Assignment 2

Math 245a, Fall 2002

Due: Mon, Oct. 14

- 1. Prove that if (\mathcal{M}, d) is a metric space, then the map $d : \mathcal{M} \times \mathcal{M} \to [0, \infty)$ is continuous. Suggestion: Show that if $x_n \to x$ and $y_n \to y$, then $d(x_n, y_n) \to d(x, y)$.
- 2. Say that (\mathcal{M}, d) is a metric space and that $F_n \subseteq \mathcal{M}$ is closed. Does it follow that $\bigcup F_n$ is closed? Prove your assertion.
- 3. Suppose that (\mathcal{M}, d) and (\mathcal{N}, ρ) are homeomorphic metric spaces and that \mathcal{M} is complete. Does it follow that \mathcal{N} is complete? Prove your assertion.
- 4. Find a closed and bounded subset of \mathbb{Q} which is not compact.
- 5. Say that $A \subseteq B \subseteq M$ and that A is dense in B, and B is dense in M. Carefully show that A is dense in M.
- 6. Give an example of a bounded and complete metric space \mathcal{M} which is not compact.
- 7. a. Show that if K is compact and F is closed in \mathcal{M} , and $K \cap F = \emptyset$, then there is an $\varepsilon > 0$ such that $d(x,y) \geq \varepsilon$ for all $x \in K$, $y \in F$.
 - b. Show (a) is false if you assume K and F are closed in \mathcal{M} .
- 8. a. Show that if \mathcal{M} and \mathcal{N} are metric spaces, and $f: \mathcal{M} \to \mathcal{N}$ is continuous, then f is a closed subset of $\mathcal{M} \times \mathcal{N}$.
 - b. Show that the converse of the above statement is false.