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iv

1. Abstract

Representation stability was introduced to study mathematical structures which

stabilize when viewed from a representation theoretic framework. The instance of

representation stability studied in this project is that of ordered complex configuration

space, denoted PConfn(C):

PConfn(C) := {(x1, x2, . . . , xn) 2 Cn | xi 6= xj}

PConfn(C) has a natural Sn action by permuting its coordinates which gives

the cohomology groups H i(PConfn(C);Q) the structure of an Sn representation. The

cohomology of PConfn(C) stabilizes as n tends toward infinity when viewed as a

family of Sn representations. From previous work, there is an explicit description for

H
i(PConfn(C);Q) as a direct sum of induced representations for any i, n, but this

description does not explain the behavior of families of irreducible representations as

n ! 1. We implement an algorithm which, given a Young Tableau, computes the

cohomological degrees where the corresponding family of irreducible representations

appears stably as n ! 1. Previously, these values were known for only a few Young

Tableaus and cohomological degrees. Using this algorithm, results have been found

for all Young Tableau with up to 8 boxes and certain Tableau with more, which has

led us to conjectures based on the data collected.
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2. Introduction

Representation stability is a sub-field of representation theory concerned with

the symmetries of certain representations as their degree increases towards infinity.

Mathematicians are interested in stabilization phenomena because they describe the

part of a problem that remains the same even as the complexity or size of the problem

increases. There is a broad family of problems in representation stability that have

theoretical guarantees of a structure remaining stable as the problem increases in

complexity [3] [7]. However, even in the simplest cases, computing this stable part of

the problem is di�cult.

While the theory of representations of finite groups is well over a hundred years

old, [5, Section 4] the area of representation stability is far more recent, originating

in the early 2010’s due to Church and Farb [3]. This theory began as a series of con-

jectures pertaining to the cohomology of configuration spaces [4, Section 3]. Complex

configuration space is the space of ordered n-tuples of C [4]. There is a natural ac-

tion of Sn on complex configuration space by permuting the coordinates, which when

considered as a vector space over C provides a representation of Sn. Church and

Farb investigated this representation of Sn as n and the degree of cohomology varied

[4] [3]. They were able to find that in terms of the decomposition into irreducible

representations, the representation of Sn stabilized as n tended toward infinity under

certain conditions [4, Section 3]. This stabilization phenomena was proved using the

machinery of étale cohomology, which provides a connection between arithmetic and

algebraic geometry. [4, Section 2].

In addition, Farb describes connections between the cohomology of configura-

tion space and the properties of square free polynomial space over a finite field [4,

Section 5]. This connection is important to this work, as it means that the coe�cients

determined here can be interpreted as geometric results in square free polynomial

space.
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3. Representations of Finite Groups

3.1. Basic Definitions.

Definition 3.1.1. A representation of a finite group G on a finite dimensional vec-

tor space V is a homomorphism ⇢ : G ! GL(V ) from G to the invertible linear

transformations of V . V is then said to be a representation of G [5, Section 1.1].

Representation theory is the study of algebraic structures by representing their

elements as linear transformations of a vector space. Representations provide a frame-

work to understand a group and its symmetries. Let us now consider some examples

of representations.

Example 3.1.2. A relevant representation of the permutation group S3 is the per-

mutation representation on C3. The permutation representation is defined by letting

� 2 S3 act on a vector v 2 C3 by permuting its coordinates:

� 2 S3 : (⇢(�))(v1, v2, v3) = (v�(1), v�(2), v�(3))

Example 3.1.3. Take some finite group G and a one dimensional vector space V .

There exists an identity map idV 2 GL(V ) such that for all v 2 V , idV (v) = v. The

trivial representation maps all elements of G to the identity map so ⇢(g) = idV . For

instance, the trivial representation of the permutation group S3 on C is defined as:

c 2 C, � 2 S3 : (⇢(�))(c) = c

3.2. Subrepresentations.

Definition 3.2.1. Consider a representation V of a finite group G. A subrepresen-

tation of V is a subspace W of V which is invariant under G, so that for any w 2 W ,

⇢(g)(w) is an element of W [5, Section 1.1].

Example 3.2.2. Consider a representation V = C3 of S3 that maps each element

of S3 to the identity automorphism of C3: ⇢(�)(v1, v2, v3) = (v1, v2, v3). There are
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infinitely many subrepresentations of V - any proper non-zero subspace W of V is a

subrepresentation since so ⇢(�)(W ) = W . For instance, the subspace spanned by the

vectors h(1, 1, 0), (0, 0, 1)i is a subrepresentation of V , as well as the subspace spanned

by h(1, 0, 5)i.

There is a natural way to combine two complementary subrepresentations back

into the original representation, by way of direct sum.

Definition 3.2.3. For any two representations V1, V2 of G defined by the homomor-

phisms ⇢1, ⇢2 respectfully, define the direct sum ⇢1 � ⇢2 : G ! GL(V1 � V2) by:

(⇢1 � ⇢2)(g) = ⇢1(g)� ⇢2(g) v1 2 V1, v2 2 V2, g 2 G

⇢1�⇢2 is a homomorphism and thus a representation from the properties of the direct

sum of matrices in a vector space:

(⇢1(g)� ⇢2(g))(⇢1(h)� ⇢2(h)) = ⇢1(g)⇢1(h)� ⇢2(g)⇢2(h)

For a finite group G, it is possible to construct infinitely many representa-

tions of G on vector spaces of di↵ering dimensions and structure. A natural question

is whether there is some classification of the representations of G so the search for

representations is restricted somewhat. We have seen via the direct sum that rep-

resentations can be built out of other representations, so a natural focus is on the

representations that are ‘atomic’ with respect to this operation, i.e., that cannot be

expressed as a direct sum of others [5, Section 1.2]. This provides the motivation for

the following definition.

Definition 3.2.4. An irreducible representation is one whose only subrepresentations

are itself and the zero subspace.

Example 3.2.5. The trivial representation is irreducible, since its vector space has

dimension 1, and therefore has no proper nonzero subspaces. Likewise, any represen-

tation over a vector space of dimension 1 is irreducible.
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Irreducible representations are the building blocks of all representations. Con-

sider example 3.2.2, of ⇢ : S3 ! GL(V ) defined by ⇢(g) = idV , and V = C3. Take the

subrepresentations W1 spanned by (1, 0, 0), W2 spanned by (0, 1, 0), and W3 spanned

by (0, 0, 1) of V . On each of these subspaces, S3 acts as the trivial representation.

Thus, we may express V = U � U � U , where U is the trivial representation of S3.

Since U is trivial and therefore irreducible, this is a decomposition of V into a direct

sum of irreducible representations.

Theorem 3.2.6. For any representation V of a finite group G, there is a decompo-

sition

V = V
�a1
1 � V

�a2
2 � · · ·� V

�ak
k

where the Vi are distinct irreducible representations. This decomposition is unique up

to reordering and isomorphism [5, Proposition 1.8].

This is a foundational result in representation theory. The proof is omitted

for the sake of brevity. It states that all representations can be expressed in terms

of the direct sum of irreducible representations, and therefore if the irreducible rep-

resentations of a group can be found, all of the representations of the group can be

described.

Example 3.2.7. Once again, consider the representation V = C3 of S3 that maps

each element of S3 to the identity automorphism of C3: ⇢(�)(v1, v2, v3) = (v1, v2, v3).

Since there are infinitely many subspaces of V and each subspace is fixed under

the identity automorphism, there are infinitely many ways to express V as a sum of

irreducible representations. This is why the decomposition in Theorem 3.2.6 is unique

up to isomorphism. Theorem 3.2.6 states that no matter how V is decomposed into

irreducible representations, the decomposition will be isomorphic to U�U�U = U
�3,

where U is the trivial representation.

Example 3.2.8. Consider the permutation representation V
0 of S3. The subspace

W ⇢ V
0 generated by (1, 1, 1) is a subrepresentation of V 0, since it is fixed under the
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action of S3:

� 2 S3 : ⇢(�)(v1, v2, v3) = (v�(1), v�(2), v�(3))

� 2 S3 : ⇢(�)(1, 1, 1) = (1, 1, 1)

W is the trivial representation since each � 2 S3 maps each element of W to itself.

Therefore, V 0 is the direct sum of the trivial representation U with a two dimensional

representation V . V is called the standard representation of S3, and is irreducible.

Thus, V 0 = U � V is the decomposition of the permutation representation on S3 into

irreducible representations [5, Section 1.3].

3.3. Introduction to Character Theory. We have seen that all the representa-

tions of a finite group G can be expressed as the direct sum of irreducible represen-

tations. Character theory provides structure that assists in finding the irreducible

representations of a group and decomposing a representation into irreducibles.

Definition 3.3.1. A representation ⇢ is a homomorphism from the elements of a

group to linear transformations of a vector space. The linear transformations of a

vector space can be interpreted as matrices. Given a representation of a finite group

G over a vector space V , the character is a function �V on G defined to be the trace

of the matrix ⇢(g):

�V (g) = Tr(⇢(g))

An important property of the trace is that the trace of a matrix is invariant

under conjugation [5, Section 2.1]. In particular, for A,B 2 GL(V )

Tr(BAB
�1) = Tr(A)

Therefore, �V is a class function - it is constant on the conjugacy classes of G:

�V (hgh
�1) = Tr(⇢(h)⇢(g)⇢(h)�1) = Tr(⇢(g)) = �V (g)
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As an example, let us determine the character of the permutation representation V
0

on S3. First, let us write out the matrices associated with each element of S3. Since

the character is invariant on conjugacy classes, we need only find the character of one

representative from each conjugacy class:

�V 0((1)) = Tr(⇢((1))) = Tr

2

6664

1 0 0

0 1 0

0 0 1

3

7775
= 1 + 1 + 1 = 3

�V 0((12)) = Tr(⇢((12))) = Tr

2

6664

0 1 0

1 0 0

0 0 1

3

7775
= 0 + 0 + 1 = 1

�V 0((123)) = Tr(⇢((123))) =

2

6664

0 0 1

1 0 0

0 1 0

3

7775
= 0 + 0 + 0 = 0

Definition 3.3.2. Consider a group G, and take two class functions ↵, � : G ! C.

Then, we define a Hermitian inner product on the class functions of G by

(↵, �) =
1

|G|
X

g2G

↵(g)�(g)

Lemma 3.3.3. Given representations W and U over a group G, �W�U = �W + �U .

Proof. Take some g 2 G. Then the linear operator T = ⇢(g) of the representation

W � U is the direct sum of the linear operators TW = ⇢W (g), TU = ⇢U(g) of the

representations W and U . The direct sum of linear operators satisfies

Tr(T ) = Tr(TW � TU) = Tr(TW ) + Tr(TU)

Therefore, �W�U(g) = �W + �U as desired. ⇤
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Theorem 3.3.4. For a group G, the characters �V of its irreducible representations

form an orthonormal basis for the class functions from G to C [5, Theorem 2.12,

Proposition 2.30].

This is an essential theorem that helps explain why character theory is such a

valuable tool in representation theory. The proof is omitted for the sake of brevity.

Corollary 3.3.5. Any representation is determined by its character.

Proof. Any representation V can be decomposed into a direct sum of irreducible

representations in a unique way:

V = V
�a1
1 � V

�a2
2 � · · ·� V

�ak
k

By lemma 3.3.3,

�V =

a1z }| {
�V1 + �V1 + · · ·+ �V1 + · · ·+

akz }| {
�Vk

+ · · ·+ �Vk
=

kX

i=1

ai�Vi

Since Vi are distinct irreducible representations, their characters �Vi form an orthonor-

mal basis by theorem 3.3.4 and are therefore linearly independent of one another.

Thus, V is determined by its character. ⇤

This theorem is why character theory is the key to the representation theory of

finite groups - instead of working with representations which are generally complicated

to construct and visualize, we can instead work with characters, which are simply class

functions from G to C.

Corollary 3.3.6. For a group G, there are exactly as many irreducible representations

of G as there are conjugacy classes.

Proof. Class functions of G are functions on the conjugacy classes C1, C2, . . . Ck of G.

Thus, the set of class functions on G has a basis e1, e2, . . . ek as a vector space over C
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defined by:

ei(g) =

8
><

>:

0 g 62 Ci

1 g 2 Ci

Therefore, the vector space of class functions of G has dimension equal to the number

of conjugacy classes in G. Therefore, since the characters of the irreducible represen-

tations form an orthonormal basis of the class functions of G, there are exactly as

many irreducible representations of G as there are conjugacy classes. ⇤

4. Symmetric Polynomials

4.1. Symmetric Polynomials.

Definition 4.1.1. A symmetric polynomial is a polynomial p(t1, t2, . . . tn) in n vari-

ables such that if any of the variables ti, tj are interchanged, the polynomial remains

the same [1, Section 16.1]. Equivalently, p(t1, t2, . . . tn) is symmetric if:

for all � 2 Sn, p(t1, t2, . . . tn) = p(t�(1), t�(2), . . . t�(n))

Example 4.1.2. Take n = 3. Then, p, q, r are symmetric polynomials:

p(t1, t2, t3) = t1 + t2 + t3

q(t1, t2, t3) = t1t2 + t1t3 + t2t3

r(t1, t2, t3) = (3t1t2t3) + (t21t2 + t
2
1t3 + t

2
2t1 + t

2
2t3 + t

2
3t1 + t

2
3t2)

Symmetric polynomials are important in the study of finite representations of

the symmetric group. Additionally, they are important for setting up the calculations

that are the goal of this research project.

Definition 4.1.3. The elementary symmetric polynomials in n variables are defined

as:

e1 = t1 + t2 + · · ·+ tn
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e2 = t1t2 + t1t3 + t2t3 + · · ·+ tn�1tn

...

ek =
X

1j1<···<jkn

tj1tj2 . . . tjk

...

en = t1t2 . . . tn

Theorem 4.1.4. Every symmetric polynomial can be written in a unique way as a

polynomial in the elementary symmetric polynomials [1, Theorem 16.1.6]

Due to this theorem, elementary symmetric polynomials are fundamental to the

study of all symmetric polynomials. The remaining symmetric polynomials defined

in this section are pertinent to the calculations performed on the representations of

Sn which stabilize as n tends toward infinity.

Definition 4.1.5. The power sum symmetric polynomials are defined as:

p1 = t1 + t2 + · · ·+ tn

p2 = t
2
1 + t

2
2 + · · ·+ t

2
n

...

pk = t
k
1 + t

k
2 + · · ·+ t

k
n

...

pn = t
n
1 + t

n
2 + · · ·+ t

n
n

Definition 4.1.6. Let p0i be a symmetric polynomial in n variables defined as:

p
0
i =

1

i

X

d|i

µ(i/d)pd

where µ(r) is the mobius function, and pd is the dth power sum polynomial in n

variables.



10

Definition 4.1.7. The mobius function µ is a function from the positive integers to

{�1, 0, 1}:

µ(d) =

8
>>>>><

>>>>>:

0 if d is not square free

1 if d is square free with an even number of prime factors

�1 if d is square free with an odd number of prime factors

Definition 4.1.8. Take some symmetric polynomial g and non-negative integer j.

Let the binomial symmetric polynomial
�
g
j

�
be defined as:

✓
g

j

◆
=

g(g � 1) . . . (g � j + 1)

j!

5. Representations of Sn

The representations of Sn have a rich theory which will be key to understand

the results of this thesis. The two simplest representations of Sn are the trivial

representation sending each element of Sn to 1 and the sign representation given by

⇢(�) = sgn(�). These are the only one dimensional representations of Sn, which the

reader can verify as an exercise. The next obvious place to look for representations

of Sn is the action of permuting the coordinates of Cn.

5.1. Standard Representation.

Definition 5.1.1. For any Sn, there is an associated permutation representation

⇢ : Sn ! Cn:

� 2 Sn : ⇢(�)(v1, v2, . . . , vn) = (v�(1), v�(2), . . . , v�(n))

The permutation representation of Sn is not irreducible, since the subspace U ⇢ Cn

spanned by the vector (1, 1, . . . , 1) is invariant under Sn, and is therefore the trivial

representation. Therefore, the permutation representation can be decomposed as

V � U for some n � 1 dimension representation V and the trivial representation U .

Denote V the standard representation.
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Lemma 5.1.2. The standard representation V of Sn is irreducible.

Proof. The subspace V is complementary to the subspace of Cn generated by (1, 1, . . . , 1).

Thus, V can be taken to be the subspace:

V = {(v1, v2, . . . , vn) 2 Cn : v1 + v2 + · · ·+ vn = 0}

To show that V is irreducible, we must show that there is no proper nonzero subspace

of V that is invariant under the permutation representation. Take some non-zero

subspace W ⇢ V that is invariant under Sn. Let us show that W = V , which will

imply V is irreducible.

Take a non-zero vector u = (u1, u2, . . . un) 2 W that has a maximal number

of 0 coordinates among the non-zero vectors of W . Since u1 + u2 + · · · + un = 0

and not all the terms are zero, there is some ui, uj such that ui 6= uj and ui, uj are

non-zero. Since W is invariant by the action of Sn, W contains all permutations of

the coordinates of u. Thus, W contains a vector

v = (v1, v2, . . . vn)

such that v1 6= v2, v1 and v2 are non-zero, and v has a maximal number of 0 coordi-

nates. Then, W must contain the vector ⇢((12))(v). Since W is closed under linear

combinations, W contains:

v
0 = v � v2

v1
⇢((12))(v) = (v1, v2, . . . vn)�

v2

v1

⇣
v2, v1, v3, . . . vn

⌘

=
⇣
v1 �

v
2
2

v1
, 0,

v3v1 � v3v2

v1
, . . . ,

vnv1 � vnv2

v1

⌘

=
⇣
v1 �

v
2
2

v1
, 0, v3

v1 � v2

v1
, . . . , vn

v1 � v2

v1

⌘

=
v1 � v2

v1

⇣
v2, 0, v3, . . . , vn

⌘

For i � 3, the ith coordinate of v0 is 0 if and only if vi is zero since v1 6= v2. Therefore,

v
0 has at least 1 more zero coordinate than v, since v1, v2 are non-zero by assumption



12

and the second coordinate of v0 is zero. Since v was taken to be a non-zero vector in

W with a maximal number of zero coordinates, v0 must be the zero vector. Therefore,

v3, v4, . . . vn must be equal to 0, so v is of the form:

v = (v1,�v1, 0, . . . 0)

Therefore, since W is invariant by the permutation action of Sn, W contains the

vectors:

e1 = (v1,�v1, 0, . . . 0)

e2 = (v1, 0,�v1, . . . 0)

...

en�1 = (v1, 0, . . . ,�v1)

The vectors e1, . . . en�1 form a basis for V , so W = V as desired. ⇤

5.2. Wedge Powers of Standard Representation.

Lemma 5.2.1. For all Sn and k, the representation ^k
V (where V is the standard

representation) is irreducible.

The proof of this statement is excluded for brevity, but can be found in Fulton &

Harris [5, Section 3.2]. The wedge powers of V are an important source of irreducible

representations of Sn. Now let us describe the character of ^k
V . Let us find the

character for the wedge powers of the permutation representation V
0 of Sn.

Lemma 5.2.2. The character of ^k
V

0 where V
0 is the permutation representation is

equal to the kth symmetric polynomial ek evaluated on the eigenvalues of ⇢V 0(�).

Once again, the proof is excluded for the sake of brevity and to avoid dealing

hands on with the technicalities of the alternating powers.
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Lemma 5.2.3. The character of ^k
V , where V is the standard representation of Sn,

is equal to the symmetric polynomial ek � ek�1 + · · · + (�1)k�1
e1 evaluated on the

eigenvalues of the linear transformation associated with V
0.

Proof. Let V 0 be the permutation representation of Sn. For any � 2 Sn, the character

�^kV 0 is equal to the kth symmetric polynomial ek evaluated on the eigenvalues of

⇢V 0(�) by the lemma above. The proof of this statement is excluded for brevity.

Recall that V 0 reduces into irreducible representations as V 0 = V �U , where V is the

standard representation and U is the trivial representation. Then,

^k
V

0 = ^k(V � U) = �k
a=0 ^a

V ⌦ ^n�a
U

Since U is one dimensional, ^b
U is empty for all b > 1. Therefore, we have:

^k
V

0 = ^k
V � ^k�1

V ⌦ U = ^k
V � ^k�1

V

Take the character of both sides:

ek = �^kV = �^kV 0 + �^k�1V 0

Then, by substitution and telescoping sums, the character of ^k
V is equal to:

�^kV = �^kV 0 � �^k�1V 0 + · · ·+ �(�1)k�1V 0 = ek � ek�1 + · · ·+ (�1)k�1
e1

with the symmetric polynomials ei evaluated on the eigenvalues of ⇢V 0(�) for a given

� 2 Sn.

⇤

5.3. Young Tableaux. In general, it is a di�cult problem to determine all of the

irreducible representations of a finite group. However, this problem has been solved

for the symmetric group with the use of Young Tableaux.

Definition 5.3.1. A partition of a positive integer n is an unordered set of positive

integers �1 � �2 � · · · � �r such that n = �1 + · · ·+ �r.
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The partitions of a positive integer n are in correspondence with the conjugacy

classes of Sn by cycle type.

Definition 5.3.2. To each partition of a positive integer n is an associated Young

Diagram, which is a stack of boxes ordered by the number of boxes in each row.

Example 5.3.3. The correspondence between Young Diagrams, cycle types (conju-

gacy classes of Sn), and partitions is demonstrated in the following examples with

n = 5:

5 = 4 + 1 (abcd)(e)

5 = 3 + 1 + 1 (abc)(d)(e)

5 = 2 + 2 + 1 (ab)(cd)(e)

Definition 5.3.4. A Young Tableau (plural, Tableaux) is a Young Diagram with a

specific numbering, as in the following:

1 2 3

4 5

Young Tableaux with this specific numbering, left to right, top to bottom, provide a

framework for a description of all irreducible representations of Sn. Take any partition

� of n. Then, let � also denote the Young Tableaux with numbers 1 through n written

in the boxes left to right, top to bottom. Then, define the following two subgroups

of Sn:

P = {g 2 Sn | g preserves each row of �}

Q = {g 2 Sn | g preserves each column of �}
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Then in the group algebra CSn (a C vector space with basis vectors v� for each

� 2 Sn, and multiplication defined by linearity from multiplication in Sn), introduce

two elements corresponding to the subgroups P,Q:

a =
X

g2P

g b =
X

g2Q

sgn(g)g

Finally, define the Young Symmetrizer as

c = ab 2 CSn

Then, the image of c on CSn is an irreducible representation (with representation

induced from the group algebra), and every irreducible representation of Sn can be

obtained uniquely in this way [5, Section 4.1]. As an example, the wedge power ^k
V

of Sn is given by the following Young tableau

1 2 3 . . . n�k

...

n�1

n

5.4. Frobenius’ Character Formula. Now that we have an explicit description of

the irreducible representations of Sn, the next natural question is whether a similar

description exists for the characters. This description does exist and is given by

Frobenius’ Character Formula. There is considerable set up to describe the formula.

Take any partition � of n and let V� be the associated representation described

in the previous section. Let Ci denote the conjugacy class in Sn determined by the

sequence

(i1, i2, . . . , in)

where
P

j j · ij = n, and Ci represents the conjugacy class of Sn with elements having

i1 1-cycles, i2 2-cycles, . . . , in n-cycles. Introduce formal variables x1, x2, . . . , xk,

where k is at least as large as the number of rows in �. Define the discriminant of
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the xi by the symmetric polynomial

�(x) =
Y

i<j

(xi � xj)

And define the power sum symmetric polynomials:

p1 = x1 + x2 + · · ·+ xn

p2 = x
2
1 + x

2
2 + · · ·+ x

2
n

...

pn = x
n
1 + x

n
2 + · · ·+ x

n
n

If � has rows of length �1 � �2 � · · · � �k � 0, then define

l1 = �1 + k � 1, l2 = �2 + k � 2, . . . , lk = �k

Theorem 5.4.1. (Frobenius’ Character Formula) The character of the represen-

tation V� evaluated on the conjugacy class Ci is given by the coe�cient of xl1
1 x

l2
2 . . . x

lk
3

in the following symmetric polynomial:

��(Ci) =


�(x) ·

Y

j

pj(x)
ij

�

coe�cient of xl1
1 xl2

2 . . . xlk
k

This theorem is essential in the study of the representations of the symmetric

group. This result is the primary tool used in the computational results of this

research.

6. Representation Stability

6.1. Topology of Configuration Space.

Definition 6.1.1. Confn(F) is the space of all monic square free polynomials of

degree n with coe�cients in a field F. PConfn(F) is the subspace of Fn such that all
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coordinates are distinct:

PConfn(F) = {(x1, x2, . . . , xn) 2 Fn | xi 6= xj}

Notice that PConfn(F) has a natural Sn action permuting the coordinates.

When F is algebraically closed, the quotient of this action is Confn(F). Let us see

why this is the case. Consider the continuous map ⇡ : PConfn(F) ! Confn(F) defined

by the following:

⇡((x1, x2, . . . , xn)) ! (t� x1)(t� x2) . . . (t� xn)

Notice that ⇡ is invariant on the permutation action of Sn, so it factors through

PConfn(F)/Sn. If F is an algebraically closed field, then every square free polynomial

can be factored into distinct linear factors. Therefore, ⇡ is surjective, so the induced

map from PConfn(F)/Sn to Confn(F) is a homeomorphism, and PConfn(F) is thus

an Sn Galois cover of Confn(F).

The action of Sn on PConfn(C) induces an action of Sn on its cohomology

H
i(PConfn(C);R) for any choice of coe�cients R. If R is a field, this gives the

cohomology H
i(PConfn(C);R) the structure of a representation of Sn.

In the 1980’s, Lehrer and Solomon provided an explicit description forH i(PConfn(C);C)

as a representation of Sn.

Theorem 6.1.2. (Lehrer and Solomon, 1986) [8] As a representation of Sn,

H
i(PConfn(C);C) ⇠=

M

µ

IndSn
Z(cµ)

⇠µ

summed over conjugacy classes of µ with n� i cycles in their cycle type.

In this formula, cµ is a representative of the conjugacy class µ, and Z(cµ) is

the centralizer of cµ in Sn. ⇠µ is a one-dimensional representation of Z(cµ) given by

the following. Suppose that µ is the set of elements with cycle type of i1 one cycles,
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i2 two cycles, and so on, so
P

ij = n. Then,

Z(cµ) =
nY

j=1

(Z/j)ij o Sij

where Sij acts on (Z/j)ij by permutation. Then, we define ⇠µ on each term (Z/j)ij o

Sij by

⇠µ(k, �) = e
2⇡ik/j(�1)(j+1) sgn�

so ⇠µ acts on Z/j by sending 1 to the jth root of unity, and acts on Sij trivially if j

is odd and as the sign representation if j is even.

There is not currently an explicit way of converting this formula to a decom-

position of H i(PConfn(C)) into irreducibles. However, there are useful properties of

this formula which will become apparent in fugure sections.

6.2. Character Polynomials and Families of Representations. The main re-

sult of representation stability on H
i(PConfn(C);Q) is that in some sense, the limit

limn!1 H
i(PConfn(C);Q) converges when viewed representation of limn!1 Sn. The

immediate problem with this statement is there is not an immediate way to recognize

a limit of representations of Sn as n ! 1 as “converging”. There is a natural way

to extend a representation of Sn to Sn+1 which will allow us to define a notion of

“stability” of Sn representations.

Suppose � is a Young Diagram representing an irreducible representation of

Sn. Then, to extend � to a representation of Sn+1, we will add a box to the first row

of �. This results in a family of Young Tableau of di↵erent groups {Sn, Sn+1, . . . }.

The characters of each of these representations is given simultaneously by a character

polynomial, which is the reason why adding boxes to the first row is a natural way to

extend representations of Sn to higher groups.

Definition 6.2.1. Let � be a Young Tableau with �i boxes in the ith row. For

k � �1, let �k be the Young Tableau with k boxes in the first row and �i boxes in
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the i+ 1th row. Then, let V�k
be the irreducible representation given by �k:

� = �1

�2
...

�r

V�k
irreducible representation given by k . . .

�1

�2
...

�r

Then, we say V� := {V �
k | k � �1} is the family of irreducible representations given

by the Young Tableau �.

Example 6.2.2. Let � = . Then, V� is the set of standard representations of

Sn for n > 1. In particular, V �
n 2 V� is the standard representation of Sn+1. Let �n

denote the character �n, and let � be an element of Sn+1 with µ1 one cycles. Since

Vn�Un+1 = Pn+1 where Un+1 is the trivial representation and Pn+1 is the permutation

representation, we have that

�n(�) = µ1 � 1

Notice that the formula for �n does not involve n: it is written solely in terms of the

number of 1 cycles in �. In this way, the elements of V can be identified together by

their characters. Even though each V
�
n is a representation of a di↵erent symmetric

group, they all have the same character in terms of the number of 1 cycles of �. This

is the motivating example for character polynomials, which extend this idea to all

such families of irreducible representations of Sn.

Definition 6.2.3. For an element � 2 Sn, define

ci(�) := number of i cycles in �
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Definition 6.2.4. Let P 2 Q[x1, x2, . . . , ] be a polynomial of finitely many terms.

For all n, define P : Sn ! Q by

P (�) := P (c1(�), c2(�), . . . , cn(�))

With respect to the function P : Sn ! Q, P is called a character polynomial.

The degree of a character polynomial similar to the usual polynomial degree, ex-

cept deg xk = k, and is extended to remaining polynomials by linearity. For instance,

treating P (x1, x2, . . . ) = x1x2x4 as a character polynomial,

degP = deg x1x2x4 = deg x1 + deg x2 + deg x4 = 7

Notice that a character polynomial P is a class function on Sn since cycle type

is independent of conjugation. In the case of the standard representation where �

has a single row of length 1, all of the standard representations V�k
2 V� are given

simultaneously by the character polynomial P = x1 � 1. We might hope that this

holds for all families of representations V - it turns out that this is the case, which is

a corollary of the Frobenius Character Formula.

Theorem 6.2.5. Suppose V� is a family of irreducible representation of Sn given by

a Young Tableau � with rows of length �1, . . . ,�r. Then there is a unique polynomial

P 2 C[x1, x2, . . . ] such that for all representations V�k
2 V�, the character of V�k

is

given by the character polynomial P .

Proof. Choose arbitrary k � �1, and let us consider the character ��k
of V�k

given by

the Frobenius formula. Take a conjugacy class Ci = (i1, i2, . . . , ir) with ij j-cycles. Let

�(x) =
Q

a<b xa�xb for formal variables x0, x1, . . . . Furthermore, define nonnegative

integers l0, l1, . . . , lr by l0 = k+r and lj = �j+r�j for j � 1. Then by the Frobenius

formula, we have:

��k
(Ci) =


�(x) ·

Y

j

pj(x)
ij

�

coe�cient of xl0
0 xl1

1 . . . xlr
r
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We aim to show that the expression above for ��(Ci) is a polynomial in i1, . . . , in.

Notice that this expression is a homogeneous symmetric polynomial in x0, x1, . . . , xn,

so any term of the form x
m
0 x

l1
1 . . . x

lr
r must have m = l0. Thus, it su�ces to solely

consider the expression in terms of the exponents of x1, . . . , xk. Let us compute an

example to understand the general case. Let us compute the coe�cient of the term

x
k+r�m
0 x

m
1 : Y

j

pj(x)
ij =

Y

j

(xj
0 + x

j
1 + x

j
2 + · · ·+ x

j
r)

ij

The coe�cient of xk+r�m
0 x

m
1 is equal to the number of ways to choose x

j
1 terms in

the above expansion so the sum of their exponents is m. The remaining terms must

all be chosen to be the x0 term, and thus are determined by the choices of x1 terms.

Therefore, the coe�cient of xk+r�m
0 x

m
1 is equal to

✓
i1

m

◆
+

✓
i1

m� 2

◆✓
i2

1

◆
+ · · ·+

✓
im

1

◆

which is a character polynomial in i1, . . . , im. For instance, the
�
i1
m

�
term corresponds

to choosing m x1 terms, and the
�
im
1

�
term corresponds to choosing a single xm

1 term.

More generally, the coe�cient of xm
0 x

m1
1 x

m2
2 . . . x

mr
r with m = k + r �

P
mi is equal

to the sum of all ways to choose a total of l1 x1 terms, l2 x2 terms, and so on in

the product
Q

j pj(x)
ij . By similar reasoning, this can be expressed as a sum of

products of binomials corresponding to the number of ways to choose each sum of xj

terms. Therefore, the coe�cient of xm
0 x

m1
1 x

m2
2 . . . x

mr
r for all choices of m1, . . . ,mr is

a finite degree character polynomial in i1, i2 . . . . Furthermore, the discriminant �(x)

is constant with respect to k. After expanding �(x), we obtain a sum of monomials

x
a0
1 x

a1
1 . . . x

ar
r . Then, the coe�cient of xl0

0 . . . x
lr
r in �(x) ·

Q
j pj(x)

ij is equal to the

sum of the coe�cients of xl0�a0
0 . . . x

lr�ak
r for each monomial term of the determinant.

Since each of these coe�cients is a character polynomial in i1, . . . , ik, their sum is

a polynomial in i1, . . . , ik, so the coe�cient of x
l0
0 . . . x

lr
r in �(x) ·

Q
j pj(x)

ij is a

polynomial in i1, . . . , ik as desired. ⇤
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This explains why V� gives a natural definition of a family of irreducible repre-

sentations - all their characters are given simultaneously by a single character poly-

nomial ��.

6.3. Decomposition of Cohomology into Irreducible Families. A character

polynomial P is a class function on Sn for all n, so the Sn inner product hP,QiSn for

a class function Q on Sn is defined in the usual way:

hP,QiSn =
1

n!

X

�2Sn

P (�)Q(�)

Theorem 6.3.1. (Church, Farb, Ellenburg, 2013 [2]) For all polynomials P 2 C[x1, x2, . . . , ],

the limit

lim
n!1

hP,H i(PConfn(C);Q)iSn

exists and is constant for n � 2i+ degP .

This theorem implies that the inner product of a family V� of irreducible repre-

sentations and H
i(PConf(C);Q) stabilizes as n ! 1. This is the canonical example

of representation stability. Benson and Farb expand on this result to more general

topological spaces with Sn actions that resemble PConf(C), which they term FI-CHA

for “FI-complement of hyperplane arrangement” [2] [3] [4].

6.4. Research Question. When studying a representation V of Sn, one of the best

ways to understand V is to decompose it into irreducibles. The goal of this project is to

determine for each family V� of irreducible representations with character polynomial

P the limit hP,H i(PConf(C);Q)i for each degree of cohomology i.

hP,H i(PConf(C);Q)i := lim
n!1

hP,H i(PConfn(C);Q)i

This is the “stable” version of decomposing H
i(PConf(C);Q) into irreducibles.
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7. Polynomial Statistics

The tools of étale cohomology provide a connection between cohomology and

polynomial statistics over a finite field, which allow for the computation of cohomology

of H i(PConf(C);Q) through arithmetic.

7.1. Polynomial Statistics. For p a power of a prime, let Fp denote the field with p

elements. Recall that Confn(Fp) denotes the set of degree n square free polynomials

with coe�cients in Fp. For P a character polynomial, let us describe a function

P : Confn(Fp) ! Q.

Take f 2 Confn(Fp), and fix a splitting field extension Fq of f . Recall that the

p Frobenius action on Fq acts by Frobp(a) = a
q and the stabilizer of Frobp is Fp ⇢ Fq.

Considered as a polynomial in Fp[x], f splits into n terms:

f(x) = (x� r1)(x� r2) . . . (x� rn)

Since Frobp is a field automorphism,

Frobp(f) = (x� Frobp(r1))(x� Frobp(r2)) . . . (x� Frob(rn))

Furthermore, Frobp(f) = f since f has coe�cients in Fp. Therefore, Frobp induces a

permutation �f 2 Sn of the roots r1, . . . , rn. While �f is dependent on the labeling

of the roots r1, . . . , rn, it is unique up to conjugation. Therefore, for a class function

� of Sn, �(�f ) is well defined.

Definition 7.1.1. Let f 2 Confn(Fp) and P 2 Q[x1, x2, . . . ] a character polynomial.

Let �f be the permutation of the roots of f by the Frobenius automorphism Frobp,

determined up to conjugation. Then, define

P (f) = P (�f ) = P (c1(�f ), c2(�f ), . . . )

Theorem 7.1.2. (Church, Farb, and Ellenburg, 2013) [2] For any character polyno-

mial P 2 Q[x1, x2, . . . ], the following two limits exist and are equal:
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(1) lim
n!1

1X

i=0

(�1)i
hP,H i(PConfn(C))iSn

qi
= lim

n!1
q
�n

X

f2Confn(Fq)

P (�f )

In particular, both the limit on the left and the series on the right converge to

a power series in q
�1 with the same coe�cients.

Example 7.1.3. Consider the character polynomial P = 1, which is the character

polynomial of the family of trivial representations. The action of P on a square

free polynomial f is therefore just P (f) = 1. Therefore, the right side of equation

(1) becomes limn!1 q
�n|Confn(Fq)|. By the well known formula for |Confn(Fq) =

q
n � q

n�1|, this expression converges (and is constant for n � 2) to the power series

1� q
�1. Therefore,

lim
n!1

1X

i=0

(�1)i
hP,H i(PConfn(C))iSn

qi
= 1� q

�1

Equating like terms, this implies that

lim
n!1

hP,H0(PConfn(C))i = 1

lim
n!1

hP,H1(PConfn(C))i = 1

lim
n!1

hP,H i(PConfn(C))i = 0 for all i � 2

Example 7.1.4. Consider the character polynomial P = x1�1, which is the character

polynomial of the family of standard representations. The action of P on a square

free polynomial f is equal to c1(�f )�1. Recall that c1(�f ) counts the number of fixed

points of the permutation of �f , and a fixed point of �f corresponds to a root of f in

Frobp. Therefore, the right side of equation (1) becomes

lim
n!1

q
�n

X

f2Confn(Fq)

(number of roots of f in Fq)� 1
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The right side can be explicitly computed through a combinatorial argument by stat-

ing the number of irreducible polynomials over Fq of a given degree as a generating

function. This results in the following power series in q:

�q
�1+2q�2� 2q�3+2q�4+ · · · = lim

n!1
q
�n

X

f2Confn(Fq)

(number of roots of f in Fq)� 1

Therefore,

lim
n!1

1X

i=0

(�1)i
hP,H i(PConfn(C))iSn

qi
= �q

�1 + 2q�2 � 2q�3 + 2q�4 + . . .

Equating like terms in the power series, this implies that

lim
n!1

hP,H0(PConfn(C))i = 0

lim
n!1

hP,H1(PConfn(C))i = 1

lim
n!1

hP,H i(PConfn(C))i = 2 for all i � 2

8. Computations of Limiting Multiplicities

Using combinatorial identities for polynomial statistics of Confn(Fq), it is pos-

sible to solve explicitly for the right hand side of equation (1) for a given character

polynomial. Furthermore, for a specific Young Tableau �, the Frobenius formula gives

a way of determining the character polynomial for V�. Combining these two steps,

we obtain an algorithm to compute the limiting multiplicities

lim
n!1

hV�, H
i(PConf(C))i

as the coe�cients of a power series in q
�1 for all choices of Young Diagrams �.

8.1. Algorithm Description. The algorithm utilized was derived by Dr. Sean Howe

[7], [6] and myself, which sends the representation V� to the desired power series.
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First, we express the character V� as a character polynomial P 2 Q[i1, i2, . . . ] in the

following basis

C :=

⇢✓
i1

j1

◆
. . .

✓
ir

jr

◆
| ji 2 N

�

for all character polynomials. Notice that the natural way of writing the Frobenius

formula is in this basis, so working from the Frobenius formula, the polynomial P is

already in the correct basis. For a sketch of how to compute a character polynomial

from the Frobenius formula, reference the proof of lemma 6.2.5.

Along with being the natural form of the Frobenius formula, the basis C is a

natural basis for class functions on Sn since for a permutation � of Skj, we have:

✓
ck

j

◆
(�) =

8
><

>:

1 if the cycle type of � is exactly j k-cycles

0 else

Once the character of V� is expressed as a character polynomial P written as a sum

of terms in the basis C , we send each term
�
ck
j

�
to a power series in q

�1 by a function

denoted as CTPq here, for “character to power series”

CTPq

✓✓
ik

j

◆◆
:=

✓ 1
k

P
d|k q

d
µ(k/d)

j

◆
(q�k � q

�2k + . . . )j

where µ is the Möbius function. This equation represents the fact that

lim
n!1

q
�n

X

f2Confn(Fq)

✓
ik

j

◆
(�f ) =

✓ 1
k

P
d|k q

d
µ(k/d)

j

◆
(q�k � q

�2k + . . . )j

which can be proven through existing combinatorial techniques for polynomial statis-

tics. The notation “CTPq” is solely to reduce notation. CTPq is extended to all basis

elements of C by multiplying term by term, and extended by linearity to remaining

terms:

CTPq

✓✓
i1

j1

◆
. . .

✓
ir

jr

◆◆
= CTPq

✓✓
i1

j1

◆◆
. . .CTPq

✓✓
ir

jr

◆◆
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CTPq can be extended in this way because the sum of polynomial statistics over

Confn(Fq) of di↵erent length cycles are independent as n ! 1. Finally, we mul-

tiply this final power series by 1 � q
�1 (normalizing by the number of elements in

PConfn(Fq), which yields the desired limit

lim
n!1

X

f2Confn(Fq)

P (�f )

as a power series in q
�1

8.2. Previous Results. Benson and Farb compute hV�, H
i(PConf(C);Q) for the

following Young Tableaus.

. . . �! 1� q
�1

. . . �! �q
�1 + 2q�2 � 2q�3 + 2q�4 � 2q�5 + 2q�6 � 2q�7 + . . .

. . . �! 2q�2 � 5q�3 + 6q�4 � 7q�5 + 10q�6 � 13q�7 + . . .

8.3. Table of Complete Computational Results. The appendix contains a table

of computational results. For each row, there is a Young Tableau � in the first column

and a power series p(q�1) in q
�1 with alternating sign integer entries in the second

column. The power series p represents the stable multiplicity

hV�, H
i(PConf(C);Q)i

for all i. In particular, the coe�cient of q�i in p(q�1) is equal to

lim
n!1

(�1)ihV�, H
i(PConfn(C);Q)iSn
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Here, we include a single page of the computational results.

�q
�1 + 2q�2 � 2q�3 + 2q�4 � 2q�5 + 2q�6 � 2q�7 + 2q�8 �

2q�9+2q�10� 2q�11+2q�12� 2q�13+2q�14� 2q�15+2q�16�

2q�17 + 2q�18 � 2q�19 + 2q�20 � 2q�21 + 2q�22 � 2q�23 +

2q�24 � 2q�25 + 2q�26 � 2q�27 + 2q�28 � 2q�29 + 2q�30 + . . .

�q
�1 + 2q�2 � 3q�3 + 6q�4 � 9q�5 + 10q�6 � 11q�7 + 14q�8 �

17q�9 + 18q�10 � 19q�11 + 22q�12 � 25q�13 + 26q�14 �

27q�15 + 30q�16 � 33q�17 + 34q�18 � 35q�19 + 38q�20 �

41q�21 + 42q�22 � 43q�23 + 46q�24 � 49q�25 + 50q�26 �

51q�27 + 54q�28 � 57q�29 + 58q�30 + . . .

2q�2 � 5q�3 +6q�4 � 7q�5 +10q�6 � 13q�7 +14q�8 � 15q�9 +

18q�10�21q�11+22q�12�23q�13+26q�14�29q�15+30q�16�

31q�17+34q�18�37q�19+38q�20�39q�21+42q�22�45q�23+

46q�24�47q�25+50q�26�53q�27+54q�28�55q�29+58q�30+. . .

q
�2 � 4q�3 + 8q�4 � 14q�5 + 24q�6 � 35q�7 + 46q�8 �

61q�9 + 79q�10 � 97q�11 + 117q�12 � 140q�13 + 165q�14 �

192q�15 +220q�16 � 250q�17 +284q�18 � 319q�19 +354q�20 �

393q�21 +435q�22 � 477q�23 +521q�24 � 568q�25 +617q�26 �

668q�27 + 720q�28 � 774q�29 + 832q�30 + . . .

2q�2 � 7q�3 + 16q�4 � 30q�5 + 47q�6 � 68q�7 + 94q�8 �

123q�9 + 156q�10 � 194q�11 + 235q�12 � 280q�13 + 330q�14 �

383q�15 +440q�16 � 502q�17 +567q�18 � 636q�19 +710q�20 �

787q�21 + 868q�22 � 954q�23 + 1043q�24 � 1136q�25 +

1234q�26 � 1335q�27 + 1440q�28 � 1550q�29 + 1663q�30 + . . .
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8.4. Algorithm Correctness. The code used to generate these results has been

tested extensively for correctness at every stage of the algorithm. Furthermore, the

algorithm agrees with the existing results for the trivial representation, � = , and

� = . Another nice feature of the program which points to its correctness is that

for a general character polynomial P , even with integer coe�cients, CTPq(P ) is not a

power series with alternating integer coe�cients. The coe�cients can be rational with

potentially large denominator, and the sign can fluctuate between positive, negative,

and zero in any periodic fashion. Therefore, because the algorithm returns power

series with alternating integer coe�cients, it is unlikely there is a small computational

error in the algorithm.

9. Observations and Conjectures

Using the data found on the stable multiplicities of irreducible representations

in H
i(PConf(C),Q), we conjecture bounds for the leading degree of the power series

CTPq(��) (i.e., the first term with non-zero coe�cient). Only the upper bound has

currently been proven.

9.1. Upper Bound on Leading Degree.

Lemma 9.1.1. Let � be a Young-diagram with k boxes and V� its associated family

of irreducible representations with character polynomial ��. Let CTPq(��) = a0 �

a1q
�1 + a2q

�2 � . . . . Then, the first non-zero coe�cient ar has r � k/2.

This lemma is proven using the Lehrer-Solomon description ofH i(PConfn(C);C)

as an Sn representation [8]. We will prove the lemma using the fact that if V� is a

subrepresentation of H i(PConfn(C);C), dimV�  dimH
i(PConfn(C);C). First we

prove that the dimension of H i(PConfn(C);C) is a polynomial of degree 2i in n.

Then we prove that the dimension of V� for a tableau � with k boxes is a degree k

polynomial in n. Therefore, for V� to be a subrepresentation of H i(PConfn(C);C),
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we must have k  2i, and so the first non-zero coe�cient ar of CTPq(��) is at least

ak/2.

Proof. Let us consider the dimension of H i(PConfn(C);C) in terms of n. Recall that

by Lehrer-Solomon,

H
i(PConfn(C);C) =

M

µ

IndSn
Z(cµ)

(⇠µ)

Therefore,

dim(H i(PConfn(C);C)) =
X

µ

dim IndSn
Z(cµ)

(⇠µ) =
X

µ

[Sn : Z(cµ)]

Suppose cµ has µj j-cycles for each j, such that
P

j µj = n� i and
P

j jµj = n. Recall

that:

Z(cµ) = Sµ1 o
✓
(Z/2)µ2 ⇥ Sµ2

◆
. . .

✓
(Z/r)µr o Sµr

◆

Therefore,

|Z(cµ)| =
Y

j

µj!j
µj

Since
P

j µj = n � i and
P

j jµj = n, we have µ1 � n � 2i by pigeonhole principle.

Furthermore, µ1 = n � 2i is achieved when µ3 = · · · = µr = 0. Therefore, in this

case, we have:

[Sn : Z(cµ)] =
n!

(n� 2i)!2i+1

which is a polynomial of degree 2i in n. Furthermore, for any other choice of cµ, we

will have

[Sn : Z(cµ)] =
n!

µ1! . . . µr!rµr

Since µ1 � n � 2i and we fix each other µj as n tends to infinity, [Sn : Z(cµ)] is a

polynomial of degree 2i or less in P . Furthermore, this polynomial has a positive

leading coe�cient. Thus, [Sn : Z(cµ)] is the sum of degree 2i or less polynomials with

positive leading degree, and at least one polynomial of degree exactly 2i with positive

leading coe�cient. Therefore, [Sn : Z(cµ)] is a polynomial of degree exactly 2i in n
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as desired.

Furthermore, the dimension of a representation � of the form:

�0 . . . . . .

�1

�2
...

�r

can be computed by the hook formula [5]. As an example, let us compute the dimen-

sion of a representation given by a Young Diagram. In each box, write the number

of boxes in that row and column, the hook length. For instance:

V () 7 5 2 1

3 2

2 1

1

Then, the dimension of the irreducible representation V given by the specified Young

Tableaux is equal to
n!Q

hook lengths

so in this case,

dimV =
9!

7 ⇤ 5 ⇤ 3 ⇤ 2 ⇤ 2 ⇤ 2 = 432

Now let us return to the situation of a family of irreducible representations. Let � be

a Young Diagram with k boxes, and let V� be the family of irreducible representations

formed by adding boxes to a row above the first of �. Let ⇤n be one of the elements
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of V� by adding n� k boxes above �.

� = �1

�2
...

�r

,⇤n = �0 . . .

�1

�2
...

�r

After writing the hook lengths in each box of ⇤n, the hook length of the boxes along

the top row will be at least 1, 2, . . . , n � k reading right to left, where � (below the

first row) has k boxes. Therefore,

Y

⇤n

hook lengths � (n� k)!

Therefore,

dim⇤n � n!

(n� k)!

so ⇤n has dimension bounded below by a monic degree k polynomial in n. Therefore,

for any Young Diagram � with k boxes and i < k/2, there is some n such that

dimH
i(PConfn(C);C) < dim⇤n. Therefore, it is impossible for H

i(PConf(C);C)

to stably contain the irreducible family V�, so hV�H
i(PConf(C))i = 0 for i < k/2.

Therefore, the coe�cients al are zero for l < k/2 as desired. ⇤

9.2. Conjectures. Using the algorithm described, many limiting multiplicities of

irreducible representations were computed. We describe some conjectures from the

data about behavior of the limiting multiplicities. Let � be a Young-diagram with

k boxes and V� its associated family of irreducible representations with character

polynomial P . Let CTPq(P ) = a0 � a1q
�1 + a2q

�2 � . . . . Then, the first non-zero

coe�cient ar has r � k/2.

Conjecture 9.2.1. So long as � is nonempty (V� is not the family of trivial repre-

sentations), the sequence a0, a1, . . . is non-decreasing.
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Remark. We have shown by approximating the function CTPq that the se-

quence a0, a1, . . . in this setting is eventually non-decreasing for any nonempty di-

agram �. However, we have still not provided any bounds on when it will become

non-decreasing.

Conjecture 9.2.2. The first non-zero term al of a0, a1, . . . satisfies l  k.

The bound of l = k is achieved if and only if � is a vertical stack of k boxes, so

V� is the family of kth wedge powers of the standard representation.

10. Conclusion

10.1. Analysis. This work was e↵ective in computing explicit values in represen-

tation stability. The example of PConfn(C) is the simplest example known of rep-

resentation stability, so these computations provide thorough data to inform future

discoveries and insights relating to representation stability.

10.2. Future Research. Completing the remainder of the conjectures described in

section 9.2 are a natural next step . I am currently working on proving the remainder

of these conjectures, and plan to publish my results in the future.

Representation stability has also been shown to apply to other topological

spaces, and can be stated in even more generality. In this more general setting, there

may be an analog of the computations performed here. One obstacle to this direction

of future research is that PConfn(C) yields the simplest example of representation

stability and has a powerful connection between its cohomology and polynomial sta-

tistics. While other spaces with representation stability share a similar connection

between cohomology and arithmetic, the exact statistics are generally more compli-

cated than in the example of PConfn(C). Therefore, it may be infeasible to compute

limiting cohomology through polynomial statistics in a more general setting, although

more research would be required to investigate the possibility of such an algorithm.
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