Printed Name	Signature	UID
Math 131a S04 Final Examination	0	Answer 8 questions \leftarrow

1. Prove that any subset of \mathbb{N} is either finite or countably infinite.

2. Prove that if $x_n \to L$ and $x_n > 0$ and L > 0, then there exists a c > 0 such that $x_n \ge c$ for all n.

3. Prove that if f(x) is continuous on [a, b] and $f(a) , then there exists a <math>c \in (a, b)$ such that f(c) = p.

4. Define a function f(x) on [0, 1] by

$$f(x) = \begin{cases} 1 & x \text{rational} \\ 0 & x \text{ irrational} \end{cases}$$

Is f(x) Riemann integrable? Carefully prove your assertion.

5. Prove that if f is a continuous function on [a, b] and $f(x) \ge 0$ for all x, then $\int_a^b f(x)dx = 0$ implies that f(x) = 0 for all x. Hint: Suppose that $f(p) = \varepsilon > 0$. Show that $f \ge g$ where g is equal to ε on a small interval $[p - \delta, p + \delta]$, and is zero off of that interval.

6. Prove that if f(x) is continuous on [a, b] and F'(x) = f(x), then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

7. (a) Prove that if f(x) is defined on (a, b) and differentiable at $c \in (a, b)$, then f is continuous at c.

(b) Is the converse of a) true? Prove your assertion.

- 8. Give examples, and include careful proofs of your assertions
 - (a) A sequence of continuous functions $f_n(x)$ on [0, 1] which converges to a continuous function f(x), but for which $\int_0^1 f_n(x) dx$ does not converge to $\int_0^1 f(x) dx$.

(b) A sequence of continuous functions $f_n(x)$ on [0, 1] which converges to a non-continuous function f(x) on [0, 1].

(c) A continuous function on \mathbb{R} which is not uniformly continuous on \mathbb{R} .

9. (a) Define

- i. (M, ρ) is a metric space.
- ii. The sequence $x_n \in M$ converges to $x \in M$.
- iii. The sequence $x_n \in M$ is Cauchy.
- iv. M is a complete metric space.
- (b) Prove that if x_n is a sequence which converges to x, then x_n is Cauchy.

(c) Use a specific example to show the converse is false.