
VARIABLE STRETCH TEXTURES

ON THE GPU

by

Emil Geisler

A Senior Honors Thesis Submitted to the Faculty of

The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

In

Computer Science

Approved:

Cem Yuksel

Thesis Faculty Supervisor

Mary Hall

Director, School of Computing

Thomas C. Henderson

Honors Faculty Advisor

Sylvia D. Torti, PhD

Dean, Honors College

April 2023

Copyright © 2023

All Rights Reserved

1 Abstract

In computer graphics, a texture is an image that is overlaid on a triangle when the

object is rendered. Textures allow for objects to have more complicated appearances

than just a single color across the triangle. Usually when a triangle is stretched, the

texture stretches uniformly with it. However, when rendering certain objects, such

as a lizard with spikes and scales, the uniform stretch of the texture is undesirable

because it breaks the illusion of the model. Therefore, the goal of this project is

to develop a method to stretch a texture variably across a triangle as the triangle’s

dimensions are changed. We first propose a method which computes texture stretch-

ing according to a linear model. Due to limitations in this model when applied to

two dimensions, we propose an alternative model which is designed to preserve two

dimensional geometry. We describe the rationale and algorithms defining each model.

We analyze the behavior, overall effectiveness, and computational complexity of each

model with a variety of examples.

ii

Contents

1 Abstract ii

2 Background 1

2.1 Graphics Pipeline . 1

2.2 Textures . 3

3 Spring Model 5

3.1 Model Description . 5

3.2 Physical Basis . 7

3.3 Linear Model on the GPU . 8

3.4 Approximating Inverse Stretch on the GPU 10

3.5 Extension to Two Dimensions . 12

3.6 Analysis of Spring Model . 12

4 Rigid Region Model 16

4.1 Model Rationale . 16

4.2 Model Description . 17

4.3 Algorithm . 23

4.4 Analysis of Rigid Region Model . 25

5 Conclusion 28

5.1 Analysis . 28

5.2 Further Research . 28

6 References 31

iii

1

Figure 1: Visualization of the GPU Pipeline [9].

2 Background

2.1 Graphics Pipeline

Computer graphics refers to any use of a computer to create or manipulate images [8].

Graphical interfaces are an essential part of the functionality of modern computers.

When using a computer screen, it is necessary to render a new image to the screen

roughly 60 times per second. Furthermore, an average computer screen has upwards

of one million pixels. Thus, utilizing an interactive graphical interface of a computer

requires updating roughly 6×107 values every second. Factoring in additional compu-

tations, such as computing shadows in a video game, and the computational expense

of graphics skyrockets. Due to the importance of graphics in modern computers and

its high computational cost, GPU’s (graphical processing units) were developed to

tackle image rendering, and have become ubiquitous in modern machines.

In order to compute the color values of each pixel, the GPU uses extensive paral-

lelization. Most GPUs use a process called rasterization, which is meant to convert

2

a scene consisting of triangles and vectors into an image. Consider figure 1. The

input to the GPU is a collection of triangles (the coordinates of their vertices), a ver-

tex shader program, and a fragment shader program. Using these inputs, the GPU

calculates the color of each pixel.

Vertex Shader

The vertex shader is run once for each vertex of each triangle, and each time

returns a single vertex, hence the name vertex shader. One common use of the vertex

shader is to apply linear transformations to the vertices here so that the triangles are

in the correct positions relative to the camera. Furthermore, vertex attributes can

be sent to the GPU as additional input. For instance, we may want to color each

vertex. In this case, an array of color values c must be sent to the GPU defining

a color for each vertex of each triangle. In the figure, these attributes are denoted

“uniform variables”, and are sent from the CPU. For this project, we will be sending

texture coordinates to each vertex, discussed more in the next section. The output of

the vertex shader is a list of vertices and their attributes.

Rasterization

The input to the rasterizer is the output of the vertex shader, which is a list of

vertices and their attributes. The rasterizer performs two actions: for each triangle,

the rasterizer enumerates each of the pixels which that triangle covers, and for each

pixel, interpolates the vertex attributes from the vertex shader. As output to the

rasterizer, each pixel is called a fragment (which emphasizes that the fragment is not

just the pixel location on the screen, but also each of its interpolated attributes).

Figure 2 gives a visual description of interpolation in the case of color. For each

fragment of a triangle T , the rasterizer linearly interpolates the color value of the

vertices of T by the fragment’s barycentric coordinates.

Fragment Shader

3

Figure 2: A visualization of how the rasterizer interpolates vector attributes. In
this case, the vector attribute is color, and for each fragment the color is given
by a linear interpolation of the vertex colors.

The fragment shader is run once for each fragment. Its input is the fragment’s

location on the screen as well as any vector attributes which were interpolated by the

rasterizer for that fragment. Therefore, the fragment shader runs on a pixel by pixel

basis. The only output of the fragment shader is the color of the given pixel, and is

sent directly through hardware to the screen or graphical display.

The power of the GPU pipeline is that rasterization has an extremely efficient

implementation through hardware on the GPU and the fragment shader is run inde-

pendently for each pixel, so each of the 106 pixel colors can be calculated simulta-

neously. While there are alternatives to rasterization, namely ray tracing, the sheer

computational efficiency of rasterization has proven to be invaluable in many graphics

settings.

2.2 Textures

The GPU pipeline is able to draw scenes with triangles which are a single color or

a linear interpolation of three colors. Oftentimes, it is desirable to draw a triangle

which is not a uniform color, but has an image overlaid on it. In computer graphics,

4

Figure 3: A visual of texture mapping. For each vertex, we specify a texture
coordinate, which is a point on the texture. Each fragment inside of the triangle
will display a point on the texture linearly interpolated from the coordinates at
the vertices.

a texture refers to a wide class of objects which specify precomputed data for a scene.

For the sake of this project, a texture will mean a two dimensional image.

Given an image I and a triangle T , in order to overlay the image on the triangle,

it is necessary to specify at what coordinates the image should be overlain. Two

dimensional textures on the GPU are normalized to [0, 1]× [0, 1], so a texture given

by an image I can be thought of as a function g : [0, 1]× [0, 1] → RGB which sends

each coordinate to the color of the image at that point. The exact definition of g is

more nuanced - for instance, defining the behavior of g(q) if q lies between pixels on

the image I. Another problem with textures arises when the resolution of the texture

is large compared to the size of the triangle, which causes aliasing in the final image

if g is defined naively. There are standard solutions to these problems through more

clever sampling techniques and “mip maps” - but we will not need to understand

these tools for this project. Therefore for each vertex v of each triangle, a texture

5

coordinate pv ∈ [0, 1]× [0, 1] is sent to the vector shader as a vector attribute. Then,

for each fragment f of the triangle T , the rasterizer computes a texture coordinate p

linearly interpolated from the vertices. Using this texture coordinate, we return the

color g(q) from the fragment shader.

Thus, texture mapping is achieved by the interpolation of texture coordinates by

the rasterizer. In particular, after the texture coordinates of each vertex have been

specified, the texture coordinates of each fragment are determined. Therefore, in

order to simulate non-uniform stretching of a texture on a triangle, it is necessary to

modify the texture coordinates inside of the fragment shader. Because the fragment

shader is run once for each pixel, whatever computation is performed inside of the

fragment shader must have low computational cost. This is the heart of the difficulty

of this project - modelling variable stretching can conceivably be achieved through

complex physical models on the CPU, but implementing any such model on the GPU

would be computationally expensive to the point of being unusable for any real time

rendering application.

3 Spring Model

The goal of the project is to develop a technique to modify texture coordinates real

time in order to simulate varying elasticity of a texture. The first step is to specify

a physical model which can be used to model texture elasticity. We will first de-

scribe a physical model for a 1-dimensional texture, and then extend it linearly to 2

dimensions.

3.1 Model Description

Consider a 1-dimensional texture comprised of horizontal line segments of size l1, l2, . . . , ln.

For simplicity assume the texture is length 1 so
∑

i li = 1. Suppose that the elasticity

of each line segment is given by a corresponding value e1, e2, . . . , en (e for elasticity).

6

Figure 4: Linear model visual. The color of each segment is proportional to its
elasticity constant ei. Notice that the brighter (higher elasticity) segments stretch
more on deformation than the dark segments. If ei = 0, the segment is full rigid
and thus does not change length when stretched at all.

The values ej are in the range [0, 1], so that ej = 0 signifies that the jth segment does

not stretch at all, while ej = 1 signifies the jth segment is fully elastic. Suppose that

the line segment is then stretched to a length of l. The one dimensional spring model

stretches each segment proportional to two values:

1. its elasticity constant ei.

2. its unstretched length li.

In particular, suppose that after stretching the texture to a length of l, the line

segments of length l1, l2, . . . , ln are stretched to lengths of s1, . . . , sn respectively, as

shown in figure 4. Then, the stretch values according to the spring model are chosen

such that
ej lj

(sj−lj)
is the same for each segment. Equivalently, (and more numerically

stable to avoid dividing by zero), there is a unique value r such that

rejlj = (sj − lj) for all j ∈ [1, n]

Furthermore, we must have that the stretched length is l, so

∑
j

sj = l

7

Combining these two equations, we have that:

r
∑
j

ejlj =
∑
j

(sj − lj) =
∑
j

sj −
∑
j

lj = l − 1

r =
l − 1∑
j ejlj

Notice that r is not defined if all of the line segments have elasticity of 0 - this

corresponds to the fact that if none of the segments can be stretched, then it is

impossible to change the length of the texture. Once r is computed, we have a simple

way to compute the stretch of any segment sj:

sj = lj(rej + 1)

Furthermore, if r0 = 1∑
j ej lj

is computed once, then it is efficient to compute other

values of sj with a linear equation in l by r = (l − 1)r0:

sj = r′(l − 1)ejlj + lj

3.2 Physical Basis

The spring model behaves as if each line segment of the texture is a spring with spring

constant kj equal to
1

ej lj
[3, Chapter 7]. A static system of n springs in series results

in an equal amount of force applied through each spring. Thus, by Hooke’s law, if

∆xj is the change in length of the jth spring and kj is the jth spring constant, the

following holds:

ki∆xi = kj∆xj for all i, j

Since ∆xj = sj − lj and by substituting kj =
1

ej lj
, this corresponds to

si − li
eili

=
sj − lj
ejlj

for all i, j

8

This is exactly the statement that there is some r ∈ R such that

sj − lj
ejlj

= r for all j

Therefore, the spring model behaves exactly as if each segment is a spring with

corresponding spring constants.

There is a practical reason for inverting the spring constant as above. Hooke’s

law implies that if two springs with spring constants k1, k2 are placed in series, the

resulting spring has spring constant k:

k =

(
1

k1
+

1

k2

)−1

Therefore, if the spring constants are inverted as e = k−1, Hooke’s law yields the

computationally simpler equation:

e = e1 + e2

Furthermore, we represent the spring constants as proportional to the lengths lj of

each spring. This is characteristic of elastic materials and is intuitive - if there are two

portions of lengths l1 < l2 with the same elasticity, we expect l2 to stretch more than

l1 when a force is applied. Ultimately, this detail does not change the implementation,

since each “spring” is the length of a pixel and thus each spring is the same length.

3.3 Linear Model on the GPU

Now that a model has been specified for stretching segments of a texture, it must be

implemented on the GPU. In particular, for any one dimensional texture specifying

elasticity and any stretch length l, there is an associated function stretchl : [0, 1] →

[0, l] defined by the spring model which sends each point in [0, 1] to its stretched

position. Thus at a fragment f in the fragment shader with texture coordinate

9

p ∈ [0, 1], we must determine the point q ∈ [0, 1] such that stretchl(q)/l = p. Thus,

in order to compute q, we must efficiently compute the inverse stretch−1
l (lp).

In the spring model, notice that each segment of the texture is stretched propor-

tionally to its length and elasticity. Therefore, the function stretchl has derivative

proportional to the elasticity constant at each point, so stretchl is a piecewise linear

function, as seen in figure 5.

Therefore, it is possible to explicitly compute the inverse of stretchl by reflecting

it across y = x. This amounts to inverting the slopes of each linear portion and

computing the reflection of each vertex across y = x. However, explicitly computing

the inverse of stretch is not an effective solution for the following reasons:

1. Computing this inverse explicitly is computationally inefficient even in one di-

mension due to the casework required to invert each vertex of the function.

2. If the texture is compressed short enough that the stretch function is not in-

jective, the inverse does not exist at all and thus cannot be computed. In this

Figure 5: Visual of the stretchl function for l = 2 and a specific texture.

10

situation, it is better to compute an approximation of an inverse than to fail

completely.

3. Computing the inverse does not extend to two dimensions.

The third bullet is the most important - computing an explicit inverse is simply

unattainable in two dimensions, partially because the stretch function is not guaran-

teed to be injective in most situations. Therefore, we should aim for an effective way

of approximating the inverse on the GPU rather than computing it directly.

3.4 Approximating Inverse Stretch on the GPU

In order to compute the inverse of stretchl in the fragment shader, we first describe

how the function stretchl can be defined on the fragment shader. The first step is

to compute the function stretch2 : [0, 1] → [0, 2] on the CPU. Notice that in the

spring model, the stretch lengths of each segment are linear in l where l is the stretch

amount. Therefore, since the following equation holds for l = 1 and 2, it holds for all

l:

stretchl(x) = (l − 1)(stretch2(x)− x) + x (1)

The function stretch2(x) can be sent to the fragment shader as a texture, and the

stretch length l can be sent to the fragment shader as a uniform variable. Then, the

function stretchl : [0, 1] → [0, l] can be defined on the fragment shader by equation

(1). Notice that the linearity of the spring model means that the stretchl function is

extremely efficient to compute on the fragment shader, since it amounts to a texture

lookup combined with a few arithmetic operations.

Thus, our problem is to compute stretch−1
l (ly) given a stretch length l and a

texture coordinate y ∈ [0, 1] in the fragment shader. Define f(x) = stretchl(x)/l, so

the goal is to compute f−1(y). Notice that if the stretch value l is not too small, f

is injective, so the value x = f−1(y) is unique. Notice that x satisfying f(x) = y is

equivalent to x being a fixed point of the function h(x) = f(x)−y+x. Therefore, our

11

general strategy will be to start by guessing x = y, and then iteratively modifying x

to closer approximate a fixed point of h.

“Step Method”. In this method, we assume that f is monotone increasing, which

Algorithm 1 StepMethod (f : [0, 1] → [0, 1], y ∈ [0, 1])

x = y
c = .3
while |f(x)− y| > ϵ do ▷ ϵ small or fixed number of iterations

x = x+ c(y − f(x))
end while
return x

ensures that the updated guess x+ c(y−f(x)) always pushes x in the right direction.

This is true so long as l is not too small. Furthermore, if c is smaller than the largest

derivative of f , these two facts imply that x → x+c(y−f(x)) is a contraction of [0, 1],

and therefore will converge to a fixed point. A fixed point x satisfies y = f(x), and

thus under modest requirements StepMethod will converge to an inverse x = f−1(y).

Newton’s Method. Newton’s method is a more specific version of StepMethod -

Algorithm 2 NewtonsMethod (f : [0, 1] → [0, 1], y ∈ [0, 1])

x = y
while |f(x)− y| > ϵ do ▷ ϵ small or fixed number of iterations

x = x+ 1
f ′(x)

(y − f(x))
end while
return x

instead of a generic constant c, we specify the coefficient c as 1/(f ′(x)). This tends to

be a more effective method to achieve convergence, partly because it is not necessary

that f is monotone. There a variety of guarantees about the convergence of Newton’s

method [1]. One nice feature of Newton’s method is that if f is linear, Newton’s

12

method outputs the desired fixed point of h in a single iteration. One potential issue

is that most of the guarantees about Newton’s method convergence apply when f

has a continuous second derivative. However, because the second derivative of f

is 0 wherever it is defined (and f is usually monotonic), Newton’s method should

converge. In practice, Newton’s method is effective at determining the stretch inverse

in the fragment shader, as discussed in the next section. Notice that the derivative

f ′(x) at a point x is equal to the value rej where x has elasticity ej and r is the constant

described in section 3.1. Thus, the values rej can be computed while determining the

stretch2 function and can be sent to the fragment shader as an additional texture.

3.5 Extension to Two Dimensions

We extend the spring model to two dimensions so that it behaves in the same way

when restricted to one dimension - we calculate the stretch functions for the x and

y directions separately to form a function stretchl : [0, 1]2 → [0, 1]2 defined by

stretch(a, b) = (stretchx
l (a), stretch

y
l (b)). We modify the NewtonsMethod algorithm

by replacing 1/f ′(x) with the multiplicative inverse of the gradient of f [1], i.e. the

matrix  1
∂f/∂x

0

0 1
∂f/∂y


3.6 Analysis of Spring Model

In figure 6, we show the results of the algorithm applied to a “one dimensional tex-

ture” which is widened along the y axis for clarity of the results. Notice that when

the texture is stretched uniformly (without any spring model adjusting), the rigid

portions of the texture (the black pieces) stretch proportionally to the rest of the

texture. When using the spring model, the size of each rigid portion is kept constant

as the texture is stretched. This is the expected and desired behavior.

Now consider figure 7 of a texture with 2 rigid rectangles. The spring model preserves

13

Figure 6: Unstretched texture (leftmost), normally stretched texture (center), and
spring model with Newton’s method (rightmost). Elasticity is given by color, so
darker is more rigid.

Figure 7: Unstretched texture (leftmost), normally stretched texture (center),
and spring model with Newton’s method (rightmost), applied to an image with
two rigid rectangles.

the sizes of the rectangles when stretched along the x axis, as desired. However, the

rectangles split apart as the x-stretch is applied. This can be explained explained

by considering how the spring model is extended to two dimensions. When an x-

dimensional stretch is applied to the texture, the stretch values of each row are cal-

culated independently, so two adjacent rows of pixels can have completely different x

stretch behavior despite being next to one another. Therefore, the stretchx
l function

can be highly discontinuous along a column, as exemplified here.

Furthermore, the brushed “tails” in the image are due to the stretch function being

highly discontinuous around these points, so any convergence method (like Newton’s

method) will generally fail to find the inverse of the stretch.

Figures 8 and 9 contain a texture stretched with a single rigid circle. In figure 8,

the model behaves as we would hope - the circle has the same size and center when

the texture is stretched. In 9, we have the exact same image, but with the rigid circle

14

translated to the left. In this case, our model fails to preserve the shape of the circle.

Once again, this is because the spring model treats each row independently. Because

the middle row of the rigid circle is close to the left side of the image, it is pulled to

the left when stretched. However, the other rows of the circle have more whitespace

between them and the left edge of the image, so when the image is stretched, they

are pulled to the right.

Compared to the situations required in a more realistic graphics setting, like ren-

dering realistic reptilian skin, these toy examples of a single circle or a few rectangles

are extremely simple. Let us consider more complicated examples representing mul-

tiple regions of varying rigidity, as shown in figures 10 and 11. In figure 10, we have

a collection of rigid circles. When the texture is stretched vertically and horizontally,

the area of each circle stays roughly the same, but the shapes are significantly de-

Figure 8: Unstretched texture (leftmost), normally stretched texture (center),
and spring model with Newton’s method (rightmost), applied to an image with
a centered circle.

Figure 9: Unstretched texture (leftmost), normally stretched texture (center),
and spring model with Newton’s method (rightmost), applied to an image with
a left aligned circle.

15

Figure 10: Unstretched texture (left), normally stretched texture (center), and
spring model with Newton’s method (right), applied to an image with a centered
circle.

Figure 11: Unstretched texture (left), and stretched with spring model with New-
ton’s method (right), applied to an image with varying regions of differing rigidity.

formed. In 11, we have a collection of shapes of varying rigidity, which when stretched

become unrecognizable.

Even in these simple cases, it is clear that the spring model deforms the structure

16

of the texture far too much to be effective. Even though it preserves the size of regions

when stretched and behaves well in one dimension, two dimensional shapes become

unrecognizable with the spring model under even modest conditions.

4 Rigid Region Model

The spring model described in the previous section was designed for one dimensional

textures and was naively extended to two dimensions by treating each dimension of

stretch independently. This approach ignored the interaction between the geometry

of the x and y axes. This failure of the spring model is the motivation for our next

model, which simplifies the problem by only allowing completely rigid or non-rigid

regions, but is designed to treat two dimensional geometry with more nuance.

4.1 Model Rationale

Consider a texture with a single rigid region R such that the rest of the texture is

elastic. When the texture is stretched, the goal is to preserve the size, shape, and

location of the rigid region. The basis of the rigid region model is to compute the

centroid c of the region R (the weighted average of its points), and then stretch each

point x in the rigid region linearly towards c, as shown in figure 12.

Notice that this approach ensures that the size of R will be modified correctly

while maintaining its geometric shape. Furthermore, sending each point towards the

centroid will ensure that the center of the rigid region will remain constant while

stretching.

What about the other points on the texture which are not in a rigid region? Under

this model, we only have two possible values of elasticity for each point: fully rigid,

or fully elastic. Therefore, all of the other points are fully elastic and thus do not

have any specific constraints. We aim to make the stretch function on the texture as

smooth as possible so that the stretching appears realistic. Therefore, we will choose

17

Figure 12: Desired behavior for a rigid region. The left region represents the
unstretched texture with vectors describing how the region will be modified when
stretched. The right region shows a uniformly stretched region in dashes, and
how the rigid region will appear under this model in blue.

the behavior of stretching on non-rigid points to maximize the smoothness of the

stretching function.

4.2 Model Description

Suppose that there is a texture I of size [0, 1]×[0, 1] and it is stretched from [0, 1]×[0, 1]

to [0, lx]× [0, ly]. Let us describe a function stretchlx,ly : [0, 1]× [0, 1] → [0, lx]× [0, ly]

which specifies where each point is stretched to. The rigid region model assures that

pixels in a rigid region are stretched linearly towards the centroid. In particular, for

a point p in a rigid region with centroid c, we have (where p.x, p.y are the x and y

coordinates of p respectively):

stretchlx,ly(p) =

(
p.x+ (lx − 1)c.x, p.y + (ly − 1)c.y

)

18

Figure 13: A simple texture with rigid region a circle and the corresponding
vectors V (p).

Define vectors V (p) by subtracting by p and dividing coordinate-wise by lx, ly:

V (p) =

(
(1− lx)p.x+ (lx − 1)c.x

lx
,
(1− ly)p.y + (ly − 1)c.y

ly

)
(2)

The vectors V (p) are shown in figure 13. Notice that by normalizing, the vectors

for p in the rigid region point towards the centroid with length proportional to the

distance from the centroid.

Now, the goal is to define V (p) for the remaining pixels p in the texture to min-

imize the sum of the square difference of adjacent vectors, which is one numerically

convenient way of phrasing continuity or smoothness. In particular, we select the

remaining vectors V (p) to minimize the following sum:

min
V

∑
p

∑
q

|V (p)− V (q)|2 (3)

where p is summed over pixels not in a rigid region, and q is summed over points

neighboring p. Furthermore, this sum is minimized with the constraint that V (p) is

fixed for p in a rigid region as defined in equation (2). p and q are neighbors if p

19

Figure 14: Vectors V (p) for all pixels p, chosen to maximize the smoothness of
V on the texture.

and q are horizontally or vertically adjacent, including wrapping around the image -

for instance, a point on the far left side of the image has a neighbor on the far right

side, so every point has exactly 4 neighbors. A solution to this minimization for V is

shown in figure 14, where the remaining vectors are chosen so V is smooth.

Thus, choosing the stretch values V on the elastic coordinates (points where the

texture is elastic) amounts to solving a least squares problem. For simplicity, let us

solely solve for the x components Vx(p) of the vectors V (p). The same method can

be used to solve for the y components, since the sum in equation (3) splits into two

least squares problems in Vx and Vy:

min
V

∑
p

∑
q

|V (p)− V (q)|2 = min
V

∑
p

∑
q

(Vx(p)− Vx(q))
2 + (Vy(p)− Vy(q))

2

= min
Vx

∑
p

∑
q

(Vx(p)− Vx(q))
2 +min

Vy

∑
p

∑
q

(Vy(p)− Vy(q))
2

20

Thus, let us consider the equation in x:

min
Vx

∑
p

∑
q

(Vx(p)− Vx(q))
2 (4)

One effective method of solving least squares problems is conjugate gradient, which

solves Ax = b for skew-symmetric positive semi definite matrices A. Let us show

that we can write the equation in (4) as

f(x) =
1

2
xTAx− bx+ c (5)

for a skew-symmetric positive semi definite matrix A. Since equation (5) is convex if

A is positive definite, its minimum can be found by setting the gradient equal to 0:

∆f(x) = Ax− b = 0

Let

x =


Vx(p1)

Vx(p2)

...

Vx(pN)


where p1, p2, . . . , pN are the pixels which are not inside of a rigid region, since the

remaining values of V are already fixed. Let us consider a term |V (p) − V (q)|2 in

equation (3) for p in a rigid region and q a neighbor of p. There are two cases: q is

in a rigid region or it is not. First suppose q is not in a rigid region, so p = pi and

q = pj for some i ̸= j. Then, let Aij be the matrix with coefficients a such that

aij = aji = −2 aii = ajj = 2

21

and the other terms are 0. Then,

1

2
xTAijx =

1

2

(
2Vx(pi)

2+2Vx(pj)
2−2Vx(pi)Vx(pj)−2Vx(pj)Vx(pi)

)
= (Vx(pi)−Vx(pj))

2

Thus, Aij encodes the desired term for pi, pj. Now consider the case when q is in

a rigid region, so there is a precomputed vector Vx(q) =
(1−lx)p.x+(lx−1)c.x

lx
for q. Let

p = pi. Then, let biq be a vector with 2Vx(q) in the ith entry and 0 in remaining

terms. Let Ai have a 2 in the ith diagonal entry and let c = Vx(q)
2. Then,

1

2
xTAix− biqx+ c =

1

2
2Vx(p)

2 − 2Vx(q)Vx(p) + Vx(q)
2 = (Vx(p)− Vx(q))

2

Thus by linearity, by adding the symmetric matrices Ai, Aij, vectors biq, and constants

c for each pair of points p, q with p rigid and q a neighbor, there is a symmetric matrix

A, vector b, and constant c such that

1

2
xTAx− bx+ c =

∑
p

∑
q

(Vx(p)− Vx(q))
2

as in equation (4). Furthermore, A is positive semi definite since for any choices of

vectors Vx(p1), . . . , Vx(pN), we have:

1

2
xTAx =

∑
p

∑
q rigid

(Vx(p)− Vx(q))
2 +

∑
p

∑
q not rigid

Vx(p)
2 ≥ 0

where q is summed over the neighbors of p. Furthermore, the xTAx is only zero if

Vx(p) = Vx(q) for all neighbors p, q, and Vx(p) = 0 for all p adjacent to a rigid region.

So long as there is at least one rigid region, it is impossible for these requirements to

be satisfied by any vector other than the zero vector, so A is positive semi definite

unless the texture is fully elastic. Thus, applying conjugate gradient obtains a solution

vector Vx(p1), . . . , Vx(pN). Combining these steps describes a complete algorithm for

determining the vectors V (p). After renormalizing by multiplying by lx, ly and adding

22

p, a stretch function stretchlx,ly is determined.

This algorithm will determine the optimal stretch vectors Vx(p) for a specific x-

stretch lx. If this algorithm has to be repeated for each new stretch value lx, the

algorithm would be too computationally expensive to be usable in any real time

setting. Let us show that if the vectors Vx are found for lx = 2 (denoted V 2
x (p)), then

for any stretch lx, the new stretch vectors Vx can be found by linearly interpolating

with V 2
x :

Vx(p) =
2(lx − 1)

lx
V 2
x (p)

First notice that this holds for points q in a fixed region with centroid c since we have

Vx(q) =
(1− lx)q.x+ (lx − 1)c.x

lx

and

V 2
x (p) =

c.x− q.x

2

so therefore

Vx(q) =
lx − 1

lx
(c.x− q.x) =

2(lx − 1)

lx
V 2
x (p)

Now let us show that the same equality holds for points q not in a region. Let b2 be

the vector defining the least squares minimization in equation (4) when the stretch

is lx = 2. After scaling by lx, each of the vectors in b2 will be scaled by 2(lx−1)
lx

by

the calculation above. Furthermore, A is independent of the stretch lx. Therefore,

by linearity, the solution to Ax = b will be given by exactly x = 2(lx−1)
lx

x2, where

x2 is the solution for lx = 2. Therefore, it suffices to compute the stretch vectors

V 2 once for lx = 2 and then scale by 2(lx−1)
lx

for successive stretching. Therefore, the

function stretchlx,ly can be defined on the fragment shader by sending the vectors V

to the fragment shader as a texture and then multiplying and dividing by the required

coefficients. Therefore, the same method of calculating an inverse as in section 3.4

can be used to apply the stretching of the texture coordinates in the fragment shader.

23

If Newton’s method is to be used, one can compute approximate derivatives at each

point by using local values of V and sending these as an additional texture to the

fragment shader.

4.3 Algorithm

Algorithm 3 RigidRegionModel (bool texture[width, height], rigidRegions[][])

for R ∈ rigidRegions do
compute the centroid cR of R
for q ∈ R do

compute the stretch vectors V (q) = (cR − q)/2
end for

end for

Construct the matrix A based on pixel adjacency.
Construct b by inserting vectors 2V (q) for q in a rigid region.

Solve Ax = b using conjugate gradient.

Fill remaining vectors in V with solution values x.
Normalize V and send to GPU.
NewtonsMethod or StepMethod in fragment shader to compute inverse.
Use modified texture coordinates to draw stretched image.

The algorithmic complexity of RigidRegionModel is dominated by the conjugate

gradient algorithm. Each of the steps other than conjugate gradient are linear in n

where n = width ∗ height of the provided image. The matrix A has O(5n) non-zero

entries - one for each pixel and four for each of its neighbors.

However, the conjugate gradient step has potentially large computational time.

In general, the algorithmic complexity of conjugate gradient is O(n
√
κ) where κ is

the condition number of A [7]. Consider the trivial case when there is no rigid region.

Let A′ be the matrix defining the least squares problem in equation (5). Then, the

vector x = [1, 1, . . . , 1]T satisfies A′x = 0 since

A′x =
∑
i,j

(xi − xj)
2 =

∑
i,j

= 0

24

where xi, xj are neighbors. Therefore, A is not positive definite, and therefore has

infinite condition number [7]. This means that conjugate gradient is not guaranteed to

converge in a finite number of steps. Of course if there is no rigid region, then we can

immediately return x = [0, 0, . . . , 0] as the solution since there should be no stretching

of any vector. However if the rigid region is small, then A will be approximately A′

and thus have a large condition number [5]. Therefore, the algorithmic complexity of

conjugate gradient in RigidRegionModel can be large. Based on the definition of A, it

is possible to compute bounds on
√
κ, but these will not provide a good understanding

of the effective running time of the algorithm. Since conjugate gradient is descent

based, it is not necessary to run it until complete convergence. When computing the

examples in this project, running conjugate gradient for 300 steps was sufficient for

a highly accurate solution. Therefore, the algorithm is effectively O(n), but with a

potentially large coefficient of n depending on the number of steps needed for accurate

convergence. A better understanding of the practical algorithmic complexity of the

algorithm would require more testing, since the complexity bounds for conjugate

gradient do not apply well when the matrix A is barely positive definite.

25

Figure 15: Unstretched texture (leftmost), normally stretched texture (center),
and rigid region model (rightmost). Notice that this model does not support
medium rigidity, so the gray regions are treated as fully elastic.

Figure 16: Unstretched texture (leftmost), stretched spring model (center), and
rigid region model (rightmost).

4.4 Analysis of Rigid Region Model

Figure 15, illuminates one limitation of the rigid region model compared to the spring

one: the rigid region model is only able to support fully elastic and fully non-elastic

regions. Therefore, the gray (moderately rigid) areas of the stretch texture are treated

as fully elastic. Notice that the black (rigid) regions are the same size in each of the

unstretched, spring, and rigid region examples. However, while the white regions are

visibly stretched more than the dark gray and light gray regions in the spring model,

they are stretched proportionally to the gray regions in the rigid region model (since

both are treated as fully elastic).

Now consider the comparison in figure 16 of the spring and rigid region models ap-

plied to a texture with two rigid rectangles. Because the rigid region model explicitly

preserves the structure of connected rigid regions, each rectangle’s shape and relative

position is preserved. The difference between the two models on this image empha-

26

Figure 17: Unstretched texture (leftmost), stretched spring model (center), and
rigid region model (rightmost).

Figure 18: Unstretched texture (leftmost), stretched spring model (center), and
rigid region model (rightmost).

sizes the inability for the spring model to “see” two dimensional geometry, while the

rigid region model encodes geometry by explicitly preserving two dimensional regions

when stretched.

The texture with multiple rigid circles in figure 17 gives a more complex example

showing how the rigid region model improves upon the spring model. Each circle is

preserved in its shape and kept the same size as the texture stretches. In figure 18,

we see how while the rigid region model preserves the shape of rigid portions of the

texture (in black), no guarantees are made about the shape of the remainder of the

texture. The gray shapes illuminate this lack of structure, in particular, the warping

of the pentagons. Another feature illuminated in this example is how adjacency is

27

Figure 19: Stretched with rigid model (leftmost), stretch vectors at each point as
colors, (center), and gradient of stretch vectors (rightmost).

defined while computing the stretch vectors. As the stretch is applied, the gray area

in the lower right hand side “spills over” to the upper left hand corner, since in the

matrix A we specify that points on opposite sides of the texture are adjacent. Thus,

the rigid region model behaves best when the texture is continuous along opposite

sides.

Consider figure 19 which shows the behavior of the rigid model on the example of

two rigid rectangles. In the second image, the stretch vectors V (p) are plotted at each

point by color. In particular, the red value at a point p represents the x component

Vx(p) and the green value represents the y component Vy(p). In the rightmost image,

the same color scheme is used for ∆V (p), so the red color represents ∂V/∂x and the

green color represents ∂V/∂y. Notice that inside each of the rigid regions, the stretch

vectors are constant. This is also shown by the fact that the rigid regions are black

in the figure on the right showing the derivatives of the stretch vectors. Notice that

in order to preserve the rigid regions and continuity, the x derivatives of the vectors

are large (red) between the rectangles, and similarly in the y direction.

28

5 Conclusion

5.1 Analysis

The rigid region model is far more effective than the spring model. Despite being

limited to only fully elastic or fully rigid regions, the rigid region model preserves the

geometric structure of a texture, which the spring model fails to do even in simple

cases. While the preprocessing of the rigid region model is more computationally

expensive, this only needs to be computed once for each texture, and can be precom-

puted as a texture for any practical use. In addition to behaving well on rigid regions,

the rigid region model also preserves the continuity of the remainder of the texture

by minimizing the difference between adjacent stretch vectors.

5.2 Further Research

A first step for future research is to conduct more testing on realistic examples and

understand how the current model performs. For the sake of this project, we have

focused on the technical aspect of introducing varying stretching on a texture, rather

than how the model we have developed performs on realistic textures. Therefore, in

order to more accurately assess how the current model fails on practical examples, it

would be necessary to first test the current model extensively.

One main limitation of the current model is that it does not necessarily extend well

to complex triangular meshes. In particular, if two adjacent triangles are stretched

different amounts, then their stretched texture will not necessarily be continuous

along their boundary. This will make the texture look choppy and unrealistic at their

intersection.

Coordinating stretch values across different triangles is difficult because it cannot

be solely accomplished in the fragment and vertex shaders, which can only see a

single triangle and pixel at a time, respectively. Therefore, solving this problem would

require a more sophisticated approach which utilizes more complicated preprocessing

29

Figure 20: When adjacent triangles are stretched different amounts, the texture
coordinates on each can be stretched differently along their boundary.

or other shaders on the GPU pipeline.

Parallax mapping is a technique to create the illusion of 3D geometry on a flat

triangle by modifying texture coordinates inside of the fragment shader [2]. While

parallax mapping has a different end goal from creating the illusion of variable stretch-

Figure 21: An example of parallax mapping implemented for the final project of
CS 5610, Interactive Computer Graphics. The only triangles rendered are two
per face of the cube. The illusion of depth is achieved by modifying texture
coordinates inside the fragment shader.

30

ing, the methods are similar. The original parallax algorithm has been improved in a

number of novel ways, including a more effective approximation algorithm [4] as well

as using more nuanced geometry to reduce artifacts caused by the approximation [6].

In each of these cases, it is possible that the implementation of rigid region model in

the fragment shader can be improved upon in similar ways. A more in depth litera-

ture review of existing techniques for parallax mapping could yield useful techniques

which can be applied to variable stretch textures.

31

6 References

[1] A. Galántai. The theory of newton’s method. Journal of Computational and

Applied Mathematics, 124(1-2):25–44, 2000.

[2] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Ya-

suyuki Yanagida, Taro Maeda, and Susumu Tachi. Detailed shape representation

with parallax mapping. In Proceedings of ICAT, volume 2001, pages 205–208,

2001.

[3] Samuel J. Ling, Jeff Sanny, and William Moebs. Work and Kinetic Energy. Open-

Stax, Rice University, 2017.

[4] Morgan McGuire and Max McGuire. Steep parallax mapping. I3D 2005 Poster,

pages 23–24, 2005.

[5] Cleve Moler. What is the condition number of a matrix?, Jul 2017.

[6] Fabio Policarpo and Manuel M Oliveira. Relaxed cone stepping for relief mapping.

GPU gems, 3:409–428, 2007.

[7] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient

method without the agonizing pain, 1994.

[8] Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of com-

puter graphics. AK Peters/CRC Press, 2009.

[9] Cem Yuksel. Intro to graphics 07 - gpu pipeline, Feb 2021.

32

Name of Candidate: Emil Geisler

Date of Submission: May 1, 2023

