Math 131
a Handout #3

We will assume two fundamental properties of \mathbb{N} :

(N1) Every non-empty subset S of \mathbb{N} has a least element.

(N2) The Fundamental Theorem of Arithmetic: every number $n \in \mathbb{N}$ has a unique factorization

$$n = 2^{a_1} 3^{a_2} \dots$$

where $0 \leq a_k \in \mathbb{N} \bigcup \{0\}$.

Theorem 0.1. Suppose that S is an infinite subset of a countable set T. Then S is countably infinite (i.e., $S \approx \mathbb{N}$).

Proof. First assume that $T = \mathbb{N}$. We define a function $f : \mathbb{N} \to T$ by induction. From (**N1**) we may let $f(1) = \min S$. Let us suppose that we have defined f(n-1) (where n > 1). Since S is assumed infinite, $S \setminus \{f(1), \ldots, f(n-1)\}$ is non-empty, and we may use (**N1**) to define

$$f(n) = \min S \setminus \{f(1), \ldots, f(n-1)\}.$$

It is evident that

$$f(1) < f(2) < \dots$$

and in particular f is 1-1.

To see that f **is onto** we have to show that if $p \in S$, then there is an n such that f(n) = p. First observe that for all $n \in \mathbb{N}$, $n \leq f(n)$. To see this note that $1 \leq f(1)$ since 1 is the least element in all of \mathbb{N} . Suppose that we know that $n \leq f(n)$. Then $n \leq f(n) < f(n+1)$ implies that $n+1 \leq f(n+1)$ (note that f(n+1) is a "whole" number). Thus induction gives the general result $\forall n, n \leq f(n)$.

Given $p \in S$, let $A = \{n \in \mathbb{N} : p \leq f(n)\}$. This is non-empty since $p \leq f(p)$. Let $n_0 = \min A$. If $n_0 = 1$, then

$$f(1) = \min S \le p$$

and thus f(1) = p. If $n_0 > 1$, then

$$f(1) < \ldots < f(n_0 - 1) < p \le f(n_0),$$

and thus p is in $S \setminus \{f(1), \ldots, f(n_0 - 1)\}$. It follows that

$$f(n_0) = \min S \setminus \{f(1), \dots, f(n_0 - 1)\} \le p_1$$

and thus $f(n_0) = p$..

For the general case, by assumption $T \approx \mathbb{N}$, i.e., there is a bijection $g: T \to \mathbb{N}$. Then g(S) is an infinite subset of \mathbb{N} , and by our prevous argument $g(S) \approx \mathbb{N}$. Since $S \approx g(S), S \approx \mathbb{N}$, i.e., S is countably infinite.

Theorem 0.2. Suppose that T is a countable set T and $f: T \to U$ is onto. Then U is countable.

Proof. Since f is onto, we have that for each $u \in U$, the set $T_u = \{t : f(t) = u\}$ is non-empty. For each $u \in U$, we choose an element $t_u \in T_u$. We define $g : U \to T$ by $g(u) = t_u$. From this definition f(g(u)) = u. It follows that $g : U \to T$ is one-to-one since if $g(u_1) = g(u_2)$, then $f(g(u_1)) = f(g(u_2))$ and thus $u_1 = u_2$. It is evident that g is a one-to-one correspondence of U onto the set g(U), i.e., $U \approx g(U) \subseteq T$. Since g(U) is infinite, we conclude from the previous result that $g(U) \approx \mathbb{N}$, and thus $U \approx \mathbb{N}$. **Theorem 0.3** (The principle of induction). Suppose that one has a series of statements $P(1), P(2), \ldots$ Then if P(1) is true, and $P(n) \Rightarrow P(n+1)$ for all $n \in \mathbb{N}$, then P(n) is true for all n.

Proof. Let us suppose that this is false. Then there exists an $n \in \mathbb{N}$ such that P(n)is false^{**}. Thus the set

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\}$$

is non-empty. Using (N1), we may let $n_0 = \min S$. Since P(1) is assumed true, $n_0 > 1$. From the definition of n_0 , $P(n_0-1)$ is true, and $P(n_0)$ is false, contradicting the fact that for all $n, P(n) \Rightarrow P(n+1)^*$.

*This illustrates the law of logic $[\sim (Q \Rightarrow R)] \Leftrightarrow [Q \text{ and } \sim R].$

** This illustrates the law of logic $[\sim (\forall x \in X) P(x)] \Leftrightarrow [(\exists x \in X) \sim P(x)].$

Completeness axiom for $\mathbb R$: Any set which is bounded above has a least upper bound.

Using letters: if you have a subset $S \subseteq \mathbb{R}$ such that $S \leq b$ for some $b \in \mathbb{R}$ (i.e., $s \leq b$ for all $s \in S$), then S has a **least upper bound** b_0 (i.e., $S \leq b_0$ and if $S \leq b$ then $b_0 \leq b$).

Theorem 0.4. \mathbb{N} does not have an upper bound.

Proof. Suppose that \mathbb{N} has an upper bound. Then using the completeness principle, we may let $b_0 = \sup \mathbb{N}$ be the least upper bound for \mathbb{N} . We have that $b_0 - 1 < b_0$ implies that $b_0 - 1$ is not an upper bound for \mathbb{N} i.e., $\mathbb{N} \nleq b_0 - 1$ and there is an $n \in \mathbb{N}$ with $b_0 - 1 < n$. But then $b_0 < n + 1 \in \mathbb{N}$, contradicting the fact that b_0 is an **upper bound** for S. QED

Corollary 0.5. For any $\varepsilon > 0$, there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$.

Proof. Since \mathbb{N} is not bounded above, there is an $n \in \mathbb{N}$ such that $n > \frac{1}{\epsilon}$. It follows that $\frac{1}{n} < \varepsilon$. QED

Corollary 0.6. If a > 0 and b > 0, there is an $n \in \mathbb{N}$ such that na > b.

Proof. You prove this!

Assignment 3

- 1. p. 54: 1,2
- 2. Given complete proofs that

 - a) $\lim_{n \to \infty} \frac{n}{n+1} = 1$ b) $\lim_{n \to \infty} \sqrt{n+1} \sqrt{n} = 0$
 - c) $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ (use the sandwich principle and a geometrical picture)

3. What can be said if a_n is a convergent sequence in \mathbb{N} ?

4. Consider the set

$$\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \dots$$

For which numbers a is there a subsequence converging to a?

5. a) Show that if 0 < a < 2, then $a < \sqrt{2a} < 2$.

b) Prove that the sequence √2, √2√2, √2√2,... converges.
c) Find the limit of the sequence in b).
6. p. 51: 7, 11
7. p. 54: 5, 6.