Math 131A/2 Winter 2002 Handout #1

Instructor: E. Effros, MS 6931.

Lecture Meeting Time: MWF 1:00PM-1:50PM

Location: KNUDSEN 1240B

TA Asger Tornquist

Recitations Tues 3:00-3:50 MS 5117.

Thurs 3:00-3:50 GEOLOGY 4645

Office hours (tentative): TF 4-5 in my office or in MS 6943

Grading There will be one hour midterm and a three hour final examination. There will approximately seven or eight assignments.

Your grade will be calculated as follows: Hour exam 25%, Final 50%, Homework 25%.

Webpage I am hoping to use the webpage for posting various pieces of information. If this works out you should check it regularly.

Prerequisites

- Undergraduate real variable theory roughly speaking all that you will
 need is analysis on the real line this is covered in Math 131a at UCLA.
- You should already be able to write coherent proofs.

You may find that you do not have enough of a mathematical background for this course. To help you to determine whether this is the case, I plan to give a practice exam early in the quarter, that won't count towards your grade. In any case if you feel insecure you might want to sit in a 131a class, and then transfer if necessary.

Here are some simple logical principles (which I extracted from an undergraduate real variable course):

The most common logical errors made by beginners:

- They think that "or" is exclusive: thus although they know that ≤ means "less than or equal to" they think it is "wrong" to write 3 ≤ 3 because they know that "actually, 3 = 3"
- They think that you cannot prove P ⇒ Q if you already know that P is false.
- They think that if P ⇒ Q is true, then Q is true.
- When asked to prove P ⇒ Q they instead prove Q ⇒ P.
- They get = (equality say of sets or numbers) mixed up with

 (logical equivalence, used for propositions).

Some correct illustrations of logic:

- The proposition "6 < 7 or 4 < 5" is true.
- The proposition " $1 = 2 \Rightarrow 0 \times 1 = 0 \times 2$ " is true.
- The proposition "For any real number $x,\ x+2=3 \Rightarrow x(x+2)=x3$ " is true.
- The proposition "For any real number x, $x(x+2) = x3 \Rightarrow x+2=3$ " is false.

It is important to be able to take the negations of statements (in order to prove things by contradiction). Here is the general scheme.

$$\begin{array}{lll} \tilde{\ \ }(P \text{ or } Q) & \Leftrightarrow & \tilde{\ \ }(P) \text{ and } \tilde{\ \ }(Q) \\ \tilde{\ \ }(P \text{ and } Q) & \Leftrightarrow & \tilde{\ \ }(P) \text{ or } \tilde{\ \ }(Q) \\ \tilde{\ \ }(P & \Rightarrow & Q) \Leftrightarrow (P \text{ and } \tilde{\ \ }Q) \\ \tilde{\ \ }((\forall x)P(x)) & \Leftrightarrow & (\exists x)(\tilde{\ \ }P(x)) \\ \tilde{\ \ }((\exists x)P(x)) & \Leftrightarrow & (\forall x)(\tilde{\ \ }P(x)) \end{array}$$