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ABSTRACT. The Hopf algebra introduced by Brouder, Fabretti, and Kratte-
naler in the context of non-commutative Lagrange inversion can be identified
with the reverse of the incidence algebra of interval partitions. The reverse
antipode determines the (generally distinct) left and right inverses of power
series with non-commuting coefficients and non-commuting variables. The
summands of the reversed antipode are indexed by reduced planar trees. Re-
placing depth first ordering with breadth first ordering, the summands of the
antipode are indexed with irreducible (non-order contractible) trees, in which
precisely one multiple parent vertex occurs at each level.

1. INTRODUCTION

Non-commutative power series play an important role in a number of areas,
including combinatorics, free probability, and quantum field theory. A striking as-
pect of this work is that one can effectively manipulate series in which neither the
coefficients nor the variables commute. Such calculations can often be simplified
through the use of combinatorial indices such as trees and graphs. In turn, these
somewhat ad hoc techniques can frequently be systematized by using Hopf algebras.
This approach was pioneered by Rota and his colleagues in their studies of com-
binatorics [6]. More recently Kreimer [8], and Kreimer and Connes [2] have used
Hopf-theoretic methods to rationalize various Feynman diagram methods used in
perturbative quantum field theory.

An important example of these technques was described by Haiman and Schmitt
[5], who showed that calculating the antipode for the reduced Faa di Bruno Hopf
algebra is equivalent to finding an explicit Lagrange inversion formula for factorial
power series with commuting coefficients. For this purpose they realized the Hopf
algebra as the incidence algebra of colored partitions of finite colored sets. In this
context they used colored trees to index the terms in formulae for the antipode.

In a recent paper, Brouder, Fabretti, and Krattenaler [1] described a Hopf alge-
bra, called the BFK algebra below, which is related to Lagrange inversion for power
series with non-commuting coefficients. As they pointed out, the situation is more
delicate, since the “composition” of such polynomials is not associative.

We begin by showing that the multivariable BFK algebra is essentialy dual to
the incidence Hopf algebra determined by colored ordered (i.e., interval) partitions.
An important distinction between this theory and that of Haimann and Schmitt
on the Faa di Bruno algebra is that the antipode S does not satisfy S? = I (This
was pointed out in [1]). In fact S~! provides the antipode for the reversed Hopf
algebra, which coincides with the BFK Hopf algebra (see §6). An advantage of
this abstract approach is that the associativity of the product is trivial, and the
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calculation of the antipode follows from an elementary formula for antipodes in
arbitrary incidence algebras [10].

Our main purpose is to show that one can use reduced planar colored trees and
their depth first ordering to find an efficient expression for the reversed antipode
S~1. This provides a surprising analogue of the Haiman-Schmitt expression for
general partitions and reduced colored trees, but it is proved in a completely differ-
ent manner. We show that dually one can use ordered irreducible simple trees and
their breadth first ordering for indexing the summands of the antipode S.

In §10 we show that show that despite the fact that the substitution operation for
non-commutative power series is not associative, one can still use the Hopf algebra
(which is associative) to find the left and right substitutional inverses of power
series in which neither the variables nor the constants commute. As we show, these
inverses are generally distinct.

Finally we remark that Rota’s Hopf incidence algebras can be regarded as “K
quantum groups” of suitable families of partially ordered sets. Asin the K-theory of
rings (see, e.g., [3] for a particularly simple example), one is interested in defining
an algebraic object, such as a group or in this context “quantum group” (i.e.,
Hopf algebra), which is generated by “dimension” invariants. In both contexts one
first assumes that the family is closed under something like Cartesian products
to obtain large dimensions, and one deals with pairs or segments. To obtain the
desired algebraic object, one divides out by “degenerate” elements. It is tempting to
conjecture that there is also a corresponding “K; quantum group” for combinatorial
lattices. This will be considered elsehwere. In any event, owing to this more general
perspective, we expect that Hopf incidence algebras will arise in other areas of
modern mathematics.

In order to make the material more accessible to functional analysts and math-
ematical physicists, we have included a careful exposition of the relevant construc-
tions from algebraic combinatorics.

2. ORDERED SETS AND THEIR COLORINGS

A partially ordered set (P,<) is a set P together with a relation < such that
z <yandy < zif and only if z = y, and z < y < z implies z < z. We say P is
a linearly ordered set or simply an ordered set if x < y or y < z for all z,y € X.
Given z,y € P with x < y, we let [z,y] denote the segment {z € P: 2 <y < z}.
We denote a finite ordered set S by (z1,...,%p) where 21 < --- < z,,. In particular
ifpeN, welet [p] = (1,...,p). Given partially ordered sets P and ), we let P x Q)
have the product partial ordering (z1,z2) < (y1,¥2) if 1 < y; and 25 < yo.

We fix a set of “colors” T' = {1,2,3,... ,N}. A colored ordered set (S,7) is an
ordered set S together with a function v = v4 : S = I' (we place no restrictions
on ¢). We refer to v = () as the color of a point z € S, and we say that ~y is
a coloring of S. If S = (z1,...,%s) and v; = c(v;), v is determined by the word
v =1y -7, in the free monoid I'* generated by I'. The identity e of this monoid
is the empty word . We write |v| for the length of v. Two colored ordered sets
(S,v) and (T,w) are isomorphic or have the same coloring if there is an order
isomorphism of 6 : S — T that preserves the coloring, i.e., v7(8(s)) = vg(s). Since
these are linearly ordered sets, the mapping 8 will necessarily be unique.

Given a finite colored ordered set S, any subset R C S is itself totally ordered
in the relative order, and we let R have the restricted coloring y|R. Given disjoint
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colored sets S and T, with colorings v and w, we let S LI T denote the union with
the left to right ordering, and the coloring vg ;7 = vw.

3. PLANAR TREES AND THEIR COLORINGS.

The planar forests are defined recursively. For transparency we use terms as-
sociated with botanical and genealogical trees. To construct a plane forest F' we
first chooses an ordered set Fy of vertices (z1,... ,x,) called the roots or the first
level of F. For each root z; in F' we then choose a possibly empty ordered set of
vertices (z1,...,2i,;) called the children of x;. The entire collection Fy of these
children is called the second level, which we totally order first by their parent and
then among siblings by the given order. Having chosen the n-th level, we choose an
ordered set of vertices for each vertex in that co-set. These new vertices consititute
the (n+1)-st level, and we order them in the same manner. We only consider finite
forests.

We define the n-th layer of F' to be the forest obtained by considering only the
vertices in the n-th and (n + 1)-st levels together with the edges joining them in
F. A tree is a forest with only one root. We call the vertices of a forest F' without
children the leaves of F. We say that a vertex is degenerate if it has precisely one
child. Finally a non-degenerate vertex is simple if it is the only non-degenerate
vertex on that level. We say that the corresponding level is simple, and that a tree
is simple if all of its vertices are simple.

We may identify a forest with a graph in the plane in the usual manner. The
levels are placed in horizontal rows, parents are joined by edges to their children,
and the left to right order reflects the recursively defined order on the parents, and
the given order on the children in each family. A typical planar forest is illustrated

N OnE

We have a total breadth first ordering < on the vertices of a planar tree T'.
Counting downwards (from the total number of vertices), we begin with the root of
the tree and we then choose the rightmost vertex in the second level. We number
the elements of that level from right to left in decreasing order, and then go to
the rightmost vertex of the next level, and continue in this fashion. When all the
vertices of the tree are numbered we move to the next tree on the level. In a given
tree we write x < y if x <y, or z is in the same level as z and lies to the left of y
as illustrated in the following figure.

10

We will also use the depth first ordering of a tree. Again counting downwards, one
first one starts at the rightmost root and then successively chooses right branches
going to successive generations, and backtracking to the next right-most uncounted
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vertex. The resulting order < has as its greatest vertex the root of the rightmost
tree, as illustrated in the diagram below.

The depth first relation z << y may be described in the following manner. For any
two vertices z,y either there is a unique vertex with branches leading to both =
and y.or one is a descendant of the other. We have 2 < y if and only if the branch
leading to z is to the left of that leading to y, or = is a descendant of y. We note
that on each row the two total orderings coincide, i.e., z < y if and only if z K y.

A forest F' is said to be reduced if it has no degenerate vertices. On the other
hand it is layered if at each level other than the last, each vertex has a child, and
each non-leaf level has at least one non-degenerate vertex (hence the (n+1)-st level
is larger than the n-th level).

A colored forest (F,7) consists of a forest F' together with a coloring of the
vertices v : F' — T such that if = is a degenerate vertex with child y, then y(y) =
~(z). The following is a 2-colored layered tree.

©
(2} ©
© O ©
o O O &

4. COLORED ORDERED PARTITIONS AND THEIR SEGMENTS

An ordered (or interval) partition o = (Bx, ... ,B,) of S is a collection of subsets
for which |JBr = S and By < ... < B, in the given “left to right” ordering. We
may use the planar forest

” AN T AN

or the parenthetical expression
(12)(345)(6)(78910)
to denote the partition o = (B, ..., Bs) of [10] with
B; ={1,2},B, = {3,4,5},B3 = {6}, Bs = {7,8,9,10}.
We regard a partition as an equivalence relation on S and identify the quotient
set S/o with (By,...,B;). We say that a block is a singleton if it has only one
element, and that its element is degenerate.

There is an alternative approach to partitions that is useful. We define an
(abstract) partition o of an ordered set S to be an increasing map f, : S — S, of
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S onto an ordered set T = S,. We then have the ordered partition (B;);c7, where
By = f, '(t). Conversely given a partition o = (B, ... , B,) in our initial sense, we
have a corresponding increasing surjection f, : S = S/o = (Bi,...,By), where
f(z) = Bj if x € B;. (4.1) may be regarded as the mapping diagram of f, in that
example.

Given a second ordered partition 7 = (Cy,...,C;) of S, we write ¢ <X « if
every set Bj is contained in some set Cy, i.e., o is a refinement of w. Equivalently,
fr = g o f, for some increasing function g : S, = S;. We write 0 < 7 if 0 < 7 and
o # w. Given partitions o of S and 7 of T, we have that

cUr={BUC:B€o,Cemn}

is an ordered partition of S UT (we use the left to right ordering).

A colored partition (o,7,) of a colored ordered set (S,g) is an ordered partition
0 = (B1,...,By) of S together with a coloring ¢, of (Bi,...,By), such that if
Bj; = {z}, then ¢,(B;) = cs(z), i.e., singletons have the same color as their unique
element. Equivalently, we have a colored ordered set S, and an order preserving
surjection f = f, : S — S, with the property that if z is degenerate, then ¢(f(z)) =
¢(z). Given colored ordered sets S and T, we say that a mapping f : S — T is
proper, and write f : S — T if it has the latter properties, i.e., it is a proper
surjection satisfying the singleton condition. We say that o is a partition of S
with the coloring w = ¢, and that (S/o,w) is a colored ordered set. We have that
(o U T,vw) is a colored ordered partition of the colored ordered set S U T.

We use the colored planar forest (or layer, see above)

(4.2) o@@e

or the parenthetical expression

(31),(233)(2),(1223)3

to indicate the colored ordered partition o = ((12), (345), (6), (78910)), w = v, =
2123 of the colored set

([10], 3123321223)
In this example we have the colored order isomorphism
([10)/o,w) = ([4], 2123).

If S is a colored ordered partition, we define Y(S) to be the collection of all
colored ordered partitions o of the colored set S. We partially order Y (S) by (o,v) <
(m,w) if (1) 0 < 7, and (2) for any B € o N, v,(B) = v,.(B) (i-e., B has the
same color in either partition). For simplicity we simply write 0 < 7. Owing
to the second condition, if ¢ < 7 and # < o, then ¢ = 7 as colored sets. It is
evident that ¢ < « if and only if f, = go f,, for a (necessarily unique) proper
function g : S, » Sy. If S = (21,...,%,), has the coloring v = v(1) - - - v(p), then
Y(S) has the minimum element 0, = ((z1) ... (z,),v) and the maximal elements
1; = ((#1...2p),j) where j € T.

We turn next to segments of colored partitions P = [0, 7], where ¢ < 7 € Y(S).
P has the relative partial ordering <, and an element A € P may be regarded as
a colored ordered partition of the elements in S/o . Given segments P C Y(S5)
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and Q C Y(T), we say that P is isomorphic to @, and write P ~ @, if there
exists an order isomorphism 6 : P — @ such that for each A € P, S/\ and T/8(X)
are isomorphic colored ordered sets. In particular, for any partitions o and 7, the
segments P = [o,0] and Q = [1,7] are equivalent if and only if S/o and T/7 are
isomorphic colored ordered sets.

Given a coloring v of [p] and j € [p], we let Y = [0,,1;] . Given 0 < 7 and
o' < 7', we have an order isomorphism

0:[o,m] x [0, 7' ~[cUd,mUT],
where for each A, ((A\, X)) and (A, \") are isomorphic colored ordered sets.

Lemma 1. Let us suppose that (S,s) is a colored ordered set and that (o,v) =<
(m,w) in Y(S). Then letting vy, = v|Cy we have a natural equivalence

0o, 7] =YW x . x Y@
where for each A € [o, 7], A and 8(X) = (A1,...,\x) are isomorphic colored sets.

Proof. Consider the mapping g : S, - S described above. Let us identify S, with
[¢]- The intermediate colored partitions correspond to factorizations S, - T — S;.
To construct such a diagram it suffices to choose for each j € S; a factorization
9 (j) » T; - {j},i-e., an element \; of Yé , where v; is the coloring of the interval
g7 1(j). Tt is evident that we have a one-to-one order preserving correspondence
A (A,...,Ag) with the desired coloring property.

In order to obtain the incidence Hopf algebras, it is necessary to impose a more
inclusive equivalence relation which identifies all of the one block partitions with a
multiplicative identity. Given a colored partition (o, v) of S, we let Sys be the union
of the non-singleton blocks in ¢, 5 be the collection of non-singleton blocks, and
Uns be the restriction of v to o,,5. We say that order intervals P = [o, 7] C Y(S) and
Q =[o',7'] CY(T) are similar, and write P ~ @, if there is an order-preserving
bijection 6 : P — @ such that for each A\ € P, \,s and 6()\),s have the same
coloring, i.e., Sps/Ans. If the non-singleton sets S,s and T, are empty, this is a
vacuous restriction. For any colored partition ¢ and segment P,

[0,0] x P~ P.
To prove this we consider the mapping
O:[0,0] x P~P:olUA— A

This is clearly a bijection and order preserving. Since (o LUX),s = (A)ns, 6 satisfies
the coloring condition. Similarly we have that P x [o,0] ~ P for any ¢ and P.
Finally it is easy to verify that if S ~ S’  and T'~ T', then S x T ~ S’ x T".

We let Py denote the class of all segments P = [0, n] C Y(S) for arbitrary finite
colored sets S. It is evident that Py is closed under Cartesian products and the
formation of subintervals. We let P = Py/ ~ be the set of similarity classes [P]~
and we define a monoid operation on S by

[lo, TI~llo’, 7N~ = [lo x o', 7 x 7]

The corresponding multiplicative identity is given by 1 = [Y]’ ], where j is arbitrary.

On the other hand the intervals Y,/ with |[v| > 1 are all non-similar, and we
will simply write Y for their similarity classes [Y/]. as well. When confusion is
unlikely, we will dispense with the similarity class notation [ ]. altogether. It is
evident that P is just the free monoid on the symbols Y with |v| > 1.
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5. HOPF ALGEBRAS

We briefly recall some elementary notions from the theory of Hopf algebras.
More complete discussions can be found in [7], [11], [4], and [9)].

Given a vector space V, we let I : V — V denote the identity mapping, and
L(V) the algebra of all linear mappings T : V — V. Given a unital algebra (4,1)
the tensor product algebra A ® A is given the associative multiplication

(21 Q1) (z2 ® Y2) = 122 @ Y1y

and the multiplicative unit 1 ® 1. A bialgebra (H,m,n,A, &) consists of a vector
space A with an associative product m : H ® H — H, a homomorphism 7 :
C —» H : a — al, where 1 is a multiplicative unit for H, a coassociative coproduct
A : H— H®H,: and a counit ¢ : H — C with the linking property that
A: H — H ® H is a unital homomorphism. We employ Sweedler’s notation

Aa = z a1y ® a(2).

An antipode for a bialgebra H is a mapping S : H — H such that for any a € H

Z Sla@))ag) = Z amyS(a)) = e(a)l.

or equivalently, m(S ® I)A = m(I ® S)A = noe. We say that S is a left antipode if
one just has the first an third terms are equal, and a right antipode, if one has the
second equality. If H has an antipode, then any left (respectively right) antipode
automatically coincides with S, and in particular, S is unique. An antipode S is
automatically a unital antihomorphism, i.e., we have

S(gh) = S(h)S(g)
S1) = 1
(see [11] Prop. 4.0.1). A Hopf algebra (H, m,n, A, ¢, S) is a bialgebra (H,m,n, A, €)

together with an antipode S. Given a Hopf algebra H with antipode S, we have
that S? = I if and only if

(5.1) > Slag)ag) =Y _awSlaq) =«(a)l

(see [7], Th. IIL.3.4).
Given ¢,1 € L(H), we define the convolution ¢ x1 € L(H) by

() = pla)v(ze)

or equivalently, @ x 1) = m o (p ® 1)) o A. This determines an associative product on
L(H) with the multiplicative unit u = poe. It is evident form the definition that S
is an antipode if and only if S %I =1 %S = u, i.e., it is a convolution inverse of I.

A bialgebra (H,m,n,A,¢e,S) is said to be filtered if one has an increasing se-
quence of subspaces Hy, (n > 0) with |J H, = H, for which

H™H" C H™mn
AH™ C Y H’@H".

ptg=n
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and it is said to be connected if in addition H® = C1. We say that H is graded if
there are subspaces Hy,, of H with H, N H,, = {0} and }_ H, = H such that

HmHn g Hm+n
AH, C Y H,®H,

ptq=n

It is easy to see that such a system determines a filtration if we let H" = Y7 | H;.
If H is a connected filtered Hopf algebra, then for any a € H™,

Aa=a®@1+1®a+» ) ®ae

where p(a(1)) + p(az)) = n and p(a()), pa(z)) > 0. In particular if z € Hi, it
follows that

Az=z1+1Qz.

This is used to prove the following result:

Theorem 2. If H is a connected filtered bialgebra, then it has an antipode given
by the “geometric series”

(5.2) Sa=(u—(u—1)""a)= Z(u—[)*ka.

The sum is finite for each a since if a € H™, then (u — I)*("*Y(a) = 0.
Assuming that H is a connected graded Hopf algebra let us suppose that a € H,,
n > 0 Then from [4] or [9]

n—1
Aa=a®1+1®a+2ak®bn,k
1
where ay, € Hy, b,_r € H,_}, and thus
0=c(a)l=S(a)+a+ Y S(ak)bnk
S is thus recursively determined by S(1) =1 and if a € H,, with (a) =0, then

S(a) = —a— ”i S(ak)bn—k-

It immediately follows from this relation that S(H,) C H,.

Proposition 3. If H is a connected graded Hopf algebra and each subspace H,, is
finite dimensional, then S : H — H is a bijection.

Proof. This follows from (5) by induction on the grading. Since S(1) = 1 and
Hy = Cl1, S(Hp) = Hy. Let us suppose that S(Hy) = Hy, for each k < n — 1. Given
a € Hy, n > 0, we have that

a=—-5(a) = 3 S(a)bus.
k

=1
By induction we may assume that b,_; = S(c,—x) for some ¢, € Hp—. It follows
that

a=—S(a) — 2 S(ar)S(cn_) = S(—a— ch,kak)
k=1
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where —a — Y cp_rar € Hy. 11

Given any vector space V, we define the flip 7: V@V -V V by r(v@w) =
w ® v. Given a bialgebra H = (H,m,1,A,e) we define the reversed bialgebra to
be H™ = (H,m,1,A7,¢) (this is indeed another bialgebra: see [7]). It is shown in
[7], Cor. II1.3.5 that if the antipode S of a Hopf algebra H is invertible, then S—!
is an antipode for the reversed algebra H”. In particular since

ATa = Z a(2) ® a(1)-

it follows that S—! is characterized by the relation

Z S_l(a(z))a(l) = Z a(Q)S_l(a(l)) =¢(a)l.

It is recursively determined by S~!(1) = 1 and if a € H,, (hence €(a) = 0,) then
n—1

(5.3) S (a) = —a- Z bS Han_t)-
k=1

6. THE LAGRANGE HOPF INCIDENCE ALGEBRA

We define the (colored) Lagrange incidence Hopf algebra L as follows. As an
algebra, L is the free associative unital algebra generated by the segments Y} (1 <
i < N,|u| > 2) with unit 1. We may regard the elements of £ as linear combinations
of elements of the free monoid P of intervals P = Y2 x.. . x V"9 where |uy| > 2.
Following Joni and Rota [6], p. 98, the coproduct

A:LSLRL
is defined by

A(P) = Z [Opvﬂ] ® [71', 1P]>

TEY]

and the coidentity homomorphism € : £ — C is determined by e(e) = 1 and e(Y;}) =
0 for v with |u| > 2.

Given (m,w) € Y with w # 04, 1;we have that 7 = (Cy, ... ,C,) is an ordered
partition of the colored set ([p], u) where p = |u|, and w = w(1) - - - w(q) is a coloring
of . We let u; = u|C;. From above we have that [0y, 7] ~ Y*™ ... ¥, and [r, 1,]
= [0y, 1!] = Y;i. On the other hand if 7 = Op, [0p, 7] = 1, whereas if 7 = 1p, then
[r,1p] =1, from which we conclude that

p
6.1) AYH=Yiel+leYi+) > > vrO  yraey]
4=1 n€Z,(p) we[N]e

Given a segment P = [o,7] in Y,! we define a chain v in P to be a sequence
0 =09 <01 < ... <0, =7.Givensuch a chain, each interval [o}_1, o] determines
the k-th layer of a layered forest F'(vy), with r layers (and thus r + 1 levels) and
conversely a layered tree with r layers will determine a chain in P. If P = Y}, any
chain ~y can be extended to a chain 7' such that for each k,o},_, is obtained from
o}, by splitting one of the non-singleton blocks of o} into a singleton and another
block. The corresponding trees are simple and each non-degenerate vertex has two
children. Examining the tree of such a chain it follows that the maximal chains in
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Y} all have |u| — 1 elements, and thus p(Y;!) = |u| — 1. Given an arbitrary segment
P=lo, =V x . x va(Q), it is evident that

p(P) = p(YrD) + ...+ p(¥ ).

We define £,, to be the linear subspace spanned by the intervals P with p(P) = n.

We note that given a generator Y, a partition 7 = (C1,...,C,) of p = |ul, and
w € [N]4, s
p(Y M Y D) 4 p(VE) = (lua] = 1)+ ...+ |ug] = 1) + (Jw| — 1)
= |ul—q¢+(¢-1)
= p(Yy),

and thus
AYHe Y Ly®L,
ptg=n

Given y € Hy,, y' € Hy, z € Hy,2' € Hy, we have that (z @ y)(z' ® y') €
Hp,p ® Hyy . Since A is a multiplicative homomorphism, we conclude that if P
is an arbitrary interval, i.e., a product of terms of the form Y}, and p(P) = m, then

AP)e > Ly ®Ly
p'4q"=m

and thus £ is a graded and connected bialgebra.

The following antipode formula of Schmitt may be regarded as a transcription
of (5.2) (see [4], §11.1 and [10], Th. 4.1).

k

(6.2) SyhH=3" 3 (-1)*[[low-1, 0.

k>0 0y=00=<01<...<0k=1; i=1

On the other hand the subspaces £,, are finite dimensional, and thus from above S
is invertible and S~! is the antipode for £7.

We may express S~! in terms of S. Let £°P denote the opposite algebra of L.
Given a word u = uq - - - up, € [N]*, we let u* = uy, ... uy. Since L is freely generated
by the Y7, the inclusion mapping

s: Vi Vi eLor

extends to an algebra isomorphism s : £ — L£°. This may be regarded as an
antiisomoprhism o : £ — £ satisfying

(6.3) sVl - Yim) =Yyr - Y

Lemma 4. S~ 1 =sSs.

Proof. We have that

(6.4) D 8Ss(V)e) Ve = D 8S(Vpyewn)) Yl .. ¥
= s v VY S(Yuow))
= s)_ (Vi) 0)S(Vur)2)
= s(e(Yi)1) =48 =6,
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We have a related anti-isomorphism t : £ — L determined by the identity
mapping
t: Y s YVie£or,
or equivalently,
t(YJfl) ...ygin)) = ygin) ...yJ'l(l)

7. THE REDUCED TREE FORMULA FOR THE REVERSE ANTIPODE

Given a reduced colored tree T € R, all of the vertices z of T' are totally ordered
by the (decreasing) depth first ordering. Each vertex z determines a corresponding
generator Y (z) = Y, where j is the color of z, and v = v(1) ...v(k) are the colors
(in order) of its children. We define

>

(7.1) AT = J[ Y (@) = V(@)Y (@),
zeT

where 21 <K ... ¥ z, are the non-leaf vertices of T.

Given an ordered set of n reduced trees T, ... ,T,. We define ¢, (T1,... ,T,) to
be the tree obtained by introducing a new colored root = with color ig, and joining
each of the roots z; (with color i;) of T} to zo. We let v(T") denote the number of
non-leaf vertices in a reduced tree 7.

It is evident that with the exception of the unique one layer tree T} € R!, every
tree T € R has a unique representation of the form T = ¢, (T1,... ,Tp).

Lemma 5. Suppose that we are given an ordered n-tuple of trees (Ty,... ,T,) € R
(n > 2), and that the root x; of T; has color i;. Then we have

(7.2) Aco(Th,..., T,)) =Y . A(T,)...A(T)

wnd VAT T) =Y p@) +1

Proof. Let us suppose that the non-degenerate vertices of T}, are given by z3,;1 <
... K Zp,p,. - The new root zg is non-degenerate in the tree T' = ¢ (T1,... ,T,) and
it is maximal in the < ordering. It follows that
AT) = Y@Y (@np)Y @npu—1) Y (T1,p,) - Y(21,1)
= Y0, ATy ... A(Th).

The second relation is immediate. I

Theorem 6. The antipode S of L is determined by
(7.3) STV = Y (—)YOAD).

TERE,

Proof. Since S~! satisfies S7!(1) = 1, and it is an antihomomorphism, this relation
indeed determines S on L. We use the recursive characterization (5.3). We have
that if u = jk, R;, contains only the tree T' = Tj; and A(T};) = Y. Since Y}, € L1,
we have from (??),

STHY) = Y = (=1)VDAD),
which coincides with the right side of (7.3).
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Let us suppose that the formula is true for |u| < n — 1. We have from (??) that
ifu=wu(l)...u(n+1),
STHYD) = =Y =Y (V) S TH(VHw)
(recall that €(Y,?) = 0). On the other hand from (6.1)
P
AvH=3" > N v vr@ey)
1=1 meZy(p) wen]?

and thus letting 7 = {Bi,... , By}, and uy = u|By,

SLyh = -vi- Z yigfl(yﬁ(l)...yqz(q))
q,T,w
e T DR A AR V)
q,T,w

Y- Y (HEYIWIYIAMTG)---AT)

T T eRyY

= -Yi+ > > (—n)eT TN (Ty,. .., T,))

7w ERLU,Ek)

Vit Y ()*Ma@)
TeR,\{Ti}

where we recall that the one layer tree T} is not assembled from non-trivial reduced
subtrees. On the other hand we have that A(T?) = Y, and v(T!) = 1, hence

STV = Y (CD)YOAT)

TeRE
8. THE BREADTH FIRST FORMULA FOR THE ANTIPODE

For the breadth first formula for the antipode, we restrict our attention to layered
trees. Given such a tree T, each non-degenerate vertex of z € T'(y) determines a
generator Y (z) = Y where j is the color of z and v is the coloring of its children.
We define

<
(8.1) o) =[] Y@) =Y (z)...Y(z),

€T q

where 1 < ... < z, are the non-degenerate vertices in T. We have from (6.2) that

SY)= Y (-)DT)

TELTE

where ETf, is the set of all layered trees with root colored 7 and leaves colored by
v, and £(T) is the number of layers in T

It would be tempting to attempt to use (8.1) to obtain a formula with reduced
trees by simply contracting the edges issuing from degenerate vertices. In the
commutative situation considered by Haiman and Schmitt, one could associate a
reduced tree R = p(T') with any layered tree T' by contracting the edges issuing
from degenerate vertices. In this commutative context Q(p(T")) = Q(T') and thus in
the formula for the antipode one may collect all the terms with the same contracted
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tree into a multiple of Q(p(T')). The coefficient is a sum of positive and negative
1’s, and using a combinatorial argument they showed that all of the non-reduced
trees cancel.

In our situation, arbitrary contractions can disturb the x < y ordering on the
non-degenerate leaves, and thus one need not have that Q(p(T)) = Q(T). This
can be seen in the third tree of the diagram below, which was disordered by an
“improper” contraction. One must therefore use only contractions which are <
order preserving. In our reduction we will also modify the contraction so that the
tree remains layered.

Let us suppose that 7' is a layered tree and that x is a non-degenerate vertex in
T. We say that T is order contractible at x if

a) its parent z' is degenerate
b) there does not exist a non-degenerate vertex to the right of z
c¢) there does not exist a non-degenerate vertex to the left of z'.

If z is a vertex in the k-th row which satisfies these conditons, the order contraction
k(T) = kz(T) is the layered tree obtained in the following manner:

1) move z to the position of its parent in the (k — 1)-st row,

2) attach each child y of x by a single line to a degenerate vertex z’ in the
k-th row,

3) leave all other vertices and edges alone.

4) if there are no other non-degenerate vertices in the k-th row, delete it.

Conditions a)-c) guarantee that the < ordering on the non-degenerate vertices is
preserved. Thus the contraction on the non-degenerate vertex o in the first tree
below is allowed. On the other hand contracting on the vertex z; would transpose
the < ordering for the two non-degenerate vertices z; and z,.

I3

Since we will not consider general contractions, we will simply use the terms
contractible and contractions for the corresponding order preserving notions.

Given j € [N] and v € [N]*, we let 77 be the set of all layered trees with root
colored by j, and leaves colored by v. We let £ ’TZ; be the simple trees in 7;/. Given
a tree T € LT? we define the canonical expansion ®(T) € TJ as follows. If T
is simple we let ®(T) = T. If T is not simple, let z, be the first non-simple non-
degenerate vertex in the < ordering, and let us suppose that it is on the k-th level.
We introduce a new level L between the k-th and (k 4 1)-st levels in the following
manner.

a) We move z, down to the level L and we connect it to a new degenerate
vertex z.. on the k-th level, and to the children of z, on the (k + 1)-st level,

b) If y is a vertex on the (k + 1)-st that is not a child of z,, we connect it
by a single edge to a new degenerate vertex y' on the level L, which we then
connect to the parent of y on the k-th level.
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We define ®(T') to be the new tree.

I /\wr Tr41 I x’r Try1 —k
o
Tr_1 — a T, d yz! i« L

r—1

a b ve od Tr_1 f <« k+1

N4

(T)
It should be noted that since there are no non-degenerate vertices to the left of z,.,
this operation will not affect the < ordering on the non-degenerate vertices. It also
preserves the ordering <€ on the non-degenerate vertices, as is evident from the
above diagram.

We have that z, is a contractible vertex in ®(7") because all the other vertices
on the new level are degenerate, and there are no non-degenerate vertices to the
left of z!.. If one contracts on this vertex, the new level will contain only degenerate
vertices, and thus will itself be deleted (see the primed row in the right tree below).
In this manner we see that if we contract ®(T") at the vertex x,., we recover T'. This
is illustrated in the following diagram, in which e = 2,1 and ¢’ = z}._;.

T, Tyt Ty Ty
S eyt
b sc od e f a b c d e f

Let us suppose that 1 < ... < z, are the non-degenerate vertices of a tree
T. Turning to the breadth first ordering, there is a unique sequence of indices
ny < ...<ng with

. <<< mnl >>> m.nl-|—1 >>> mn1+2 >>> “ e >>> mn2 <<< :lfn2+1 PP

We call a maximal sequence of the form z,, ,4+1 > Zn,_,42 > ... > z,, an
irreducible string and we say that x,, is its right end.

Lemma 7. Suppose that T is an arbitrary tree with sequence .

(i) Any contractible vertex in T is a right end of an irreducible string.

(i) If T = E is simple then all of its right ends are contractible.

(iii) If one has y <€ x in T and both y and x are contractible, then after a
contraction at x, y will still be contractible.

Proof. (1)If = z; is a contractible vertex in T on level k. Then in particular its
parent xg is degenerate and there are no vertices to the left of its parent. Since every
level is assumed to have a non-degenerate vertex, ;41 must lie on the (k — 1)-st
row of E to the right of the parent z of ;1. It follows that z; < z;11, and thus
Zj = Tp, for some h.

(i) Let us suppose that y, = z,, is a non-degenerate vertex on the k-the level.
There are no non-degenerate vertices to the right of x,,, on its level since the level
is simple. But z,, << &p,+1 shows that the parent y;, of y, lies to the left of x,,, 11,
there are no non-degenerate vertices to the left of y; on the (k — 1)-st level. Thus
there are no obstructions to the liftability of yp.

(iii) If z is simple, then the contraction at x will simply raise the level of each
vertex y with y < z. If z is not simple, then z is the only non-degenerate vertex
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that is affected. Since y is assumed contractible, there won’t be any vertices to the
left of it on its level. On the other hand if y is on level k + 1, then by the same
assumption, x must lie to the right of the parent y’. This will still be be the case
when one contracts z to a higher level. I

For each simple tree E we let 7z be all the trees T' € 7. with E = ®™(T) for
some n. It is evident that if 7 has n vertices and k levels, then E = ®"*(T)
is a simple tree, and reversing the expansions as above, T' can be obtained by a
particular sequence of contactions of E. More precisely, let y; < ... < y, be the
right vertices of T' (or equivalently of E). We have that there is a subsequence
Ym, K - .. K Y, With

T =Ky, -- Ky, (E)

Conversely given any such sequence, the subsequent right vertices remain con-
tractible as one proceeds, and we get a corresponding tree T'. The tree T uniquely
determines the sequence y,,, < ... < yn, since the latter are by definition the
non-simple nondegenerate vertices of 7" in their given < order.

We let NST? be the set of all non-order contractible simple trees in 7.

Theorem 8. The antipode in is given by
SYH= Y (-)PE)
EeNSTY
where £(T') is the number of layers in T.
Proof. 1t is evident that
T =u{Teg: E€ ST}

and that for any T € Tg we have that Q(T') = Q(E). Thus it suffices to show that
if E has contractions, then

Y )T =aE) Y (-4 =o.

From our earlier discussion, 7g is in one-to-one correspondence with the sequences
Ymy K ... L Ym, drawn from the ¢ right vertices in E, or equivalently subsets
drawn from 1,...,q. If the simple tree E has n non-degenerate vertices and thus
n levels, the tree T(my,... ,m,) has n — p levels. There will be (g) such sequence
and thus

> (0™ = (-1 3 (D) (-1 = (1 - e =,
TeTE P

and we have proved the desired result. |

9. THE DUALITY BETWEEN DEPTH FIRST AND BREADTH FIRST ORDERINGS

There is a natural one-to-one correspondence between the reduced trees R and
the non-contractible simple layered trees. N STZ;. On the one hand we have the
mapping p : NST? — R in which one contracts all the edges emanating from
degenerate vertices. We define n : RI, — N STZ; by forcing simplicity via appropri-
ate expansions. This is illustrated in the following diagram in which a reduced tree
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is transformed into a non-contractible simple tree (one can make the second tree
layered by adding degenerate branches).

In this correspondence the breath order and depth first orders are interchanged.
We will not pursue these notions at this time.

10. FORMAL POWER SERIES

Let us suppose that we are given a non-commutative unital algebra A and non-

commuting variables z1,...,2zy. Given a word w = w(1)---w(p) € [N]*, we let
Zw = Zw(1) " Zw(p), and ze = 1. A multiple non-commutative power series with N
non-commuting variables zj,...,2zxy and non-commuting constants has the form

F(2) = (F'(z1,...2n),..- ,FN(21,... ,2Nn)) where
Fi(z) = F'(z1,...,2N) = ng)zw,

and the “constants” fi lie in A. We assume that variables commute with constants.
The latter enables us to multiply power series since in particular,

(azy)(bzy) = abzyy-

Let us begin by computing the effect of substitution on power series. We do
not use the term “composition” since there does not seem to be a meaningful
interpretation along those lines. Given a single power series of N variables

F(2)=fo+ > fizi+ Y finzizn + -

and an N-tuple of power series without constant terms

G'(2) = Zg;-zj + ijijZk +-e

we may substitute G’(z) for z; in the expression or F. We will denote the resulting
power series by H(z) = (F o G)(z). Rather than doing this explicitly, it is more
instructive to compute the coefficient h,, of z,,. A typical summand of hy,.. ., is Ob-
tained by taking an ordered interval partition of 7 = {C4,... ,Cp},0f (wy,... ,w,).
Given that Cy = {1,...n1}, we have a corresponding expression

i1 — wlc’l
gwl...'zup1 RBwy Bws - - - Rwp, = Gw|C1 7 -

and we have corresponding expressions for each C;. The relevant summand of
P, ..w,18 given by
R 1 Ja
fiviagyic, - 9ulc,.

We conclude that

= R J
hwl...wp — Z Z f“"'J‘l gw|01 - 'gwq|Cq.

7 7=(Cr)€Lq(N)
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More generally we may substitute G into an M-tuple F(z) = (F'(2),..., F"(2)),
obtaining H = F o G, where

( — R 31 iq
h, .o, = E E le...iqgw‘cl - Gulc,.

7 m=(Cr)€Lq(N)

Given an algebra A, we let G%f (A) denote the set of power series F' = F'(z) with

Fi(2)=zj+ Y fizu, (fi€A)

[u[>2

i.e., without constant terms and with f} = 6{ . Substitution of G into F' provides us
with a non-associative product (F,G) — F o G on gji;f (A). From above,

(10.1) (FoG), =2+ Zf«ig:f\gf - '95(52

where if p = |u|, we sum over g-interval colored partitions 7 = ((C4,...,Cy),w)
(1<qg<p)ofp.

Each generator Y;! € Ly (|Ju] > 1) may be used to select a corresponding coeffi-
cent fi in a power series F(z). To be more precise, we define a linear mapping

O(Y)): G (A) —» A

by letting (Y,})(F) = fi. Since Ly is the free algebra on these generators, we
extend this to the basis elements Y,fll e YJ;’ by letting

G(YJI"'YJ;’):Qﬁf(A)aA:FH i fia

Ug
Extending linearly, we have a corresponding homomorhism
0: Ly — Lin(GH(4), A)
and thus a bilinear mapping
(): Ly x Gl = A (a,F) = 8(a)(F).
From our definitions we have that

(ab, f) = (a, f){b, f) = mala®Dd, f & f).

Welet 7: L& L — L ® L be the flip defined by 7(a ® b) = b ® a. Returning to
the substitution formula (10.1). we have

(YL, FoG) = mad (Viay L) vil) FeG)
= ma(AT(Y,), F®G).

Theorem 9. Given F € G%f (A), the left substitutional inverse of F is given by
the power series G(z), where gi = (S~Y(Y), f).The right substitutional inverse of
F is given by H, where hi = (S(Y}), f), where S = tSt.
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Proof. : Let ma denote the multiplication in A. Defining G as above, we have that

(YJ7GOF> = mA<AT(Yd7)7G®F)
= maQ_(Vievit) - vrl.GeF))

u

= YT, )Y vl R

= maQQ_(STHYD )V, F)

= O S((¥)e) ¥, F)

= (e(Y])LF)

u

= §1,

and thus F' is the left substitutional inverse of G.
On the other hand, if H is defined as above, then using the fact that tS is an
algebraic homomorphism and that (V) = Y},

(Yi,FoH) = mus(A™(YJ),F®H)
= maQVieYe) Ve, Fe )
= maQ_ (Vi@ W) (YIL)) - (1) (Vi) F & F))
= maQ (Vi @ W) (V) - Vi), F & F)
= Y VIES) (VL) Y, F)
= (s - YiEYd), F)
= WY SOD W T)), F)
= (e(V{)L,F)
= §1

and H is the right substitutional inverse of F.

Corollary 10. If the number of variables N is greater than 1, then the left and
right substitutional inverses of a power series are generally distinct.

Proof. It suffices to show that

UOSOU(Y11234) 7650505(1/11234)

In the following calculation we have used boldface subscripts to indicate correspond-
ing terms that equal. In each sum the bracketed terms cancel (these correspond to
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order preserving contractions).The sums are over the set of colors 1,2,3,4.
S(Yisga) = —VYipgs+ Z VY, + Z Y35V
+ Z Y Yoy + [Z }ﬁ]?zY3€4Yk1l] - Z Y Y5Y — [Z }/1’62Y3Z4Yk11]
DR CED RN CED IR ENA TR IR EAEAL
00800(Vihsy) = —Vipgst ad YesaVis+ b)Y Vika¥sh
o Y ViV + [ VavaYE] - S vAvEYE - [ Vv
—aY YaYEYh — o ) YAYYa — £ ) VIYVLYsi— ¢ ) VYV
&(Yll234) = 3/;11321
55(1/11234) = S(Y:11321) = _Y41321 + Z Klk3Yk121 + Z YE;’EYZEM
+ Z YV, + [Z H%YéﬁYkle] - Z VYY), — [Z VY5 Ykle]
=Y YEYLYh - Y VAYAYA - ) YEYAY - ) VYRY,
586(Yisgs) = —Yihaa+ o Z VY + b Z Va Vo
+ad Vi + [ vAvEYE]| - S vivhvh - [S Vv Y]
— e D VIVRYS — £ D VIVAYE - o D VAYRYE - a) YAYEYH
It follows that
008 00(Vihg) = 555 (Vibgs) = = D_ YAV + Y VieVsaVh.
|

In particular, one can check that if @ and b do not commute, the substitional left
and right inverses of the two-variable polynomial function

v = xz+az®+by?
v o= y
do not agree in the fourth order terms.
As in pointed out in BFK, the paradoxical fact that power series with non-

commuting coefficients and variables need not be associative can be related to a
“free analogue” of the Hopf algebra which uses a non-coassociative coproduct

A, L — LxL.

We will not pursue this idea in this paper.
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