Math 131a Handout #3

We will assume two fundamental properties of N :

(N1) Every non-empty subset S of N has a least element.

(N2) The Fundamental Theorem of Arithmetic: every number n € N has a
unique factorization

n =293 ...
where 0 < a, € N|J{0}.

Theorem 0.1. Suppose that S is an infinite subset of a countable set T. Then S
is countably infinite (i.e., S = N).

Proof. First assume that T" = N. We define a function f : N — T by induction.
From (N1) we may let f(1) = min S. Let us suppose that we have defined f(n—1)

(where n > 1). Since S is assumed infinite, S\ {f(1),..., f(n — 1)} is non-empty,
and we may use (N1) to define

f(n) = min S\{f(1),..., f(n— 1)}
It is evident that

f)y<f2<...
and in particular f is 1-1.

To see that f is onto we have to show that if p € S, then there is an n such that
f(n) = p. First observe that for all n € N, n < f(n). To see this note that 1 < f(1)
since 1 is the least element in all of N. Suppose that we know that n < f(n). Then
n < f(n) < f(n+1) implies that n+1 < f(n+1) (note that f(n+1) is a “whole”
number). Thus induction gives the general result Vn,n < f(n).

Givenpe S, let A={n e N:p< f(n)}. This is non-empty since p < f(p). Let
ng = min A. If ng = 1, then

f(1) =minS <p.
and thus f(1) = p. If ng > 1, then

fA) <o < flno =1) <p < f(no),
and thus p is in S\ {f(1),..., f(no — 1)} . It follows that
f(no) = min S\ {f(1),..., f(no — 1)} <p,

and thus f(ng) = p..

For the general case, by assumption T' = N, i.e., there is a bijection g : T' — N.
Then g(.5) is an infinite subset of N, and by our prevous argument g(S) = N. Since
S=g(S), S=N,ie., S is countably infinite. O

Theorem 0.2. Suppose that T is a countable set T and f: T — U is onto. Then
U is countable.

Proof. Since f is onto, we have that for each u € U, the set T,, = {t: f(t) = u} is
non-empty. For each u € U, we choose an element t,, € T;,. We define g : U — T by
g(u) = t,,. From this definition f(g(u)) = u. It follows that g : U — T is one-to-one
since if g(u1) = g(ug), then f(g(u1)) = f(g(uz)) and thus u; = us. It is evident
that g is a one-to-one correspondence of U onto the set g(U), i.e., U = g(U) C T.
Since ¢g(U) is infinite, we conclude from the previous result that g(U) = N, and
thus U =~ N. |
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Theorem 0.3 (The principle of induction). Suppose that one has a series of state-
ments P(1), P(2),.... Then if P(1) is true, and P(n) = P(n+ 1) for alln € N,
then P(n) is true for all n.

Proof. Let us suppose that this is false. Then there exists an n € N such that P(n)
is false™*. Thus the set

S ={neN: P(n) is false}

is non-empty. Using (N1), we may let ng = min S. Since P(1) is assumed true,
ng > 1. From the definition of ng, P(ng—1) is true, and P(ng) is false, contradicting
the fact that for all n, P(n) = P(n+ 1)*. O

*This illustrates the law of logic [~ (Q = R)] < [Q and ~ R].

** This illustrates the law of logic [~ (Vz € X)P(z)] < [(3z € X) ~ P(z)].

Completeness axiom for R : Any set which is bounded above has a
least upper bound.

Using letters: if you have a subset S C R such that S < b for some b € R (i.e.,
s <bforall s €S), then S has a least upper bound by (i.e., S < by andif S <b
then by < b).

Theorem 0.4. N does not have an upper bound.

Proof. Suppose that N has an upper bound. Then using the completeness principle,
we may let by = sup N be the least upper bound for N. We have that by — 1 < by
implies that by — 1 is not an upper bound for N i.e., N £ by — 1 and there is an
n € N with by — 1 < n. But then by < n + 1 € N, contradicting the fact that by is
an upper bound for S. QED

Corollary 0.5. For any € > 0, there is an n € N such that % <e.

Proof. Since N is not bounded above, there is an n € N such that n > % It follows
that % <e. QED

Corollary 0.6. Ifa > 0 and b > 0, there is an n € N such that na > .

Proof. You prove this!

Assignment 3
1. p. 54: 1,2

2. Given complete proofs that
. n
a) i sir =

b) lim vVn+1—+/n=20

in 1
¢) lim 5= =1 (use the sandwich principle and a geometrical picture)

n—oo

3. What can be said if a, is a convergent sequence in N?
4. Consider the set

For which numbers a is there a subsequence converging to a?

5. a) Show that if 0 < a < 2, then a < v/2a < 2.



b) Prove that the sequence v/2,v/2v/2,1/2v/2v/2, ... converges.
c¢) Find the limit of the sequence in b).

6. p. 51: 7,11

7. p. 54: 5, 6.



