x_2, \dots, x_n) \mid i \neq j \Rightarrow x_i \neq x_j, x_i \in \mathbb{F} \}$

 S_n acts on $\mathrm{PConf}_n(\mathbb{C})$ by permuting the coordinates x_1, \ldots, x_n . This induces an action of S_n on the cohomology $H^i(\operatorname{PConf}_n(\mathbb{C});\mathbb{Q})$. Since $H^i(\operatorname{PConf}_n(\mathbb{C});\mathbb{Q})$ is a complex vector space, this gives this action the structure of a representation of S_n .

For a Young Diagram λ with k boxes let V_n^{λ} represent the Young Diagram by adding n-k boxes above the first row of λ :

 $\iff 4 = 3 + 1$

Lyperbolic lass in S_n

For any Young Diagram λ and $i \in \mathbb{N}$ the following limit exists: $\lim_{n \to \infty} \langle V_n^{\lambda}, H^i(\operatorname{PConf}_n(\mathbb{C}); \mathbb{Q}) \rangle_{S_n}$

For any Young Diagram λ , determine the value of $\lim_{n \to \infty} \langle V_n^{\lambda}, H^i(\operatorname{PConf}_n(\mathbb{C}); \mathbb{Q}) \rangle$ In the following results, we fix λ and let $a_i = \lim_{n \to \infty} \langle V_n^{\lambda}, H^i(\operatorname{PConf}_n(\mathbb{C}); \mathbb{Q}) \rangle$. Then, we define $p^{\lambda}(q)$ as a formal power series in q such that $p^{\lambda}(q) = a_0 - a_1 q^{-1} + a_2 q^{-2} - \dots$

Let λ be a Young Diagram with k boxes and let $p_{\lambda}(q)$ be defined as above.

- If $a_i \neq 0$, then $a_j \neq 0$ for j > i.
- $a_{k-1} = 0$ if and only if λ is a vertical stack of k boxes.

Theorem

Project Goal

Results

$-2q^{-3}+2q^{-4}-2q^{-5}+2q^{-6}-2q^{-7}+2q^{-8}-2q^{-9}+\ldots$
$-3q^{-3} + 6q^{-4} - 9q^{-5} + 10q^{-6} - 11q^{-7} + 14q^{-8} - $
$17q^{-9} + \dots$
$+6q^{-4} - 7q^{-5} + 10q^{-6} - 13q^{-7} + 14q^{-8} - 15q^{-9} + \dots$
$8q^{-4} - 14q^{-5} + 24q^{-6} - 35q^{-7} + 46q^{-8} - 61q^{-9} + \dots$
$+16q^{-4} - 30q^{-5} + 47q^{-6} - 68q^{-7} + 94q^{-8} - 123q^{-9} + \dots$
$-4 - 15q^{-5} + 23q^{-6} - 34q^{-7} + 47q^{-8} - 62q^{-9} + \dots$
$4 - 17q^{-5} + 33q^{-6} - 57q^{-7} + 96q^{-8} - 149q^{-9} + \dots$
$9q^{-4} - 46q^{-5} + 97q^{-6} - 178q^{-7} + 288q^{-8} - 435q^{-9} + \dots$
$^{-4} - 34q^{-5} + 66q^{-6} - 113q^{-7} + 190q^{-8} - 298q^{-9} + \dots$
$^{-4} - 45q^{-5} + 97q^{-6} - 177q^{-7} + 287q^{-8} - 435q^{-9} + \dots$

Conjectures

• The leading non-zero term of p_{λ} has exponent in the range [-k, -k/2].

References

[1] Thomas Church and Benson Farb. Representation theory and homological stability. Advances in Mathematics, 245: 250-314, oct 2013. doi:10.1016/j.aim.2013.06.016. URL https://doi.org/10.1016%2Fj.aim.2013.06.016. [2] Thomas Church, Jordan Ellenberg, and Benson Farb. Representation stability in cohomology and asymptotics for families of varieties over finite fields. Contemporary Mathematics, 620:1–54, 2014.

[3] Sean Howe. Motivic random variables and representation stability, i: Configuration spaces. Algebraic & amp; Geometric Topology, 20(6):3013-3045, dec 2020. doi:10.2140/agt.2020.20.3013. URL https://doi.org/10.

^{2140%2}Fagt.2020.20.3013.